Gain Or Threshold Patents (Class 342/91)
  • Patent number: 11906654
    Abstract: Signal processing circuitry includes at least one processor configured to obtain a digitized radar signal, and further configured, for one or more iterations, to: determine a first power of at least one first signal sample of the radar signal; determine a second power of at least one second signal sample of the radar signal, the at least one second signal sample being subsequent in time to the at least one first signal sample; and determine a difference value between the second power and the first power. The at least one processor further configured to detecting a burst interference signal occurring within the radar signal based on the one or more difference values from the one or more iterations.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 20, 2024
    Assignee: Infineon Technologies AG
    Inventors: Dian Tresna Nugraha, Markus Bichl, Dyson Wilkes
  • Patent number: 11815399
    Abstract: A wavelength-swept light source is configured to generate light to be measured that is wavelength-swept coherent light with a wavelength periodically changed. The light to be measured is separated into a measurement section and a reference section that have different optical path lengths, and is then coupled in an interference section to generate interfering light. An analyzer performs a Fourier transform of interference signals of the interfering light, and acquires an actual measured noise floor value for each of the optical path length differences based on a point spread function. An estimated coherence time is determined so that an actual measured amplitude value of the noise floor value and a calculated amplitude value coincide with each other. Linewidth of the light emitted from the coherent light source is measured based on the estimated coherence time.
    Type: Grant
    Filed: March 5, 2022
    Date of Patent: November 14, 2023
    Assignee: Topcon Corporation
    Inventor: Akira Takada
  • Patent number: 11796634
    Abstract: A FMCW radar system with a built-in self-test (BIST) system for monitoring includes a receiver, a transmitter, and a frequency synthesizer. A FMCW chirp timing engine controls timing of operations at least one radar component. The BIST system includes at least one switchable coupling for coupling a first plurality of different analog signals including from a first plurality of selected nodes in the receiver or transmitter that are all coupled to a second number of monitor analog-to-digital converters (ADCs). The second number is less than (<) the first plurality of different analog signals. The BIST system includes a monitor timing engine and controller operating synchronously with the chirp timing engine, that includes a software configurable monitoring architecture for generating control signals including for selecting using the switchable coupling which analog signal to forward to the monitor ADC and when the monitor ADC samples the analog signals.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 24, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Indu Prathapan, Karthik Ramasubramanian, Brian P. Ginsburg
  • Patent number: 11754673
    Abstract: A vehicle radar system, apparatus and method use a radar control processing unit generate compressed radar data signals, to apply the compressed radar data signals to a log detector to generate log detector sample values, and to generate a first log cell-average constant false alarm rate (CA-CFAR) threshold from the log detector sample values by computing and adding an average sample value SAVG from the log detector sample values, a probability of false alarm factor ?, and a log CA-CFAR correction factor ?, where the first log CA-CFAR threshold may be used with a second log CA-CFAR threshold to generate an ordered statistics CA-CFAR threshold for the compressed radar data signals by sorting the first and second log CA-CFAR thresholds by magnitude to form a sorted list of log CA-CFAR thresholds, and then selecting a kth threshold from the sorted list of log CA-CFAR thresholds as the OS-CA-CFAR threshold.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 12, 2023
    Assignee: NXP USA, Inc.
    Inventor: Filip Alexandru Rosu
  • Patent number: 11709261
    Abstract: The present disclosure relates to a vehicle radar device, a controlling method thereof, and radar system. A radar device according to an embodiment includes a transceiver being controlled to transmit the transmission signal in an operating frequency band according to a selection mode among a plurality of frequency band modes and to receive the reception signal through the receiving antenna, and a mode selector dynamically determining one of the plurality of frequency band modes as the selection mode based on at least one of a target distance to the target and a maximum detection distance for each frequency band. According to embodiments of the present disclosure, the distance resolution of the radar can be optimized by dynamically varying the frequency bandwidth linked with the maximum detection distance according to a target distance under specific driving conditions.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 25, 2023
    Assignee: HL Klemove Corp.
    Inventors: Jingu Lee, Han Byul Lee
  • Patent number: 11675045
    Abstract: A method of processing a radar hit from an object using, for each of a plurality of cells, a signal strength threshold, a hit rate threshold, a time of last detection; and receiving, for one of the plurality of cells corresponding to the object, a measured signal strength, a measured hit rate and a time of measurement. The object is identified as clutter if the measured hit rate is greater than the hit rate threshold, and the measured signal strength is less than signal strength threshold. The signal strength threshold is above a conventional CFAR signal threshold. Measured Doppler strength may also be used to identify clutter. Identification can be determined using Doppler-polarity-specific data values. The hit rate and the mean Doppler speed of the one of the plurality of cells can be updated using a running average.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: June 13, 2023
    Assignee: SRC, Inc.
    Inventor: David L. Weldum
  • Patent number: 11581634
    Abstract: A method and an apparatus for recognizing an absorptive radome coating on an apparatus for emitting electromagnetic radiation and receiving partial radiation reflected at objects is disclosed. The radome covers at least one antenna of the apparatus. A mixer mixes a frequency-modulated transmission signal with the signal received by the at least one antenna, the mixed product of the mixer is subjected to analog-to-digital conversion, the digitized signal is transformed into a two-dimensional spectrum, and the two-dimensional spectrum is mapped with a transfer function. The two-dimensional spectrum that was mapped with the transfer function is correlated with correlation matrices in order to carry out pattern recognition.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: February 14, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Benedikt Loesch, Maija Chabaud, Michael Schoor
  • Patent number: 11500076
    Abstract: The present disclosure provides systems and methods that use LIDAR technology. In one implementation, a LIDAR system includes at least one processor configured to: control activation of at least one light source for illuminating a field of view; receive from at least one sensor a reflection signal associated with an object in the field of view, a time lapse between light leaving the at least one light source and reflection impinging on the least one sensor constituting a time of flight; and alter an amplification parameter associated with the at least one sensor during the time of flight.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 15, 2022
    Assignee: Innoviz Technologies Ltd.
    Inventors: Omer David Keilaf, Oren Buskila, Ronen Eshel, Yair Antman, Amit Steinberg, David Elooz, Julian Vlaiko, Guy Zohar, Shahar Levy
  • Patent number: 11300655
    Abstract: Method and systems for object detection using a radar module are disclosed. Frames of range and doppler data are received from a radar module at sample time intervals. Doppler zero slice data is extracted from a current frame of the range and doppler data. A prediction of doppler zero slice data is maintained. The prediction of doppler zero slice data is based at least partly on doppler zero slice data from a previous frame of range and doppler data. Standard deviation data is determined based at least partly on prediction error data. The prediction error data relates to a difference between the prediction of doppler zero slice data and the doppler zero slice data. An object detection output is determined based on a comparison of the standard deviation data and an object detection threshold.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 12, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yonattan Menaker, Arye Lerner, Moshe Shapiro
  • Patent number: 11150345
    Abstract: First and second types of object detectors, a sensing device, and a mobile apparatus. The first and second types of object detectors include a light source configured to emit light, photoreceptor configured to receive the light reflected by an object, and a binarizing circuit configured to binarize a signal sent from the photoreceptor at a threshold Vth. In the first and second types of object detectors, object detection processes are performed in a same direction until a high-level signal is output M times from the signal binarized by the binarizing circuit. In the first type of object detector, a value of the M is determined based on an incidence of shot noise where peak intensity exceeds the threshold Vth in the photoreceptor. In the second type of object detector, a threshold Vth is set based on a value of the M.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: October 19, 2021
    Assignee: RICOH COMPANY, LTD.
    Inventors: Kohji Sakai, Toshishige Fujii, Tadashi Nakamura, Takeshi Ueda, Kohei Ushio, Yuuta Yoshino
  • Patent number: 11012167
    Abstract: A receiving device comprises a first receiving circuit, for receiving a plurality of signals and comparing a plurality of signal powers of the plurality of signals with a first threshold, to generate a first plurality of comparison results; a second receiving circuit, for receiving the plurality of signals and comparing the plurality of signal powers of the plurality of signals with a second threshold, to generate a second plurality of comparison results, wherein the first threshold is smaller than the second threshold; and a control circuit, coupled to the first receiving circuit and the second receiving circuit, for determining whether an average signal power of the plurality of signals is greater than a reference power according to the first plurality of comparison results and the second plurality of comparison results, to generate a determination result.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 18, 2021
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chao-Huang Wu, Han-Chang Kang, Ka-Un Chan
  • Patent number: 10859697
    Abstract: A method for detecting an object in a surrounding region of a motor vehicle is disclosed. In each of a plurality of temporally sequential measurement cycles a raw signal is received, which describes an ultrasonic signal of an ultrasonic sensor reflected in the surrounding region, the raw signal is compared with a predetermined ground threshold value curve, and a signal component of the raw signal that is to be tracked which exceeds the ground threshold value curve is detected and assigned to the object, and the object is tracked in the measurement cycles on the basis of the detected signal component that is to be tracked, wherein to track the object after recognition of the signal component that is to be tracked, in the subsequent measurement cycles, signal peaks of the raw signal are detected, and an assignment to the object is checked for the detected signal peaks.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: December 8, 2020
    Assignee: Valeo Schalter und Sensoren GmbH
    Inventors: Tino Milschewski, Jean-Francois Bariant
  • Patent number: 10768293
    Abstract: An object detecting apparatus includes reflecting point detecting means, reflecting point setting means, rear-end positional information generating means and object detecting means. The reflecting point detecting means detects position and speed of reflecting point reflecting radar waves. The reflecting point setting means sets high and low level reflecting points, the high level reflecting point having reflection intensity higher first detecting threshold, and the low level reflecting point having reflection intensity higher than second detecting threshold and lower than the first detecting threshold. The rear-end positional information generating means checks whether or not a low level reflecting point is present satisfying a same object condition in a rear-end searching range, and correlates positional information of the low level reflecting point as rear-end positional information with the high level reflecting point used as reference of the searching range.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 8, 2020
    Assignee: DENSO CORPORATION
    Inventors: Akiyoshi Mizutani, Ryusuke Uyama
  • Patent number: 10422869
    Abstract: The present invention relates to a method and system for identifying and eliminating second time-around ambiguous targets and, more particularly, to a method and system for identifying and eliminating second time-around ambiguous targets using waveform phase modulation.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: September 24, 2019
    Assignee: SRC, Inc.
    Inventors: Robert E. Hiemenz, Daniel D. Thomas, Jr.
  • Patent number: 10139477
    Abstract: In a laser range finder, each reflected light reflected by at least one object of pulsed laser light emitted by a light emitting element reaches a light receiving element, and distance information to the at least one object is acquired based on an amount of time from a light emission starting time for the pulsed laser light to an output starting time from the light receiving element. An erroneous detection reducing circuit for the laser range finder includes: a comparator receiving as inputs a threshold and a light-reception output from the light receiving element; a time measuring section measuring time elapsed since the light emission starting time for the pulsed laser light; and a setting changing section changing either one or both of the threshold and an amplification factor of the comparator for the light-reception output in accordance with a time measurement value obtained by the time measuring section.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 27, 2018
    Assignee: OPTEX CO., LTD.
    Inventor: Masashi Iwasawa
  • Patent number: 9869756
    Abstract: The presently disclosed subject matter includes a laser system and a respective method of detecting a signal reflected from a target illuminated by a modulated CW light source configured to generate a modulated laser signal at a predefined modulation frequency. A signal comprising true laser signal portions reflected from said target, and noise is received; the signal is filtered for selecting laser signal portions at a modulation frequency band; and the true signal portions in the signal are detected, if the energy at the modulation frequency band is greater than a given threshold.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 16, 2018
    Assignee: ISRAEL AEROSPACE INDUSTRIES LTD.
    Inventors: Benjamin Levy, Valery Heymann, Igal Greenberg, Uri Karazi, Amnon Ychye
  • Patent number: 9341706
    Abstract: A component is disclosed for a radar system that comprises a main antenna operable to move azimuthally to sweep an area, a transmitter for transmitting pulses from the antenna and a receiver for receiving return signals. The component is operable to enable the radar system to detect a target in the presence of a wind turbine located in the area. The component comprises a plurality of auxiliary antennas and a processor for processing the return signals, the processor being operable to generate a signature of the wind turbine from return signals received by the main and auxiliary antennas in a training process, to generate model data of a target or to receive model data of the target from memory, and to test returned data for the presence of a target, and, if a target is detected, to generate data representing a detected target. A method of detecting the position of a target in the presence of a wind turbine using the radar system is also described.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 17, 2016
    Assignee: TMD Technologies Limited
    Inventor: Keith Douglas Ward
  • Patent number: 9329074
    Abstract: A multi-mode pulsed radar method for sensing or measuring a product material in a storage tank includes providing a measure of radar signal attenuation for pulsed radar signals transmitted to the product material. Automatic adjustment of one or more transmitted radar pulse parameters is implemented by selecting a pulse width and a pulse amplitude based on the measure of radar signal attenuation. In signal mode 2 higher amplitude and/or wider pulses are selected when the measure of radar signal attenuation is relatively high and in signal mode 1 lower amplitude and/or narrower pulses are selected when the measure of radar signal attenuation is relatively low. The radar pulse is transmitted to the product material using the selected pulse width and the pulse amplitude. The target signal reflected or scattered from the product material is processed to determine at least one parameter, such as product level.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 3, 2016
    Assignee: Honeywell International Inc.
    Inventor: Bin Sai
  • Patent number: 9319080
    Abstract: A circuit apparatus and method for providing spectrum sensing. The invention accepts as inputs actual real-world signals in which the resulting two-dimensional output representation provides useful characteristics or features of the original time/series signal being analyzed. The invention employs both time and frequency averaging to exploit signal persistence in either domain.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: April 19, 2016
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Andrew J. Noga
  • Patent number: 9041592
    Abstract: A radar sensor and a method of detecting an object by using the same are provided. The method includes: receiving at least one radar signal reflected from the object; converting the received at least one radar signal to at least one signal in a frequency domain; accumulating the converted at least one signal for a predetermined time and extracting at least one feature from the accumulated at least one signal; and identifying the object by comparing the extracted at least one feature with at least one reference value stored in a database.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 26, 2015
    Assignee: SAMSUNG TECHWIN CO., LTD.
    Inventor: Ki-Yong Jeon
  • Patent number: 9030351
    Abstract: A land-based Smart-Sensor System and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed Smart-Sensor System is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) an IBM CELL supercomputer to process the collected data in real-time. The Smart Sensor System can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 12, 2015
    Assignee: Vista Research, Inc.
    Inventors: Phillip A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 9024811
    Abstract: A processing device for providing radar data onto a local area network includes an analog-to-digital converter operable to receive analog radar data from an antenna and converter operable to convert the analog radar data into digital radar data. An interference rejector removes radar signals of other antennas from the digital radar data. A range bin decimator limits the digital radar data to a threshold number of range bins. A trigger-to-azimuth converter associates the digital radar data to particular azimuths of rotation of the antenna. A local area network manager places the digital radar data onto a local area network. The processing device may be located in the pedestal with the antenna. A plurality of processing devices associated with a plurality of antennas may provide digital radar data onto the local area network.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: May 5, 2015
    Assignees: Raytheon Anschutz GmbH, Raytheon Company
    Inventors: Carsten Reiter, Steffen Kröger, Meinhard Wohlgemuth, Thomas Edward Wood
  • Patent number: 8994925
    Abstract: Optical range finders are configured to transmit optical bursts toward a target and detect a corresponding received burst. DC offset in the received burst due to square law detection can be offset based on a difference between high pass and low pass filtered portions of the received burst. Edge records associated with bursts can be obtained, and correlated with a reference signal or waveform to obtain a range estimate.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 31, 2015
    Assignee: PulsedLight, Inc.
    Inventor: Robert Alden Lewis
  • Patent number: 8912950
    Abstract: This invention relates to sense through the wall radar. A main channel of a radar system (12) is operated at a frequency capable of penetrating opaque barriers such as the wall (24) of a building (22) to sense targets (16) therein. The main channel performance may be impaired by multipath interference, i.e., radar returns resulting from targets (20) outside the building (22) illuminated by reflection from the wall (24). A guard channel of the radar, operating at a higher frequency which does not penetrate the wall (24), is used to identify targets (20) outside the building (22) and suppress the multipath interference they produce in the main channel.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 16, 2014
    Assignee: Raytheon Company
    Inventor: Scott E. Adcook
  • Patent number: 8874390
    Abstract: An instrument (100) is provided according to an embodiment of the invention. The instrument (100) includes an interface (101) configured to receive a Doppler measurement signal and a processing system (112) coupled to the interface (101) and receiving the Doppler measurement signal. The processing system (112) is configured to generate a two-sided velocity spectrum including a plurality of discrete frequency bins from the Doppler measurement signal, with the two-sided velocity spectrum distinguishing spectral elements, and process one or more velocity spectrum bin pairs against a plurality of local gate thresholds, with the one or more velocity spectrum bin pairs being substantially symmetrically located about one or more carrier wave bins and wherein each velocity spectrum bin pair is processed against a corresponding local gate threshold of the plurality of local gate thresholds.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Hach Company
    Inventor: David Langley Rick
  • Patent number: 8854251
    Abstract: Provided is an object identification device and a method for the same that are capable of identifying a three-dimensional object and a road surface static object, irrespective of situations. The object identification device identifies an object, based on a transmission signal and a reflection signal caused by the object reflecting the transmission signal. The object identification device includes: a measurement section configured to measure at least one of the relative distance and the relative velocity with respect to the object; an intensity detection section configured to detect the intensity of the reflection signal; and an object identification section configured to identify the object which can be an obstacle object, based on at least one of the relative velocity and the variation in the relative distance, and on the variation in the intensity.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Setsuo Tokoro
  • Patent number: 8836572
    Abstract: A method for detecting precipitation using a radar sensor system for motor vehicles designed for locating objects in the surroundings of the vehicle, in which method a locating signal that is a measure of the received power density as a function of the distance is integrated across a specific distance range lying below a limit distance for detecting precipitation. The locating signal is subjected to a filtering procedure before being integrated, the filtering procedure suppressing the peaks caused by located objects so that the filtered signal forms a measure of the noise level as a function of the distance.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: September 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Heilmann, Goetz Kuehnle, Dirk Bechler
  • Patent number: 8830117
    Abstract: This disclosure provides a method of setting a threshold according to a level of an echo signal containing an unused component. The echo signal is generated by transmitting and receiving a radio wave with an antenna while the antenna revolves. The method includes acquiring levels of the echo signals at every predetermined distance interval and updating a threshold set for an observing position based on the level of the echo signal at the observing position, the threshold set for the observing position, and a threshold set for a position closer to the antenna than the observing position by the predetermined distance on the same sweep.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 9, 2014
    Assignee: FURUNO Electric Company Limited
    Inventor: Hitoshi Maeno
  • Patent number: 8823578
    Abstract: A driving assist apparatus for a vehicle is disclosed. The driving assist apparatus includes a transmitter for transmitting a transmission wave, a receiver for receiving a reflected wave, an obstacle presence determination section for detecting a presence of an obstacle in the surrounding of the vehicle based on the reflected wave, a measurement section for measuring a frequency of phase delay and advance of the reflected wave with respect to a reference signal, and a detection section for detecting the obstacle having a specific relation with the vehicle based on the presence of the obstacle determined by the obstacle presence determination section and the frequency of delay and the frequency of advance measured by the measurement section.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Toshihiro Hattori, Mitsuyasu Matsuura
  • Patent number: 8816895
    Abstract: Embodiments of a target classifier and method for target classification using measured target epsilons and target glint information are generally described herein. The target classifier is configured to compare a total epsilon measurement with target glint information to determine whether to the target being tracked corresponds to an intended target type. Based on the comparison, the target classifier may cause target tracking circuitry of a target-tracking radar to either continue tracking the target or break-off from tracking the target. Glint of different target types may be characterized at different ranges and the target's glint characteristics may be used to distinguish intended from non-intended targets. Accordingly, intended targets such as incoming artillery may be distinguished from non-intended targets such as aircraft to help prevent countermeasures from being launched against non-intended targets.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 26, 2014
    Assignee: Raytheon Company
    Inventors: Brett J. Young, Jason A. Johnson
  • Patent number: 8730098
    Abstract: Methods are described for radar detection of persons wearing wires using radar spectra data including the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person. In one embodiment, the ratio of the vertical polarization (VV) radar cross section to the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wires. In another embodiment, the absolute difference of the vertical polarization (VV) radar cross section and the horizontal polarization (HH) radar cross section for a person is compared to a detection threshold to determine whether the person is wearing wires. To reduce false positives, other additional indicators, such as speed of movement, and or visual features of the person, can be used to further narrow a person suspected of wearing wires.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 20, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: William P. Fox
  • Patent number: 8665140
    Abstract: This disclosure provides a signal processing device, which includes an echo signal input unit for being inputted with echo signals caused by electromagnetic waves discharged from an antenna and reflected on one or more target objects, an echo signal level detector for detecting a level of each of the echo signals with reference to an azimuth and a distance to the antenna, a level change detector for detecting a level change between the echo signals from locations close to each other, the locations of the echo signals being such that the distances from the antenna are substantially the same but the azimuths are different, a pattern output module for comparing the level change with a predetermined reference pattern and outputting a level change pattern, and a missing determining module for determining a missing of a signal based on at least two of the level change patterns.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 4, 2014
    Assignee: Furuno Electric Company Limited
    Inventors: Kazuya Nakagawa, Hitoshi Maeno
  • Patent number: 8633832
    Abstract: In a vehicle obstacle detecting apparatus having a radar that transmits a laser beam in front of the vehicle to scan in different detection regions in a horizontal direction parallel to a road and receives reflection waves reflected from an object successively, it is determined whether a high reflection wave such as that reflected from delineator installed on the road at regular intervals exists in the received reflection waves in the detection regions, and if not, an obstacle such as a human being is detected from a low reflection wave. On the other hand, when the high reflection wave exists, the obstacle is detected from a second reflection wave.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: January 21, 2014
    Assignee: Honda Motor Co. Ltd.
    Inventor: Hiroyuki Koike
  • Patent number: 8570213
    Abstract: This disclosure provides a fake image reduction device, which includes a target object detection module for being inputted with an echo signal from an antenna that transmits an electromagnetic wave and receives the echo signal, measuring a level of the echo signal to detect a target object, a reflecting body identifying module for identifying the detected target object as a reflecting body, and a fake image area setting module for setting a fake image area according to a distance and an azimuth direction from a transmitting position of the electromagnetic wave to the identified reflecting body.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: October 29, 2013
    Assignee: Furuno Electric Company Limited
    Inventor: Koji Nishiyama
  • Patent number: 8564474
    Abstract: This disclosure provides a method of setting a threshold according to a level of an echo signal of an unused component. The echo signals are generated by transmitting and receiving a radio wave with an antenna while the antenna revolves. The method of setting the threshold includes calculating a difference value between a level of the echo signal at an observing position and a level of the echo signal at a position comparatively on the antenna side and close to the observing position, selecting a process for setting a threshold from either one of a first threshold setting process and a second threshold setting process according to the difference value, and updating the threshold for the observing position by using the selected threshold setting processing.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 22, 2013
    Assignee: Furuno Electric Company Limited
    Inventor: Hitoshi Maeno
  • Patent number: 8558730
    Abstract: A method for detecting precipitation in a region monitored by radar beams includes ascertaining a first average power of a first backscattered radar signal, ascertaining a second average power of a second backscattered radar signal, and detecting an existence of a homogenous medium when the average powers conform.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Alebel Arage Hassen
  • Patent number: 8537049
    Abstract: Provided is a multi-function radar apparatus capable of measuring both a distance to a target object and a temperature of the target object with high accuracy. A transmission signal produced from a high-frequency signal generating unit (9) is amplified by a transmission signal amplifying unit (12) while intermittently stopped by a transmission intermittent stop switch (11), and is emitted to a target object (13) via a circulator unit (2). A reflected wave from the target object (13) is input as a reception signal to a transmitting and receiving antenna (1) while the transmission signal is emitted, and a radiated wave from the target object (13) is input as the reception signal thereto while the transmission signal is not emitted. The reception signal is amplified by a reception signal amplifying unit (3) via the circulator unit (2), and is mixed by a frequency converting unit (4) with the transmission signal branched by a high-frequency signal branching unit (10) to thereby generate a beat signal.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: September 17, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventor: Eiichi Hase
  • Patent number: 8531330
    Abstract: A method and device for recognizing a pulse repetition interval (PRI) modulation type of a radar signal are provided. The method for recognizing a pulse repetition interval (PRI) modulation type includes: extracting time of arrival (TOA) information of pulses aligned in time order from a received radar signal; generating a PRI sequence based on a difference of adjacent TOAs in the TOA information of pulses; generating a difference of PRIs (DPRI) sequence by using a difference of the adjacent PRIs in the PRI sequence; generating respective symbol sequences by using specific partition rules from the PRI sequence and the DPRI sequence; and calculating characteristic factors from the symbol sequences, and comparing the characteristic factors with threshold values for discriminating a PRI modulation type to determine the PRI modulation type. Thus, the PRI modulation type, a promising feature for radar signal identification, can be precisely derived.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 10, 2013
    Assignee: Agency For Defense Development
    Inventors: Kyu-Ha Song, Jin-Woo Han, Byung-Koo Park, Je-Il Jo
  • Publication number: 20130169470
    Abstract: A method of controlling a radar system by receiving a radar return signal from a target and generating a range-Doppler target image signature of the target; selecting a spectral line within the range-Doppler target image signature from a modulation feature on the target which includes an effective point scatterer; providing a range profile for the spectral line; obtaining a reference range profile of a reference point scatterer; determining a difference between a power at a range shorter than a peak corresponding to the modulation feature in the range profile and a power at a corresponding range of the reference range profile; and generating a first control signal or a second control signal arranged to provide or prevent provision of the range-Doppler target image signature based on the difference.
    Type: Application
    Filed: September 1, 2011
    Publication date: July 4, 2013
    Applicant: BAE Systems PLC
    Inventors: David James Emery, Peter Donald Fraser Tait
  • Patent number: 8427363
    Abstract: In one aspect, a method includes tagging a track as a live track if a tagging statistic is greater than a tagging statistic threshold and tagging the track as a virtual track if the tagging statistic is less than the tagging statistic threshold. In another aspect, an article includes a machine-readable medium that stores executable instructions to determine whether a track is a live track or a virtual track. The instructions causing a machine to tag a track as a live track if a tagging statistic is greater than a tagging statistic threshold and tag the track as a virtual track if the tagging statistic is less than the tagging statistic threshold. In a further aspect, an apparatus includes circuitry to tag a track as a live track if a tagging statistic is greater than a tagging statistic threshold and tag the track as a virtual track if the tagging statistic is less than the tagging statistic threshold.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 23, 2013
    Assignee: Raytheon Company
    Inventors: Joel E. Lamendola, Maxim Raykin, Stanley J. Poreda
  • Patent number: 8416118
    Abstract: A method and system for detecting chaff is disclosed. The method includes receiving range profile data including a plurality of samples, determining an average power for a first group of samples of the range profile data and a second group of samples of the range profile data, comparing the average power for the first group of samples to a first threshold value and the average power for the second group of samples to a second threshold value, and identifying a chaff detection if an average power of at least one of the first and second groups of samples exceeds its respective threshold value. The system includes a computer readable medium and a processor in communication with the computer readable storage medium and configured to perform the receiving, determining, comparing and detecting steps.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 9, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Rao M. Nuthalapati
  • Publication number: 20130082862
    Abstract: A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
    Type: Application
    Filed: August 26, 2011
    Publication date: April 4, 2013
    Inventors: David W. Paglieroni, Jeffrey E. Mast, N. Reginald Beer
  • Patent number: 8405540
    Abstract: A method detects a target in a sequence of radar images, wherein each image is partitioned into a grid of cells, and wherein each cell has a corresponding position in an image coordinate system associated with a location in a world coordinate system. For each most recent image in a sliding temporal window of images, intensities of each cell are determined, and the subset of the cells having highest intensities is stored as a set of current needles. A set of hypotheses, obtained by using a state transition model and corresponding maximum limits, is determined for the current set of needles and appended to a set of queues. The hypotheses for the previous sets of needles to the corresponding set of queues are updated, and a maximum likelihood in the set of queues are selected to detect the location of targets.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 26, 2013
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventor: Fatih M. Porikli
  • Patent number: 8339306
    Abstract: A detection system includes a detection processor configured to receive a frame of image data that includes a range/Doppler matrix, perform a rate-of-change of variance calculation with respect to at least one pixel in the frame of image data, and compare the calculated rate-of-change of variance with a predetermined threshold to provide output data. The range/Doppler matrix may include N down-range samples and M cross-range samples. The detection processor may calculate a rate-of-change of variance over an N×M window within the range/Doppler matrix.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 25, 2012
    Assignee: Raytheon Company
    Inventors: Donald P. Bruyere, Ivan S. Ashcraft, John B. Treece
  • Patent number: 8330647
    Abstract: A land-based smart sensor system and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed smart sensor system is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) a supercomputer to process the collected data in real-time. The smart sensor system can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 11, 2012
    Assignee: Vista Research, Inc.
    Inventors: Phillilp A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 8325083
    Abstract: According to one embodiment, an radar apparatus includes a signal processor, a transmitting unit, an antenna, a first receiving unit, and a second receiving unit. The signal processor generates first or second pulses, and generates a control signal having first or second states. The transmitting unit converts the first and second pulses into first and second transmission pulses. The antenna radiates the first and second transmission pulses and receives reflection pulses to generate a reception signal. The first receiving unit includes first and second receiving circuits which processes the reception signal to generate first and second processed signals, respectively, and outputs one of the first and second processed signals depending on the state of the control signal. The second receiving unit processes the one of the first and second processed signals.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: December 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshio Asano, Toshio Namba, Takashi Murano
  • Patent number: 8310392
    Abstract: A radar device includes an antenna, from which a detection signal is transmitted while the antenna being rotated and by which a reflective wave of the transmitted detection signal is received to detect echo data, wherein image data is generated based on the detected echo data, a continuity detecting module for detecting a planar continuity of the currently detected echo data with respect to a pixel concerned in the image data, a behavior data generating module for generating behavior data indicative of a behavior of the echo data for a predetermined number of scans of the past in the pixel concerned based on behavior determination data, and an echo kind determining module for determining a kind of the echo data of the pixel concerned based on the planar continuity and the behavior data.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 13, 2012
    Assignee: Furuno Electric Company, Limited
    Inventors: Tatsuya Kojima, Takumi Fujikawa, Hidetoshi Kaida, Yu Morita, Toshiaki Takaki, Katsunori Okamatu
  • Publication number: 20120268312
    Abstract: A method for controlling laws of illumination of a radar antenna with adjustable gain and/or phase, suitable for sending and for receiving a radar signal, the method including obtaining a position of an obstacle located in a near field of a beam of the radar antenna according to a direction of aim of said beam, calculating the laws of illumination on sending and on receiving of said radar antenna so as to adjust the direction of the aim of the radar beam while minimizing interaction and/or effects between the beam of the radar antenna and the obstacle, and implementing the calculated laws of illumination on sending and on receiving of the radar antenna.
    Type: Application
    Filed: January 11, 2010
    Publication date: October 25, 2012
    Applicant: THALES
    Inventors: Jean-Paul Artis, Stéphane Kemkemian, Jean-Michel Quellec
  • Publication number: 20120218138
    Abstract: A processing device for providing radar data onto a local area network includes an analog-to-digital converter operable to receive analog radar data from an antenna and converter operable to convert the analog radar data into digital radar data. An interference rejector removes radar signals of other antennas from the digital radar data. A range bin decimator limits the digital radar data to a threshold number of range bins. A trigger-to-azimuth converter associates the digital radar data to particular azimuths of rotation of the antenna. A local area network manager places the digital radar data onto a local area network. The processing device may be located in the pedestal with the antenna. A plurality of processing devices associated with a plurality of antennas may provide digital radar data onto the local area network.
    Type: Application
    Filed: May 12, 2009
    Publication date: August 30, 2012
    Inventors: Carsten Reiter, Steffen Kröger, Meinhard Wohlgemuth, Thomas Edward Wood
  • Patent number: 8237603
    Abstract: Embodiments relate to apparatuses, systems and methods for testing high-frequency receivers. In an embodiment, a method includes integrating a pulse train generator and a receiver in an integrated circuit; generating a pulse train by the pulse train generator and applying the pulse train to an input of the receiver; measuring at least one property of the pulse train; and determining at least one characteristic of the receiver using the at least one property of the pulse train. In an embodiment, an integrated circuit includes a receiver, and a pulse train generator configured to generate a pulse train and apply the pulse train to an input of the receiver, wherein at least one characteristic of the receiver can be determined using at least one measured property of the pulse train.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 7, 2012
    Assignee: Infineon Technologies AG
    Inventors: Herbert Knapp, Erich Kolmhofer