Return Signal Controls External Device Patents (Class 342/61)
  • Publication number: 20030058133
    Abstract: A vehicle traffic sensor for detecting and monitoring vehicular targets is presented. The sensor employs a planar design resulting in a reduced profile sensor. The sensor includes a multi-layer radio frequency board with RF components on one of the sides and both isolation and planar array antennas on the opposing side. The antennas are preferably tapered planar array antennas which include one transmit antenna and one receive antenna. The sensor also includes at least one logic or signal processing board populated with components on a first side and a ground plane on a second side positioned toward the RF componentry of the RF board to form an RF shield. The boards are housed within a housing that is permeable, at least on the side through which the antenna structures propagate.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 27, 2003
    Inventors: David V. Arnold, Logan C. Harris, Michael A. Jensen, Thomas William Karlinsey, Ryan L. Smith, Jonathan L. Waite, John B. Dougall
  • Publication number: 20030048193
    Abstract: An apparatus for inspecting an operational condition of a rail track from a railcar includes an antenna positioned on the railcar that directs radar signals toward the rail track and collects radar signals returned from the rail track. A radar transceiver is connected to the antenna and supplying the radar signals to the antenna. The radar transceiver receives radar returned signals from an interaction of the radar signal with the rail track. A controller is connected to the radar transceiver for controlling transmission of the radar signals from the radar transceiver and receipt of the radar returned signals. A signal processing unit is connected to the controller and a sensor unit that supplies input data to the signal processing unit. The signal processing unit processes at least the input data and the radar returned signal to produce processor output data and to determine the operational condition of the rail track.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 13, 2003
    Applicant: General Electric Company
    Inventors: Charles McDonald Puckette,, Harold Woodruff Tomlinson,, John Erik Hershey, Stephen Michael Hladik
  • Publication number: 20030025609
    Abstract: A technique is provided for providing total flexibility of control of any desired operation within an environment where personnel work, such as an office suite. The location of transponders is determined by a location system. A user arbitrarily selects a convenient region for controlling an operation and the location system registers this in a memory. The location system then determines the position of each transducer and, when a transducer is within one of the selected regions, the location system responds by controlling the operation. For example, a region may be selected entirely arbitrarily so as to control room lighting.
    Type: Application
    Filed: October 9, 2002
    Publication date: February 6, 2003
    Inventors: Rupert William Meldrum Curwen, Peter Joseph Steggles, Robert Gordon Hague
  • Patent number: 6515614
    Abstract: An autonomous moving apparatus moving to a destination while detecting and avoiding an obstacle includes a radar device for scanning a horizontal plane in its travelling direction to thereby detect a position of an obstacle and an obstacle sensor for detecting an obstacle in a space different from the scanning plane of the radar device. The apparatus moves to the destination under such control as to avoid the obstacle based on detection information from the radar device and the obstacle sensor from a detection output provided by a specific-configuration detecting element for detecting a present specific configuration from scanning information by the radar device. By providing such a specific-configuration detecting element that detects a specific configuration based on the scan information by the radar device that can accurately know about position information, it is possible to guess an obstacle having an upper structure, thus providing efficient avoidance.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Tatsuo Sakai, Yukihiko Kitano
  • Publication number: 20020167439
    Abstract: An electronic circuit for a proximity sensor, which is target-independent and is based on a phase projection transformation, is configured in such a way that the oscillating circuit can be driven by a square-wave voltage. A synchronous demodulator is used for the phase projection transformation. The electronic circuit can be miniaturized and only low requirements are placed on the stability of the feed voltage. A method for operating a proximity sensor is also provided.
    Type: Application
    Filed: April 2, 2002
    Publication date: November 14, 2002
    Inventors: Richard Bloch, Philippe Pretre
  • Patent number: 6456226
    Abstract: A convection induced turbulence (CIT) detection system performs a nowcast algorithm to detect CIT along the flight path of an aircraft using power returns from an airborne whether radar. Additional meteorological data is optionally provided by onboard sensors and/or data link from ground sources. A nowcast predicting turbulence along the flight path in the near future alerts the pilot to the likelihood of encountering clear air turbulence.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 24, 2002
    Assignee: Honeywell International Inc.
    Inventors: L. Lucy Zheng, Richard Burne, Dan T. Horak
  • Publication number: 20020130807
    Abstract: An intrusion detection system and method are provided that can utilize impulse radio technology to detect when an intruder has entered a protection zone. In addition, the intrusion detection system and method can utilize impulse radio technology to determine a location of the intruder within the protection zone and also track the movement of the intruder within the protection zone. Moreover, the intrusion detection system and method can utilize impulse radio technology to create a specially shaped protection zone before trying to detect when and where the intruder has penetrated and moved within the protection zone.
    Type: Application
    Filed: September 14, 2001
    Publication date: September 19, 2002
    Inventors: David J. Hall, Scott M. Yano, Hans G. Schantz
  • Publication number: 20020044078
    Abstract: A radar detector for exploration of subsurface embedded objects comprising an antenna array (1) for high-frequency electromagnetic waves, which is connected and individually switchable with at least one transmit/receive unit, a time-controlled signal processor, an evaluation device for SAR and a display device. The antenna array (1) exhibiting at least three antennas (sx, rx, sy, ry) scamiing an area by their positioning.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 18, 2002
    Inventors: Stefan Liedtke, Harald Schmitzer, John Ewen, Klaus Dass
  • Patent number: 6362775
    Abstract: An apparatus to determine the three-dimensional location of an airborne platform relative to a target area using two separate antenna assemblies positioned on the airborne platform. The first antenna assembly is adapted to transmit energy downward toward a surface location directly beneath the airborne platform, while the second antenna assembly is adapted to transmit energy forward towards the target area remote from the surface location. A single transmitter is associated with both of the antenna assemblies for transmitting signals toward the surface location and the target area. A receiver coupled to the antenna assemblies receives and detects the signals corresponding to the transmitted energy as reflected by the target area and the surface location. A radar processor is coupled to the receiver and is adapted to determine the range between the airborne platform and the surface location and determine the three-dimensional height of the target area from the detected signals.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: March 26, 2002
    Assignee: McDonnell Douglas Corporation
    Inventors: Robert H. Goebel, Stacie K. Corrubia
  • Patent number: 6326915
    Abstract: A radar device for use in backing up a vehicle is disclosed herein. A plurality of wave sensors is installed on a rear portion of a vehicle for detecting an obstacle therebehind. A master controller has a plurality of transceiver circuits and a microprocessor connected to the plurality of transceiver circuits. Each transceiver circuit corresponds to one of the plurality of wave sensors. The microprocessor activates the plurality of transceiver circuits to drive the plurality of wave sensors for transmitting and receiving ultrasound wave signals thereby determining the location of the obstacle. A location display device is connected to the master controller for receiving and decoding data related to the location of the obstacle thereby indicating the direction of the obstacle and displaying in numerical form the distance between the obstacle and the vehicle.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: December 4, 2001
    Assignee: Tung Thih Enterprise Co., Ltd.
    Inventors: Shin-Chung Chen, Sen-Jung Chen
  • Patent number: 6295020
    Abstract: A system is provided for generating multiple frequencies in a specified frequency band, with a specified step size between frequencies, in which the spectral purity of the frequencies is assured. The switching speed between frequencies is very fast, limited only by the speed of the switches used. In one embodiment, only five tones are generated as the base for the rest of the synthesis, in which the relationship of the five tones is f0+/−⅛f0 and +/−{fraction (1/16)}f0. The subject system in one embodiment, utilizes a channel synthesizer and a doppler offset synthesizer which may be utilized in air defense systems for generating the transmit channels to be able to permit a missile seeker to transmit a signal at the appropriate frequency. In one embodiment, spectral purity is achieved by providing a number of stages of up converting, expanding, and dividing down of an input signal.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: September 25, 2001
    Assignee: Lockheed Martin Corporation
    Inventor: Michael Koechlin
  • Patent number: 6275751
    Abstract: A smart docking surface consisting of closely spaced cantilevered sensor/actuator structures capable of precisely repositioning an object having a ferro-magnetic surface in contact with the smart docking surface. It is designed for use in a micro gravity environment for the final docking sequence of two small (<100 kg) satellites. Its purpose is to reduce the complexity of the docking process where a precise mating is required.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: August 14, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael Stallard, Michael Obal, Alok Das
  • Patent number: 6193188
    Abstract: A missile includes a fuselage with a roll axis and a nod axis perpendicular to the roll axis, and a conformal window mounted to a forward-facing end of the fuselage. There is a sensor system with a field of regard through the window and a line of sight, and a sensor system pointing mechanism affixed to the airframe and upon which the sensor system is supported. The sensor system pointing mechanism includes a gimbal structure having a first degree of rotational freedom about the roll axis and a second degree of rotational freedom about the nod axis, and a linear translational mechanism connected to the sensor system. The linear translational mechanism is operable to translate the sensor system away from the window with increasing angular deviation of the line of sight of the sensor system from the roll axis. Preferably, the translational mechanism is a slider-crank mechanism.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: February 27, 2001
    Assignee: Raytheon Company
    Inventors: Anees Ahmad, Thomas D. Arndt
  • Patent number: 6184816
    Abstract: A clear air turbulence (CAT) detection system performs a nested grid modeling algorithm to detect CAT along the flight path of an aircraft. The aircraft stores coarse simulation information and utilizes the information to perform large scale weather modeling over a large grid. On board sensors are utilized to generate observational information to model atmospheric conditions within a smaller grid, nested within the larger grid, and including the flight path of the aircraft. A nowcast predicting turbulence along the flight path in the near future alerts the pilot to the likelihood of encountering clear air turbulence. A data link may be utilized to receive coarse simulation data or observational data from sources external to the aircraft. Additionally, the coarse simulation information may include turbulence forecast data and the observational information is used to refine the turbulence forecast to more accurately predict clear air turbulence along the flight path of the aircraft.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: February 6, 2001
    Assignee: AlliedSignal Inc.
    Inventors: L. Lucy Zheng, Richard Burne
  • Patent number: 6137436
    Abstract: A pseudo-noise-modulated spread spectrum is irradiated undirectedly--or, encoded by different modulation, into mutually displaced spatial sectors--and the energy (20) received after reflection at a potential target (13) is cross-correlated, using the pseudo-noise code which is predetermined at the transmission end, in order to provide a spherical monitoring effect which is continuous but which cannot be located in respect of its origin, to provide a warning in particular for marine craft, land vehicles and aircraft against an attacking guided missile as the target (13) to be repelled, and in order to be able to transfer to a target tracker (12) distance and speed information obtained from the correlation product, with the alarm signal, if the alarm sensor (11) is not itself also used as the tracking sensor.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: October 24, 2000
    Assignee: Diehl Stiftung & Co.
    Inventor: Volker Koch
  • Patent number: 6127965
    Abstract: A method and apparatus for detecting the presence of objects in a vehicle operator's blind spots. The apparatus comprises a side-facing Doppler radar system using continuous wave (CW) transmission with frequency modulation (FM) operation from a frequency modulation switching technique. The radar system determines the presence, range and closing rate of detected targets. The radar system detects targets even when operated in adverse weather conditions and will not generate false warnings due to rain clutter caused by wet roads and other wet surroundings. The radar system uses ranging techniques to reject false targets that are detected outside of a predetermined target detection zone. In accordance with the present invention, the radar system indicates that a target is detected if and only if any part of the target is within the detection zone and it: (1) remains in front of the antenna for at least TH1 seconds; (2) is at a range between Range.sub.min and Range.sub.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: October 3, 2000
    Assignee: Eaton-VORAD Technologies, L.L.C.
    Inventors: James C. McDade, Robert E. Stone, Eric P. Bohley, Roger J. Schlichtig
  • Patent number: 6081224
    Abstract: A control system for a mobile planting apparatus which permits discrete plant spacing to be determined and maintained independent of wheel rotation on the planting apparatus having: (1) a ground speed sensor wherein the rate of movement relative to the ground is determined independent of wheel rotation of the planting apparatus; (2) an input/display device for inputting desired plant spacing; (3) a variable speed motor for driving seed metering devices on the planting apparatus at varying rates independent of wheel rotation of the planting apparatus, wherein the motor changes speeds in response to an electronic signal; (4) a programmable control circuit communicating electronically with the input/display device and ground speed sensor, wherein the programmable control circuit: (a) determines the number of seeds to be dispensed per unit distance based on the desired spacing received from the input/display device; (b) determines the distance traveled based on electronic signals from the ground speed sensor; and
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: June 27, 2000
    Assignee: Parker Hannifin Corporation
    Inventor: Richard Rosenbrock
  • Patent number: 6064331
    Abstract: The objectives of the invention are met by an improved radar tracking system and a process of radar tracking. In the improved system and process, an estimate of a target range and a range uncertainity swath from a first radar system is inputted into a second radar system along with a duty factor. The second radar system determines a set of zero eclipse intervals and respective ranges of range pulse repetition frequencies that solves a first set of equations. A usable range pulse repetition frequency is chosen from the results. Next, an estimated target Doppler frequency region and a Doppler uncertainity swath is inputted into the second radar system. The second radar system is instructed to determine a set of clear Doppler frequency region intervals, and respective ranges of Doppler frequency pulse repetition frequencies by solving a second set of equations.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: May 16, 2000
    Assignee: Boeing North American, Inc.
    Inventors: Louis J. Avila, Prentiss N. Robinson
  • Patent number: 6061015
    Abstract: A vehicle obstacle detecting system having a combination of different kinds of detectors, such as a laser radar and a millimeter-waver radar, to detect an obstacle present ahead of the course of vehicle travel. The system determines whether the detection output of the laser radar is similar to that of the millimeter-wave radar. When the result is positive, obstacle avoidance control is conducted based on the output of either the laser radar or the millimeter-wave radar. When the result is negative, it is determined that the laser radar (the detector normally of superior performance) is degraded and, based on the output of the millimeter-radar, obstacle avoidance control is conducted. With this, the outputs of the different kinds of detectors are fused and unified optimally, enabling effective obstacle avoidance control.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: May 9, 2000
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Yoichi Sugimoto
  • Patent number: 6061614
    Abstract: A method and apparatus for communicating between a host and a motor vehicle, the motor vehicle including an on board computer system having a bus for communicating with a plurality of motor vehicle systems. The apparatus includes an electronic tag having a transceiver for transmitting data to and receiving data from the host, a memory for storing bus requests and bus response data, a decoder for decoding requests from the host, a bus interface for reading data from and writing data to the bus and a conroller. The bus interface for extracting responses from the bus responsive to requests from the host. The responses may be stored in the memory. The controller is responsive to write requests from the host to transfer data to the bus interface and responsive to read requests from the host to transfer data stored in memory back to the host.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: May 9, 2000
    Assignee: Amtech Systems Corporation
    Inventors: Curtis L. Carrender, John Henry Linn, James Lujan, Frank Kenneth Wunderlin
  • Patent number: 6042050
    Abstract: Synthetic discriminant function automatic target recognition system augmented by LADAR combines, through the synthetic discriminant function (SDF), the active LADAR data of the potential target object with the passive infrared imagery of the target and background. In doing so, the system not only recognizes and classifies the target but also provides the range profile of the target object by analyzing the amplitude of the reflected return signal when appropriate. The live target scene imagery in passive infrared is detected, filtered and subsequently complex multiplied with pre-existing synthetic discriminant function to produce a two-dimensional cross-correlated surface. Analogous process is performed on the active LADAR range and intensity images of the live target scene with corresponding pre-existing synthetic discriminant function for the same target pose and scale as in the passive infrared correlation step.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: March 28, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: S. Richard F. Sims, William C. Pittman
  • Patent number: 6025797
    Abstract: An angular shift determining apparatus is provided which may be employed in an automotive obstacle detection system designed to determine a distance to and angular direction of a target tracked by a radar. The angular shift determining apparatus determines an angular shift of the central axis of radiation of radar waves from the longitudinal center line of a vehicle equipped with the obstacle detection system based on a relative position of the target and removes from the determined angular shift an error component produced when a preceding vehicle traveling with a lateral offset from the system vehicle is tracked as the target and an error component produced when a stationary object located on a curved road is tracked by the radar as the target to mathematically project an actual angular shift of the central axis of radiation of radar waves.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: February 15, 2000
    Assignee: Denso Corporation
    Inventors: Nobuharu Kawai, Noriaki Shirai
  • Patent number: 6018308
    Abstract: An obstacle recognition system for automotive vehicles is provided which is designed to distinguish preceding vehicles from other objects and uses data thereof in intervehicle distance control, for example. The system includes a radar unit and a preceding vehicle determining circuit. The radar unit receives a signal produced by reflection of at least one of transmitted radar signals from an obstacle present in a given obstacle detectable zone to determine a distance to the obstacle and a horizontal and a vertical angle of the obstacle from a preselected reference direction.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: January 25, 2000
    Assignee: Denso Corporation
    Inventor: Noriaki Shirai
  • Patent number: 5844519
    Abstract: The watching apparatus is provided with a radar probe, and is made such as to detect the presence of human beings. The radar probe includes a command unit and a branching element, inserted between an oscillator circuit and a transmitter stage, as well as a superposing circuit (5), in which a signal, derived from the radar transmitter, is superposed with an echo signal received by a receiver stage. The radar probe is made such as to work as an interference radar, and a delay circuit is inserted into the transmitter-receiver path between the branching element and the superposing circuit in order to increase the travelling time of the radar signal with respect to the branched off signal.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: December 1, 1998
    Assignee: Geberit Technik AG
    Inventors: Jakob Heierli, Alex Mauerhofer
  • Patent number: 5760731
    Abstract: A sensor for sensing a displacement in a mechanical system using radar utilizes a miniaturized radar transceiver formed, typically, on a silicon chip. The transceiver is mounted to a fixed surface that senses a displacement of a moving surface. The moving surface is typically located in mechanical communication with a system to be sensed. By using appropriate translating circuitry, an accurate determination of the nature of displacement of the mechanical system can be made. Mechanical systems sensed can include rotating and sliding components such as motors, valves and pressure gauges. Sensors according to this invention are highly accurate and reliable.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: June 2, 1998
    Assignee: Fisher Controls International, Inc.
    Inventor: David W. Holmes
  • Patent number: 5682225
    Abstract: A method and apparatus for generating sharper and more accurate LADAR intensity images is disclosed. The LADAR system includes an optical transmitter and receiver that generates and scans a laser beam in a target field. A backscatter detector senses the magnitude of the generated laser beam. A signal processing unit uses the magnitude of the transmitted laser beam to adjust the magnitude of received reflections to produce a sharper intensity image.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: October 28, 1997
    Assignee: Loral Vought Systems Corp.
    Inventors: David S. DuBois, Bruno J. Evans, Gary K. Jenkins
  • Patent number: 5504477
    Abstract: A performer tracking system, and an associated method, for tracking movements of at least one performer upon a stage. A plurality of signal transmitters are positioned about the stage and transmit electromagnetic signals. Performers on the stage carry transponders which receive the electromagnetic signals and, responsive thereto, generate coded sound signals. Sound signal receivers positioned together with the signal transmitters receive the sound signals. A controller determines positions of the transponders and, hence, the performers carrying the transponders and causes spotlights to track the performers.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: April 2, 1996
    Assignee: Wybron, Inc.
    Inventors: Kenyon C. Whitright, Donald J. Newman, Kenneth R. Fasen
  • Patent number: 5467072
    Abstract: A phased array based radar and vehicular safety warning system for collision avoidance, including a phased array based radar, a controlling processor, and a warning system that also provides a warning to the driver of the equipped vehicle as well as drivers of other, non-equipped automobiles involved in an unsafe driving condition. The phased array radar includes a flexible antenna array that may be mounted conformally on existing automobiles without detracting from their design curvature. In one embodiment a pair of phased array radar antenna may be oriented towards opposing sides of an equipped automobile to provide warning surveillance of vehicles laterally approaching the equipped auto from the sides. In another embodiment a phased array radar antenna is oriented to the rear of the equipped automobile to provide warning surveillance of vehicles following the equipped auto too closely, and for warning of unsafe lane changes.
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: November 14, 1995
    Assignee: Piccard Enterprises, Inc.
    Inventor: Joseph Michael
  • Patent number: 5339081
    Abstract: In a vehicle presence detection system for controlling traffic signal lights at a road intersection, the vehicle detection is performed by targeting vehicles at the location of interest with an FMCW radar beam. The radar can be switched repeatedly between the FMCW mode, for vehicle presence detection, and a doppler mode, for vehicle movement detection. Signal data representing the background of the scene viewed by the radar beam are stored for use by circuitry that determines whether an apparent vehicle presence detect is a true vehicle detect; the background signal data is repeatedly updated, as necessary, as the system cycles. Temperature compensation is provided and entry into the FMCW mode is inhibited if a voltage-controlled oscillator provided for generating the emissions has not settled down after any such compensation.
    Type: Grant
    Filed: April 9, 1992
    Date of Patent: August 16, 1994
    Assignee: Peek Traffic Limited
    Inventors: Brian Jefferis, Shaun D. Morgan
  • Patent number: 5225838
    Abstract: An AWTSS is shown to be made up of an improved synthetic aperture radar (SAR) for generating radar maps with various degrees of resolution required for navigation of an aircraft and detection of ground targets in the presence of electronic countermeasures and clutter. The SAR consists, in effect, of four frequency-agile radars sharing quadrants of a single array antenna mounted within a radome on a "four axis" gimbal with a sidelobe cancelling subarray mounted at the phase center of each quadrant. Motion sensors are also mounted on the single array antenna to provide signals for compensating for vibration and stored compensating signals are used to compensate for radome-induced errors. In addition, a signal processor is shown which is selectively operable to generate radar maps of any one of a number of desired degrees of resolution, such processor being adapted to operate in the presence of clutter or jamming signals.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: July 6, 1993
    Assignee: Raytheon Company
    Inventors: Irving Kanter, Donald C. Null, George W. Ogar, Theodore J. Peregrim
  • Patent number: 5206653
    Abstract: A sensor arrangement for the activation or starting of an active body, especially for a land mine which is deployed against ground and airborne targets. The arrangement includes a waking sensor which is responsive to the approach of a target, and incorporating circuit arrangements for the environmentally-adaptive setting of sensor-evaluating circuits in order to release the operating mechanism employed for combatting the target. Provided is at least one antenna for the radiating of a nondirectional electromagnetic ground or direct wave (which hugs the terrain), and possibly also for the receipt of reflections from the surroundings after the deployment of the active body, as well as after activation by the waking sensor, also for determining the relative movement of a target which has penetrated into the previously encompassed surroundings, due to the reflections thereon.
    Type: Grant
    Filed: May 27, 1992
    Date of Patent: April 27, 1993
    Assignee: Diehl GmbH & Co.
    Inventor: Robert Westphal
  • Patent number: 5196826
    Abstract: Both a motion detector and a presence detector receive doppler shifted reflected microwave radiation to detect the passage of a person or an animal in a field of view. The motion sensor is adapted to detect the passage of a person or an animal near a doorway and to actuate the doorway in response thereto, to permit the passage of the person or animal thereto. The presence detector detects "swaying motion" of a person or an animal in a field of view much closer to the location of the sensor as its gain is much lower than that of the motion detection channel. In addition the presence detector is activated only in the event the motion sensor is deactivated. The output signals from the motion sensor and presence sensor are gated through an OR gate and to a timer to activate the door opener.
    Type: Grant
    Filed: June 26, 1991
    Date of Patent: March 23, 1993
    Assignee: C & K Systems, Inc.
    Inventor: Gordon S. Whiting
  • Patent number: 5191346
    Abstract: A device automatically measures a distance relative to the longitudinal axis of a runway to be destroyed. This device comprises: a radar transmitter-receiver, at least one depointed antenna, distance-measuring gates, a threshold circuit and a computer circuit.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: March 2, 1993
    Assignee: Thomson TRT Defense
    Inventors: Bruno Avignon, Yves Canal
  • Patent number: 4973966
    Abstract: A Gunn microwave transmitter/receiver is coupled to an antenna to transmit microwave signals perpendicularly to a surface of a motionless or a slow moving object and to receive waves reflected from the object. The frequency of the oscillator of the Gunn transmitter is controlled by the output of a sawtooth wave generator. Accordingly, the output of the transmitter is cyclically and linearly varied from a first transmitted frequency to a second transmitted frequency. An accurate timer cyclically resets the both the sawtooth generator and digital processing circuitry.The wave reflected from the object and the signal transmitted at the time of arrival of the reflected wave are processed to detect the difference between the reflected wave and the transmitted wave, or the first negative to positive zero crossing that occurs after reset. This event initiates a time window which is terminated at the end of the cycle in which the relationship is detected.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: November 27, 1990
    Inventor: Abraham Zeewy
  • Patent number: 4951058
    Abstract: A method of remote detection of an electronic device, such as an electronic omb fuze, which employs active electronic elements includes the steps of transmitting a radar beam through an object which potentially encloses a suspected bomb and receiving the reflections of the transmitted beam, using doppler radar techniques to detect signal phase and amplitude modulations, if any, and processing the reflections to provide an output resulting from any detected modulations which would indicate the presence of active electronic elements within the searched object.
    Type: Grant
    Filed: September 11, 1989
    Date of Patent: August 21, 1990
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David A. Schriner, Richard J. Lamp
  • Patent number: 4887087
    Abstract: In a method of detecting the deflection of the blades 13 of a helicopter rotor as it rotates, a beam 14 of radiation from a transmitter/receiver 11 encounters the tips of the rotating blades which send reflected signals to the receiver. The phase difference due to deflection of the blade tip can be used to give a measure of the deflection of each blade, and that can be displayed graphically as shown in FIGS. 7-10 for the various blades at various speeds. In a related method of measuring deflections of the blades 111 for a tail rotor, a laser beam transmitter 16 in FIG. 14 has its reflected beam 122, 123 from an undeflected blade 111 or a deflected blade 111' received by a particular receiver in a linear array 119 of receivers so that the particular receiver gives an indication of the amount of deflection.
    Type: Grant
    Filed: March 14, 1983
    Date of Patent: December 12, 1989
    Assignee: Micro Control Technology Limited
    Inventor: Walter A. Clearwater
  • Patent number: 4887088
    Abstract: A radio slant ranging system having a bank of range gates producing outputs X.sub.I to X.sub.N which comprise ground clutter components on a thermal noise pedestal. The clutter components are regarded as defining a single sinusoidal ripple envelope on the noise pedestal and a clutter centroid tracking signal is derived by using a digital filter to calculate the real and imaginary components A.sub.1R and A.sub.1I of the transform: ##EQU1## and then forming the arctangent of A.sub.1I /-A.sub.1R. The signal processing method used in the system may have general application.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: December 12, 1989
    Assignee: British Aerospace Public Limited Company
    Inventor: Andrew R. Beckett
  • Patent number: 4827264
    Abstract: An arrangement for controlling operation of a motor operated door is provided with doppler radar sensors facing the approach to the door from both sides. The doppler signals from the sensors are analyzed to determine the presence of motion toward or away from the door and the door is controlled to open upon motion toward the door and close upon motion away from the door.
    Type: Grant
    Filed: May 6, 1985
    Date of Patent: May 2, 1989
    Assignee: Besam AB
    Inventor: Nils Bjelk
  • Patent number: 4809000
    Abstract: A transom member for a sliding door having an elongate support member and a cover member secured to the support member. The transom member has a cavity defined between the support member and cover member and sensing means for sensing approach of a person towards the transom member is housed in the cavity. The sensing means includes an energy detector for detecting energy from a person approaching the transom member, and the detector is positioned for receiving such energy through the cover member.
    Type: Grant
    Filed: June 25, 1982
    Date of Patent: February 28, 1989
    Inventor: Noel Carroll
  • Patent number: 4800386
    Abstract: A method of and apparatus for counting objects present within a predetermined area, by detecting acceleration and deceleration of the objects employ at least one Doppler radar to sense the movements of the objects by monitoring the Doppler frequencies of signals reflected from the objects, amplifying the Doppler signal reflected from each of the objects to provide an amplified signal, effecting an automatic gain control of the amplified signal to provide a signal of substantially constant strength independent of the distance and size of the respective object, detecting a frequency variation of the constant strength signal as an indication of change in the speed of movement of a respective one of the objects, determining whether the constant strength signal represents an acceleration or deceleration of the respective object, and correspondingly modifying a count representing the number of the objects in the predetermined area.
    Type: Grant
    Filed: May 26, 1987
    Date of Patent: January 24, 1989
    Assignee: Kone Elevator GmbH
    Inventors: Hannu Kulju, Alpo O. Varri
  • Patent number: 4757745
    Abstract: An electrohydraulic servo system which includes an actuator having a cylinder and a piston variably positioned therewithin, a servo valve responsive to valve control signals for coupling the actuator to a source of hydraulic fluid, and control electronics responsive to piston position for generating the valve control signals. A variable frequency rf generator is coupled through associated directional couplers to a pair of antennas which are positioned within the actuator cylinder and physically spaced from each other in the direction of piston motion by an odd multiple of quarter-wavelengths at a nominal generator output frequency.
    Type: Grant
    Filed: February 26, 1987
    Date of Patent: July 19, 1988
    Assignee: Vickers, Incorporated
    Inventor: Lael B. Taplin
  • Patent number: 4679048
    Abstract: An adaptive radar system is presented which is capable of identifying interference frequencies and changing the system operating frequencies to permit radar operation in portions of the frequency spectrum that are free of interference. A time-integrating optical receiver or electronic FFT is employed to detect those frequencies where interference occurs thereby cueing the radar system to noise-free portions of the frequency spectrum. A digital computer processes the information from the optical or electronic FFT receiver to control system operation at those frequencies where interference has not been detected.
    Type: Grant
    Filed: April 25, 1985
    Date of Patent: July 7, 1987
    Assignee: Grumman Aerospace Corporation
    Inventors: Robert W. Brandsetter, Jakob Schwarz, Arnold Seidon
  • Patent number: 4675677
    Abstract: A system for manned or unmanned flying bodies detects covered or hidden targets on the ground by using relatively "longwave" radar radiation for immediately attacking such ground targets, which may be covered by trees for example, but located on a strip of ground extending with a given width below the flight path of the flying body travelling in low altitude flight. Four radar receiver antennas are equally spaced from each other along the wings of the flying body and one transmitter antenna is located between two pairs of receiver antennas. The receiver signals are submitted by a fast Fourier transformation for providing a wavefront reconstruction. The so transformed, received signals are then evaluated in accordance with the known SAR principle directly as the signals are received and transformed by correlation with expected signal functions, so-called reference function, for producing a control signal for the direct or indirect discharge of a weapon.
    Type: Grant
    Filed: August 19, 1985
    Date of Patent: June 23, 1987
    Assignee: Messerschmitt-Boelkow-Blohm Gesellschaft mit beschraenkter Haftung
    Inventors: Ignaz von Maydell, Juergen Detlefsen, Alfred Blaha
  • Patent number: 4641138
    Abstract: Improved non-cooperative radar apparatus locates and type-classifies an agitated, vibrating reflective target (e.g., a vehicle with its engine running)--whether the target is moving or stationary.A homodyne-type receiver with a cooperating band pass filter extracts a reflected, frequency-shifted energy pattern which identifies the incidence of the agitated target. In accordance with further aspects of the instant invention, the particular energy distribution for the returned, reflected wave is then compared with a stored ensemble of such distributions, or target "signatures", to type-categorize the target.
    Type: Grant
    Filed: November 6, 1975
    Date of Patent: February 3, 1987
    Assignee: Lockheed Electronics Co., Inc.
    Inventor: Charles L. Opitz
  • Patent number: 4641137
    Abstract: Improved non-cooperative radar apparatus locates and type-classifies an agitated, vibrating reflective target (e.g., a vehicle with its engine running) - whether the target is moving or stationary.A homodyne-type receiver with a cooperating band pass filter extracts a reflected, frequency-shifted energy pattern which identifies the incidence of the agitated target. In accordance with further aspects of the instant invention, the particular energy distribution for the returned, reflected wave is then compared with a stored ensemble of such distributions, or target "signatures", to type-catagorize the target.
    Type: Grant
    Filed: November 6, 1975
    Date of Patent: February 3, 1987
    Assignee: Lockheed Electronics Co., Inc.
    Inventors: Charles L. Opitz, Paul E. Chase