Automatic Track While Scan (atws) Patents (Class 342/96)
  • Patent number: 11954945
    Abstract: Methods, systems, and devices for analyzing vibration data and for identifying and tracking vibration anomalies in industrial machines are described. In various embodiments, the system described herein collects, transforms, and analyzes sensor data from one or more machines, such as industrial machines. The system may identify one or more sensors that are experiencing vibrational anomalies. In various embodiments, the system: collects and analyzes vibration data for a set of one or more vibration-related sensors of one or more industrial machines; determines an occurrence of one or more anomalies based on the vibration data as compared to a threshold; tracks anomalies in collected vibration data for the one or more industrial machines of the facility; generates a report of vibration data for the one or more vibration-related sensors of the facility; and reports industrial machines in the facility that may deviate from a target performance.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: April 9, 2024
    Assignee: Georgia-Pacific LLC
    Inventors: Samuel Lee Coyne, Roshan Shah
  • Patent number: 11782124
    Abstract: An electric or electronic device module comprises an electronic device, means for powering the electric or electronic device module, and at least one radar sensor having a detection range. The electric or electronic device module has a processor adapted for calibrating the at least one radar sensor by at least partly automatically defining and calculating parameters of boundaries of a predefined geometry, in which the at least one radar sensor has to measure, in order to prevent the at least one radar sensor from taking into account measurements outside that predefined geometry. The predefined geometry is located within the detection range of the at least one radar sensor and is equally sized to or smaller than that detection range of the at least one radar sensor.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 10, 2023
    Assignee: NIKO NV
    Inventors: Karel Van Haver, Diederik Devenyn
  • Patent number: 11594141
    Abstract: A distributed airborne acoustic anti-drone intelligence system (DAAADS) which senses an unmanned aerial vehicle (UAV) approaching a protected site, predicts trajectories of the UAV which intersect the protected site and identifies the type of the UAV. When at least one of the trajectories intersect the protected site, an alarm and predicted trajectories are transmitted to an air defense unit, which neutralizes the UAV. Debris generated by the neutralization is tracked and trajectories of the debris are predicted. When a trajectory of the debris is predicted to intersect with the protected site, an alert is transmitted to the protected site.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: February 28, 2023
    Assignee: King Abdulaziz University
    Inventor: Ahmed Barnawi
  • Patent number: 11574030
    Abstract: In a general aspect, an optimization problem is solved using a hybrid computing system. A classical processor unit receives a first data structure that represents the optimization problem. The classical processor unit executes a branch-and-bound process on the first data structure to generate values for a first subset of elements of a solution to the optimization problem. A second data structure is generated based on the first data structure and the first subset of elements. The second data structure represents a reduced version of the optimization problem. A quantum processor unit and a classical processor unit are used to execute a quantum approximate optimization algorithm (QAOA) on the second data structure to generate values for a second subset of the elements of the solution to the optimization problem. The first subset and second subset are combined to obtain the solution to the optimization problem.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: February 7, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Matthew P. Harrigan, Erik Joseph Davis
  • Patent number: 11435439
    Abstract: A method is provided that includes a method is provided that includes transmitting a radar signal by a radar system. The method also includes receiving reflections of the radar signal from an environment by the radar system. Additionally, the method includes receiving a location of a plurality of objects in the environment by a radar processing system. The method further includes tracking a plurality of reflecting objects in the environment based on the received reflections by the radar processing system. Yet further, the method includes determining, by the radar processing system, that a received radar reflection corresponds to one of the plurality objects in the environment having an incorrect location. Moreover, the method includes revising a tracking for the one of the plurality objects in the environment having an incorrect location.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 6, 2022
    Assignee: Waymo LLC
    Inventor: Larry Smith
  • Patent number: 10762112
    Abstract: Systems, methods, and computer-readable storage media are provided for establishing a search radius based on token frequency. A search query having a geographic indication is received and it is determined whether or not the received query contains one or more non-frequent tokens. Non-frequent tokens have a respective frequency that occurs in the entities included in a data store of entities below a threshold number of times. If it is determined that the received query does not contain one or more non-frequent tokens, the search radius established for the search query, and thus applied to the search, is restricted to a radius established based upon the geographic indication of the query. If it is determined that the received query does contain one or more non-frequent tokens, the search radius is established such that it is larger than if it was established based upon the geographic indication of the query.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 1, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Mihai Negrea, Florin Sabau, Bodin Dresevic, Sameer S. Mutatkar
  • Patent number: 10698693
    Abstract: Disclosed methods, systems, and apparatus, include computer programs encoded on computer storage media, for performing allocation of M resources among N users into K pools by solving a knapsack problem (KP) using a distributed computing system. The method includes: receiving data representing K global constraints and L local constraints of the KP; transforming the KP into a dual problem using K dual multipliers; decomposing the dual problem into N sub-problems; performing two or more iterations in solving the dual problem, wherein in one iteration, for each dual multiplier corresponding to a global constraint corresponding to a pool: determining an updated dual multiplier for the global constraint corresponding to the pool to be a non-negative threshold; and computing M decision variables of each of the N users corresponding to the updated dual multiplier in solving each of the N sub-problems corresponding to the each of the N users.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 30, 2020
    Assignee: Alibaba Group Holding Limited
    Inventors: Xingwen Zhang, Feng Qi, Zhigang Hua, Shuanghong Yang
  • Patent number: 10691499
    Abstract: Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing allocation of M resources among N users into K pools by solving a knapsack problem (KP) using a distributed computing system that includes a number of individual solvers. The method includes: receiving data representing K global constraints and L local constraints of the KP; decomposing the KP into N sub-problems using K dual multipliers, each of the N sub-problems corresponding to a respective one of the N users and subject to the L local constraints w.r.t. the corresponding user, wherein N is in an order of billions or larger; determining the number of individual solvers for solving the N sub-problems; distributing the N sub-problems among the number of individual solvers; and solving the KP by the distributed computing system by performing two or more iterations.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 23, 2020
    Assignee: Alibaba Group Holding Limited
    Inventors: Shuanghong Yang, Xingwen Zhang, Zhigang Hua, Feng Qi
  • Patent number: 10451417
    Abstract: A method for acquiring a remote object is provided. The method comprises obtaining a sequence of position samples of the remote object, identifying one or more sets of spatially clustered position samples from among the obtained position samples, and applying curve-fitting to at least one set of spatially clustered position samples to obtain a trajectory of the set of spatially clustered position samples. Also provided is a method for tracking a remote object. The method comprising obtaining an estimated trajectory of the object, obtaining one or more position samples of the object, comparing the obtained position samples with positions computed based on the estimated trajectory, and determining that the object is being tracked based on whether the obtained position samples are consistent with the computed positions.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: October 22, 2019
    Assignee: OPENWORKS ENGINEERING LTD
    Inventors: Christopher David Down, Neil Rockcliffe Armstrong, James Edward Cross, Alexander James Wilkinson, Roland Sebastian Wilkinson
  • Patent number: 10252419
    Abstract: A robot for delivering items within a building or within a prescribed radius of a building are provided.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: April 9, 2019
    Assignee: Savioke, Inc.
    Inventors: Christian Fritz, Adrian Canoso, Robert S. Bauer, Izumi Yaskawa, Steve Cousins
  • Patent number: 9697177
    Abstract: A computing device determines upper and lower bounds of a largest singular value for an approximate decomposition of a dataset. An approximate decomposition is computed using either a principal components or a singular value decomposition algorithm. A lower bound of a largest singular value is computed for the computed approximate decomposition using a first linear approximation to a function of a singular value ratio. A first set of coefficients for a second linear approximation to an error function is computed for the function of the singular value ratio using the computed approximate decomposition. A second set of coefficients for a third linear approximation is computed using the computed first set of coefficients. An upper bound of the largest singular value is computed using the computed second set of coefficients. The upper bound and the lower bound are output to provide an estimate of a quality of the decomposition.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: July 4, 2017
    Assignee: SAS Institute Inc.
    Inventor: Douglas Allan Cairns
  • Patent number: 9652042
    Abstract: Architecture for implementing a perceptual user interface. The architecture comprises alternative modalities for controlling computer application programs and manipulating on-screen objects through hand gestures or a combination of hand gestures and verbal commands. The perceptual user interface system includes a tracking component that detects object characteristics of at least one of a plurality of objects within a scene, and tracks the respective object. Detection of object characteristics is based at least in part upon image comparison of a plurality of images relative to a course mapping of the images. A seeding component iteratively seeds the tracking component with object hypotheses based upon the presence of the object characteristics and the image comparison. A filtering component selectively removes the tracked object from the object hypotheses and/or at least one object hypothesis from the set of object hypotheses based upon predetermined removal criteria.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 16, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Andrew David Wilson, Nuria M. Oliver
  • Patent number: 9342907
    Abstract: A method for analyzing ballistic trajectories comprises determining invariants for known ballistic objects, defining a reference graph having nodes corresponding to the invariants, and defining a query graph having nodes connected to nodes of the reference graph corresponding to anticipated invariant queries to be made using the query graph. One or more sets of invariants corresponding to trajectories of one or more observed objects are input into the reference graph and traverse through the nodes of the reference graph, leaving a record in the nodes traversed. A query is selected for the query graph corresponding to one or more range of invariants, the query generating a query result identifying the nodes of the reference graph that satisfy the query. Identifying each of the observed objects identified by a record in the identified nodes determines which of the one the observed objects satisfy the query.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 17, 2016
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Richard N. Pedersen, Paul D. Mountcastle, Stanley Jordan Viss
  • Patent number: 9041593
    Abstract: According to one embodiment, a target tracking apparatus acquires a first determination result by determining which combination of N-dimensional tracks is for the real target, acquires a second determination result by determining which combination of N-dimensional angular observation values is for the real target, selects the first determination result when an observation environment is an environment other than a dense environment, selects the second determination result when the observation environment is a dense environment, and calculates distance information to thereby generate an (N+1)-dimensional track for each target.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 26, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hidetoshi Furukawa
  • Patent number: 9030347
    Abstract: Systems and methods for improving vehicle survivability. In some embodiments, threat information relating to at least one potential threat against at least one vehicle during a mission may be accessed. The threat information may comprise threat location information indicative of at least one likely location for the at least one potential threat and at least one model associated with the at least one potential threat. Prior to commencing the mission, the threat information may be used to assign a numerical measure to each potential action of a plurality of potential actions for the at least one vehicle based at least in part on at least one measure of the at least one vehicle resulting from executing the potential action. The plurality of potential actions may be compared based at least in part on the respective numerical measures assigned to the plurality of potential actions.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: May 12, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Carl R. Herman, James C. Rosswog
  • Patent number: 8970429
    Abstract: Aspects of the present invention relate to a system (10) and a method for tracking one or more targets by a radar using a multiple hypothesis tracking (MHT) algorithm, the method including operating the radar to transmit a radar beam from a first location toward the one or more targets, operating the radar to receive a plurality of return signals at the first location from the one or more targets, and to generate a plurality of observations for a single radar dwell respectively corresponding to the plurality of return signals, and processing the plurality of observations in accordance with the MHT algorithm for at least two passes such that more than one of the plurality of observations are associated with a single track of the one or more targets.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Raytheon Company
    Inventors: Catherine Pickle, Samuel S. Blackman, Douglas B. Tyler
  • Patent number: 8830115
    Abstract: A multiple-sensor tracking method, notably implemented in an air traffic control system, making it possible to reduce the latency time introduced by the tracking system, characterized in that the correlation (302) and association (303) functions work on the basis of membership of the detections (502) and of the tracks (503, 504) to cells (510, 511) defining a subdivision into a grid (501) of the surveillance area represented on a stereographic projection plane.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 9, 2014
    Assignee: Thales
    Inventors: Olivier Baud, Nicolas Honore
  • Patent number: 8754806
    Abstract: A pulse radar receiver includes a power splitter configured to split a transmit (TX) trigger signal for generating a TX pulse, a phase-locked loop (PLL) configured to receive a division ratio and the TX trigger signal split by the power splitter, and generate a sampling frequency, and a sampler configured to sample a reflected wave received through an RX antenna, according to the sampling frequency generated by the PLL. Accordingly, it is possible to provide a high distance resolution by generating a sampling frequency with a difference from a TX pulse to sample a reflected wave received through an RX antenna. Thus, it is possible to overcome a limitation in the distance resolution due to the pulse width and to measure a minute movement at a short distance. Therefore, the pulse radar receiver is applicable to high range resolution radar applications such as a living body measuring radar.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 17, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Pil Jae Park, Seong Do Kim, Sung Chul Woo, Hyun Kyu Yu
  • Patent number: 8681041
    Abstract: An angle-only tracking filter includes: a target angle discriminant unit configured to receive sensor signal outputs and form angle only observations of a target relative to an ownship; an ownship navigation filter configured to receive and filter ownship inertial navigation measurements; a model analyzer configured to receive and analyze the ownship inertial navigation measurements and select the order of target kinematics to be determined; and a target kinematics generator coupled to the angle discriminant unit, the navigation filter unit, and the model analyzation unit, including: a first-order filter unit configured to generate a target position from the target angle measurements and the ownship inertial navigation information; a second-order filter unit configured to generate a target velocity from the target angle measurements and the ownship inertial navigation information; and a third-order filter unit configured to generate a target acceleration from the target angle measurements and the ownship iner
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Raytheon Company
    Inventors: Randall R. Rojas, James J. Hiroshige
  • Patent number: 8559491
    Abstract: A method for measuring certain parameters of the impulse response of a propagation channel involving emitters and reflectors that are fixed or mobile, and for detecting and determining the parameters regarding the position and kinematics of the emitters and reflectors, or for auto-locating the reception system implementing the invention, in a system comprising N sensors receiving signals from the emitters or from the reflection on the reflectors. The method determines an ambiguity function which couples the spatial analysis and the delay-distance/Doppler-kinematic analysis, and determines at least one sufficient statistic ?(l,m,K) corresponding to the correlation between the known signal s(kTe) corresponding to the complex envelope of the signal emitted and the output of a filter w(l,m) where l corresponds to a temporal assumption and m corresponds to a frequency assumption.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 15, 2013
    Assignee: Thales
    Inventors: Pascal Chevalier, François Delaveau, François Pipon
  • Publication number: 20130234882
    Abstract: The technology described herein includes a system and/or a method for multiple hypothesis tracking In some examples, a multiple hypothesis tracking system includes a receiver, an array generation module, and a local search move module. The receiver is configured to receive tracking data associated with one or more target families from one or more sensors. The array generation module is configured to generate a matrix array based on the tracking data. The local search move module is configured to perform one or more local search moves on one or more cells in the matrix array to increase a global hypothesis score for the tracking data.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: RAYTHEON COMPANY
    Inventors: Nicholas J. Ploplys, Richard J. Kenefic
  • Patent number: 8427359
    Abstract: Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: April 23, 2013
    Assignee: Sandia Corporation
    Inventors: Douglas L. Bickel, David W. Harmony, Timothy P. Bielek, Jeff A. Hollowell, Margaret S. Murray, Ana Martinez
  • Patent number: 8416122
    Abstract: A command and control system for analyzing target track positional information by comparing target location to pregenerated geographic information.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: April 9, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Richard N. Pedersen
  • Patent number: 8259001
    Abstract: A weather radar includes an antenna unit configured to transmit a radio wave from a plurality of antenna elements, and receive a reflected wave from a weather target by carrying out beam scanning in an elevation angle direction by phase control, a drive unit configured to control an elevation angle of an aperture of the antenna unit, and a controller configured to cause the antenna unit to carry out the beam scanning in a state where the aperture is faced to a point which presents a maximum range in the observational range by the drive unit, and direct, at a time point when the weather target is detected based on a received signal of the reflected wave, the aperture toward the weather target by the drive unit.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumihiko Mizutani, Masakazu Wada
  • Patent number: 8248296
    Abstract: This disclosure provides a target object detection signal processing device, which includes a reception data output module, to which a reception signal is inputted, for outputting reception data indicative of a signal level of the reception data, a scan-to-scan correlation processing module for performing scan-to-scan correlation processing between the reception data and previous reception data indicative of a reception level of previously acquired reception signal to output scan-to-scan correlation data, and an output selection module, to which the reception data and the scan-to-scan correlation data are inputted, for selectively outputting either one of the data.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 21, 2012
    Assignee: Furuno Electric Company Limited
    Inventors: Hitoshi Maeno, Youichi Maruyama, Kazuya Nakagawa, Koji Nishiyama
  • Patent number: 8232911
    Abstract: A method and system provide for confirmation of friendly aircraft as a backup to conventional IFF (identification, friend or foe) telecommunication systems and methods. An IFF secondary radar signal is generated and directed to an aircraft. When no confirming response is received within a pre-determined time period, the invention provides for generating and transmitting a pre-arranged modulated signal to the aircraft. In response to receiving the pre-arranged modulated signal, the aircraft notifies the aircrew to execute a pre-arranged kinematic maneuver that is detected by the systems using radar means to confirm that the aircraft is a friendly aircraft.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: July 31, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Richard N. Pedersen
  • Patent number: 8184041
    Abstract: Radar beams for searching a volume are selected by determining the central angle and azimuth and elevation extents to define an acquisition face. The number of beams NMBA required to cover the acquisition face is determined by N MBA = ( 2 ? n + 1 ) ? ( m + 1 2 ) + ( - 1 ) n + m 2 ( 2 ) The number of beams NMBA is multiplied by the dwell per beam to determine the total search time, which is compared with a maximum time; (a) if the total search time is greater than the permissible time, the acquisition face is partitioned, and (b) if the total search time is less, the acquisition face information is applied to a radar processor for filling the unextended acquisition face with the number NMBA of beams in a particular pattern.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: May 22, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Mark A. Friesel
  • Patent number: 8134493
    Abstract: A system and method for determining the geolocation of a signal emitter moving at an unknown velocity by combining signal data of a target detection platform (e.g., a radar system) and signal data collected by two or more moving signal collection platforms (e.g., RF signal receivers). In one embodiment, the target detection platform determines tentative location and velocity of the signal emitter, and the signal collection platforms are configured to perform TDOA and/or FDOA analysis of the collected signal data corresponding to a signal of the signal emitter. In one embodiment, solutions provided from the TDOA and/or FDOA analysis are unbiased by using the tentative velocity of the signal emitter, and the geolocation of the signal emitter is determined by matching the TDOA/FDOA solutions and the detected tentative location.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: March 13, 2012
    Assignee: Raytheon Company
    Inventors: William B. Noble, Duncan L. Crawford, Jeffrey M. Guild
  • Patent number: 8026842
    Abstract: A land-based smart sensor system and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed smart sensor system is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) a supercomputer to process the collected data in real-time. The smart sensor system can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Vista Research, Inc.
    Inventors: Phillilp A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 7941292
    Abstract: In one aspect, a method to assign observations includes receiving first observations of a first sensor system, receiving second observations of a second sensor system and assigning a set of pairs of the first and second observations predicted to correspond to the same physical position. The assigning includes using a likelihood function that specifies a likelihood for each assigned pair. The likelihood is dependent on the assignment of any other assigned pairs in the set of assigned pairs. The assigning also includes determining the set of assigned pairs for the first and second observations based on the likelihood function. The likelihood function uses a gate value determined from estimating a true volume using nearest neighbor distances determined from the first and second observations.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: May 10, 2011
    Assignee: Raytheon Company
    Inventors: Ronald R. Kusner, Herbert Landau, John-David Sergi
  • Patent number: 7825848
    Abstract: Method, tracking system, and intercept missile for tracking highly maneuverable target objects. The method includes estimating the motion of the at least one target object via a mathematical method that includes a filter method relating to a model assumption for estimating at least one of the motion and an orientation of the target object. The filter method includes a semi-martingale algorithm for estimating motion.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 2, 2010
    Assignee: LFK-Lenkflugkoerpersysteme GmbH
    Inventor: Alfred Schoettl
  • Patent number: 7768444
    Abstract: A system for detecting weapons is provided. The system includes a radar system transmitting electromagnetic radiation, analyzing reflected signals to detect a weapon, and generating reflected signal data. An energy field parameter system receives the reflected signal data and sets a plurality of energy field parameters. An energy field system transmits energy at a location associated with the detected weapon.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 3, 2010
    Inventor: Christopher J. Rourk
  • Patent number: 7750840
    Abstract: Methods and apparatus for identifying a plurality of contacts from a signal return, defining a zone containing a number of contacts from the plurality of contacts, determining a centroid for the contacts in the zone, and tracking the contacts in the zone as a single contact based on the centroid.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: July 6, 2010
    Assignee: Raytheon Company
    Inventors: Thomas E. Wood, Paul R. Work
  • Patent number: 7719461
    Abstract: The invention, called “ORSE Track Fusion”, combines sensor tracks from dispersed sites, when limited communication bandwidth does not permit sharing of individual measurements. Since estimation errors due to maneuver biases are not independent for each sensor, optimal fusion of tracks produced by Kalman filters requires transmission of all the filter gain matrices used to update each sensor track prior to the fusion time. For this reason, prior art has resorted to suboptimal designs. ORSE Track Fusion according to aspects of the invention overcomes this disadvantage by propagating, transmitting, and fusing separately calculated covariance matrices for random and bias estimation errors. Furthermore, with ORSE, each sensor can have its own criteria in forming its track, and track fusion can be performed with different criteria at each processing site. Thus, ORSE Track Fusion has the unique flexibility to optimize track fusion simultaneously for multiple criteria to serve multiple users.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 18, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Purusottam Mookerjee, Frank J. Reifler
  • Patent number: 7706978
    Abstract: A method for estimating unknown parameters (pan angle (?), instantaneous tilt angle (?) and road geometry of an upcoming road segment) for a vehicle object detection system. The vehicle object detection system is preferably a forward looking, radar-cued vision system having a camera, a radar sensor and an processing unit. The method first estimates the pan angle (?), then corrects the coordinates from a radar track so that pan angle (?) can be treated as zero, and finally solves a least squares problem that determines best estimates for instantaneous tilt angle (?) and road geometry. Estimating these parameters enables the vehicle object detection system to identify, interpret and locate objects in a more accurate and efficient manner.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: April 27, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Jan K. Schiffmann, David A. Schwartz
  • Publication number: 20090322584
    Abstract: A method for prioritizing threats to an aircraft is disclosed. The method can include providing threat attribute information including a threat engagement timeline and a threat lethality metric and obtaining a threat track indication that indicates a threat is tracking the aircraft. The method can also include determining a historical position estimate of the aircraft at which the threat track began, a time estimate at which the threat track began and determining a period of time during which the threat track has been possible. The method can also include determining a time to engagement based on the threat attribute information and the time period and calculating a priority value for the threat based on the time to engagement and the threat lethality metric. The method can include outputting a prioritized threat list including the priority value calculated for the threat.
    Type: Application
    Filed: April 23, 2008
    Publication date: December 31, 2009
    Inventor: Carl R. Herman
  • Patent number: 7626535
    Abstract: Various embodiments are described herein for a track quality based multi-target tracker and an associated method. The method includes associating a measurement with a track, generating measurement association statistics for the track, generating and updating a track quality value for a track based on a measurement-to-track association likelihood, and updating track lists based on the track quality value and the measurement association statistics of the tracks in these lists. The tracker includes structure for carrying out this method.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: December 1, 2009
    Assignee: Raytheon Company
    Inventors: Zhen Ding, Abhijit Sinha, Thia Kirubarajan, Mohamad Farooq
  • Patent number: 7626536
    Abstract: Radar for detecting and tracking short range airborne targets using a non-scanning beam to illuminate the entire search space, and processing the return signals from a plurality of spaced apart receive antennas. Target angle in one plane may be determined by coherent processing of the returns from the plurality of receive antennas. Spacing the receive antennas apart in three dimensions allows determining of two angles, such as azimuth and elevation. Processing of the returns may be coherent or noncoherent, or returns may be processed both coherently and noncoherently. Programmability of the processing algorithms and parameters provide flexibility in applications, as well as flexibility based on such things as the target type and its range. Exemplary applications are disclosed.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: December 1, 2009
    Assignee: MARK Resources, Inc.
    Inventors: August W. Rihaczek, Richard L. Mitchell
  • Patent number: 7576688
    Abstract: Moving objects are detected with a radar by collecting samples of a received signal over an integration period. The terms of a match function contain a product of a sample of said received signal and a delayed-in-time, Doppler-shifted replica of a transmission and depend on parameters that describe an object that caused a reflection of the transmission. The most probable values of the parameters are found by maximizing the match function through Fourier transforming a vector consisting of terms of the match function. Those of said products that contain a non-zero contribution of said delayed-in-time, Doppler-shifted replica of a transmission are actually computed while the others of said products are zero Only non-zero blocks of the products count as final terms to the vector to be Fourier transformed that have nonzero value while intermittent blocks that have zero value are left out.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: August 18, 2009
    Assignee: Eigenor Oy
    Inventor: Markku Sakari Lehtinen
  • Patent number: 7522094
    Abstract: A method and system is proposed for use by a moving station (such as a jetfighter) for radar tracking of a moving target (such as an air-to-air missile). The proposed method and system involves the use of a hybrid FSK/LFM (Frequency Shift Keying & Linear Frequency Modulation) scheme for acquiring a collection of raw radar data, a first Gaussian-noise filter array of one-stage linear Kalman filters for S/N-enhancement of the raw radar data, a trilateration module, and a second Gaussian-noise filter array of one-stage linear Kalman filters for S/N-enhancement of the trilateration-resulted radar data. These features allow the radar tracking of moving objects to be more fast and accurate.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 21, 2009
    Assignee: National Taiwan University
    Inventors: Po-Jen Tu, Jean-Fu Kiang
  • Patent number: 7508336
    Abstract: A method and radar system for detecting a target and verifying its presence to begin tracking and to enable future detections of the same target to be correctly associated with its initial detection uses two separate detections. Each detection provides three components of position measurements (range, elevation, and azimuth). The invention also pertains to an associated method for initiating a target track utilizing a rotating radar antenna having an electronic scanning antenna comprising the steps of: acquiring data representative of one or more of range, elevation and azimuth of a target, calculating target motion, forming multiple models for each degree of freedom of target motion, composing a set of initial state vectors that includes one having predictive validity for the realization of the true measurement errors and target motion.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: March 24, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Donald M. Leskiw
  • Patent number: 7508335
    Abstract: A method of multiple sensor processing includes receiving, at a first sensor system, track data from a second sensor system, comparing track data from the first sensor system to the track data from the second sensor system to determine if a track will be within a field of view of the first sensor system during a time period, determining, at a first sensor system, predicted quality of tracks based on the track data and broadcasting the predicted quality of tracks. The method also includes receiving predicted quality of tracks from the second sensor system and determining a first set of tasks based on the predicted quality of tracks determined by the first sensor system and the predicted quality of tracks received from the second sensor system.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 24, 2009
    Assignee: Raytheon Company
    Inventors: Steven T. Cummings, George A. Blaha, Larry L. Stern
  • Patent number: 7411543
    Abstract: A sensor suite determines location and velocity information relating to a missile threat, which is converted to missile or rocket state estimates. The state estimates are transformed into time-invariant dynamic parameters, unique for each missile type. Estimated rocket dynamic parameters are computed for each target type being considered, and compared with a reference set of rocket parameters representing different target types. The estimated rocket parameters are compared with the reference parameters in a maximum-likelihood sense, and combined using fuzzy logic to identify the rocket type and the likelihood. The identified rocket type and likelihood is used to aid in determining the future location of the missile so countermeasure can be applied.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: August 12, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Jeffrey B. Boka
  • Patent number: 7375675
    Abstract: A method and apparatus are disclosed that enable an over-the-horizon-radar (OTHR) system to detect and track multiple target classes simultaneously, where target classes are defined by the speed and acceleration of the tracked objects. The OTHR is tasked in a staring mode, with a bandwidth and waveform repetition frequency that enable detection of Doppler shifts from all target types, with sufficient clutter reduction and range resolution. The backscattered echoes are buffered for each target class and processed independently. The output of an automatic tracking algorithm then preferentially plots target progress on a single digital map for all target classes.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: May 20, 2008
    Assignee: SRI International
    Inventor: James R. Barnum
  • Patent number: 7345621
    Abstract: A real-time signal processing engine robustly detects, localizes, tracks and classifies ground targets based on radar signals from a multistatic radar system. The system differentiates between different targets based on an optimized cost function, which can include the total returned normalized pulse energy. The local transmitters/receivers can communicate with each other via the transmitted radar signals.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 18, 2008
    Assignee: BBN Technologies Corp.
    Inventors: John M. Bourdelais, Ernest Scott Stickles, William Ray Wright, David Earl Norris, Michael Anthony Tiberio, Gary Dana Butler
  • Patent number: 7333052
    Abstract: Signal processing with reduced combinatorial complexity for tracking evolving phenomena such as radar tracks associated with weighted measurement parameters includes selecting a current phenomenon and obtaining a set of measurement parameters associated with it. Beginning at a start node providing a first parent node having an identity, an identity for a child node of the patent is produced from the sets of parameters, the parent identity and a parameter selected from the set and corresponding to the child. This is iterated for other parameters in the set. Child nodes of like identity for the phenomenon are treated as a single node with multiple parameter relationships associated with at lest one parent node, whereas child nodes with differing identities are represented as separate nodes. The process is iterated for other phenomena and associated sets of measurement parameters, but child nodes of a previously processed phenomenon are not treated as parent nodes of a phenomenon processed immediately following.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: February 19, 2008
    Assignee: Qinetiq Limited
    Inventor: Simon Richard Maskell
  • Publication number: 20070285303
    Abstract: A system and method is presented for detecting and classifying slow-moving and hovering helicopters from a missile's took-down Doppler radar that is compatible with the existing base of Doppler radars. This approach uses definable attributes of a helicopter rotor assembly and its extended Doppler rotor return to differentiate “rotor samples” from other samples (steps 123, 125), extract features such as bandwidth, activity, angle, and shape from the rotor samples (step 127), and classify a potential target as a helicopter or other based on the extracted rotor features and the known attributes of the helicopter rotor assembly (step 129). A target report including a classification target, range, range-rate, and angle of the extended rotor return is suitably passed to a tracking processor (step 121).
    Type: Application
    Filed: June 12, 2006
    Publication date: December 13, 2007
    Inventors: Bernard P. Radza, Joseph Henning, Sunny Ali, John Mincer, Randal Walters
  • Patent number: 7218270
    Abstract: A-Track is a tracking process that is driven by automatic target recognition techniques (ATR), mobility analysis using digital maps and exploitation of other constraining information. It is structured as an optimization problem amenable to the formalism from classical relaxation labeling algorithm. The novel combination of techniques in A-Track provides a new approach to the temporal problem of establishing and extending target tracks through a sliding time window involving a sequence of multiple data frames. A data frame is a collection of sensor reports taken from one scan of a predetermined surveillance area that is being systematically and repeatedly scanned over time. The relative time differences between reports within a frame are generally much smaller than the time difference between different frames. A-Track is especially designed to handle cases having relatively large time intervals between frames that cause problems for conventional tracking algorithms based on predictive models.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: May 15, 2007
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Louis A. Tamburino
  • Patent number: 7199750
    Abstract: A real-time signal processing engine robustly detects, localizes, tracks and classifies ground targets based on radar signals from a multistatic radar system. The system differentiates between different targets based on an optimized cost function, which can include the total returned normalized pulse energy. The local transmitters/receivers can communicate with each other via the transmitted radar signals.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 3, 2007
    Assignee: BBN Technologies Corp.
    Inventors: John Michael Bourdelais, Ernest Scott Stickels, William Ray Wright, David Earl Norris, Michael Anthony Tiberio, Gary Dana Butler
  • Patent number: RE44807
    Abstract: A method and system for real-time tracking of objects is are disclosed. A region is repeatedly scanned providing a plurality of images or data sets having points corresponding to ojbects objects in the region to be tracked. Given a previously determined track for each object in the region, an M-dimensional combinatorial optimization assignment problem is formulated using the points from M-1 of the images or data sets, wherein each point is preferably used in extending at most one track. The M-dimensional problem is subsequently solved for an optimal or near-optimal assignment of the points to the tracks, extending the tracking of the objects so that a response to each object can be initiated by the system in real-time. Speed and accuracy is provided by an iterative Lagrangian Relaxation technique wherein a plurality of constraint dimensions are relaxed simultaneously to yield a reduced dimensional optimization problem whose solution is used to formulate an assignment problem of dimensionality less than M.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: March 18, 2014
    Assignee: Colorado State University Research Foundation
    Inventor: Aubrey B. Poore, Jr.