With Scanning, Sweeping, Or Orienting Patents (Class 343/754)
  • Patent number: 11929558
    Abstract: A millimeter wave antenna apparatus for an electronic device includes a rear housing and at least one antenna assembly, the at least one antenna assembly includes a millimeter wave module spaced apart from the rear housing, and being configured to transceive millimeter wave signal; a beam of the millimeter wave signal pointing towards the outside of the rear housing; a dielectric layer arranged in a target area of the rear housing, the target area at least comprising an area where the millimeter wave module is projected onto the rear housing, the dielectric layer and a part of the rear housing in the target area together forming a radiation layer with gradient distribution of dielectric constant, and the radiation layer being configured to change a beam radiation direction of the millimeter wave signal.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: March 12, 2024
    Assignee: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
    Inventor: Yuhu Jia
  • Patent number: 11916295
    Abstract: A frequency selective surface having a steep attenuation slope (high sharpness) characteristic is provided without decreasing the line width of a conductive pattern nor the pattern interval thereof. In a frequency selective surface having a structure in which resonators k1xy having identical shapes are periodically arrayed on a dielectric substrate 101, each resonator k1xy includes a cross-shaped conductive pattern formed on the dielectric substrate 101 and a lateral pattern 10 and a longitudinal pattern 20 forming a cross are shaped such that each pattern is extended by a predetermined length in respective directions, each pattern extended by the predetermined length is further extended in both directions orthogonal to each other on the dielectric substrate 101, and leading end parts of the respective further extensions face each other at a predetermined interval d.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 27, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Toriumi, Go Itami, Jun Kato
  • Patent number: 11901626
    Abstract: The present disclosure provides a production method for a Luneburg lens, which can manufacture a Luneburg lens with stable indexes and high performance under the conditions of room temperature, normal pressure, and low cost. The production method includes the following steps: bonding first granular materials into a sphere by a bonding agent, so as to obtain a sphere core; spraying the bonding agent on the surface of the sphere core, placing the sphere core in a container containing second granular materials, and rolling the sphere core, so that the surface of the whole sphere core is bonded with the second granular materials until the thickness of the second granular particles reaches a preset range, and thus forming a dielectric layer coating the sphere core; and by analogy, preparing a predetermined number of dielectric layers, so as to obtain a target finished Luneburg lens.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 13, 2024
    Assignee: Guangdong Fushun Tianji Communication Co., Ltd.
    Inventors: Hongzhen Zheng, Yongchao Lu, Yingqian Dou
  • Patent number: 11894907
    Abstract: Wireless communications systems and methods related to wireless communications in a system are provided. A user equipment (UE) may determine a plurality of antenna configurations for a plurality of channel frequencies. The UE may determine a set of signal strengths for at least one beam received at one or more antenna configurations of the plurality of antenna configurations for at least one of the channel frequencies. The UE may select, based on the set of signal strengths, a first antenna configuration of the plurality of antenna configurations. After selection of the first antenna configuration, the UE may communicate with a base station, in one or more channel frequencies based on the first antenna configuration.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 6, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Farhad Meshkati, Jyothi Kiran Vattikonda, Thomas Christol, Raghu Narayan Challa, Mouaffac Ambriss, Arvind Vardarajan Santhanam, Feng Lu, Ting Kong, Uzma Khan Qazi
  • Patent number: 11888228
    Abstract: A microwave prism is used to repoint an operational Direct-to-Home (DTH) or Very Small Aperture Terminal (VSAT) reflector antenna as part of a ground terminal to receive (or transmit) signals from a different satellite or orbital position without physically moving the reflector or the feed horn antenna. The microwave prism operates by shifting the radiated fields from the horn antenna generally perpendicular to the focal axis of the parabolic reflector in order to cause the main beam of the reflector to scan in response. For an existing reflector antenna receiving signals from an incumbent satellite, a prism has been designed to be snapped into place over the feed horn and shift the fields laterally by a calibrated distance. The structure of the prism is designed to be positioned and oriented correctly without the use of skilled labor.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 30, 2024
    Assignee: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, John Finney
  • Patent number: 11843166
    Abstract: Antenna assemblies and antenna systems are described. According to one aspect, a printed circuit board antenna system includes a dielectric substrate comprising first and second surfaces that are opposite to one another, first electrically conductive material of an antenna element adjacent to the first surface of the dielectric substrate, wherein the antenna element is configured to emit electromagnetic energy, and second electrically conductive material of a ground plane adjacent to the second surface of the dielectric substrate, wherein the ground plane is aligned with the antenna element and configured to reflect some of the electromagnetic energy in a direction towards the antenna element.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: December 12, 2023
    Assignee: Battelle Memorial Institute
    Inventors: Maurio B. Grando, A. Mark Jones
  • Patent number: 11831293
    Abstract: A planar radio frequency filter is described, comprising a frequency selective surface (FSS) applied to a substrate. The filter blocks the transmission of electromagnetic waves in at least two independent radio frequency bands. The FSS comprises a periodic array of multipole inclusions with skewed or forked poles to increase packing density. The inclusions comprise four or six primary poles to generate the lower frequency resonance and an additional four or six secondary poles to generate the higher frequency resonance. The secondary inclusions are located between the primary inclusions to tune the higher resonance frequency. The FSS incorporates overlapping parallel conducting segments that overlap to provide an inductive-capacitive path between adjacent inclusions.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 28, 2023
    Assignee: CLD Western Property Holdings Ltd.
    Inventors: Loïc Markley, Nibirh Jawad, Andrew Joseph William Gaucher
  • Patent number: 11817626
    Abstract: Methods, systems, and devices for wireless communications are described. A communications device may transmit a first signal. The first signal may be transmitted from a first antenna array of the communications device through a lens of the communications device in a direction. An energy of a portion of the first signal may be below a threshold based on a position of a second antenna array of the communications device. The portion of the first signal may correspond to a portion of a reflection of the first signal that overlaps with the position of the second antenna array. The communications device may concurrently receive, at the second antenna array, a second signal originating from another direction, where the second signal may be focused in the direction of the second antenna array based on the lens.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: November 14, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Idan Michael Horn, Yehonatan Dallal, Shay Landis, Assaf Touboul
  • Patent number: 11808879
    Abstract: A system and apparatus is provided for a modular radar system. The modular radar system can include a plurality of radar system modules that can be detachably coupled and can include a configurable number of radio-frequency (RF) transmit and receive assemblies. The RF transmit and receive assemblies can include radiating element(s) that emit electromagnetic radiation. The plurality of radar system modules can also include at least one processor coupled to control power of the electromagnetic radiation and/or at least one controller to control the RF transmit and receive assembly, the power unit and the digital receiver and exciter module, at least one digital receiver and exciter to convert RF to digital in receive mode, and digital to RF in transmit mode, and/or at least one RF beamformer to generate one or more RF beams.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: November 7, 2023
    Assignee: Raytheon Company
    Inventors: Derek P. Rocca, Michael T. Borkowski, Thomas Lulsdorf, Kenneth P. Walsh, Jr., Christopher J. Yafrate, Michael P. Martinez, Erin K. Nolan, Kassam K. Bellahrossi, Bryan J. Cavener
  • Patent number: 11784407
    Abstract: A beacon network includes a plurality of beacons arranged at predetermined positions to periodically or intermittently emit a signal wave including identification information, and a radio wave absorber to adjust an emission angle of the signal wave emitted from at least one of the plurality of beacons.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: October 10, 2023
    Assignee: NIDEC CORPORATION
    Inventors: Junji Ito, Tomohiko Tomogane
  • Patent number: 11757203
    Abstract: Disclosed is an antenna apparatus including a first subassembly having a plurality of antenna elements, and a second subassembly adhered to the first subassembly. The second subassembly may include a plurality of components of a beamforming network encapsulated within a molding material. One or more interconnect layers may be disposed on the molding material to electrically couple the plurality of components of the beamforming network to the plurality of antenna elements. Methods of fabricating the antenna apparatus are also disclosed.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 12, 2023
    Assignee: VIASAT, INC.
    Inventors: Steven J. Franson, Douglas J. Mathews
  • Patent number: 11737214
    Abstract: An electronic device includes a substrate, a plurality of conductive patterns, and a tunable element. A plurality of conductive patterns are disposed on the substrate. The tunable element is disposed on at least one conductive pattern in the plurality of conductive patterns and includes a first pad, a second pad, and a third pad. The first pad, the second pad, and the third pad are separated from each other. The first pad and the second pad are overlapped with the at least one conductive pattern in the plurality of conductive patterns. The third pad is disposed between the first pad and the second pad.
    Type: Grant
    Filed: November 25, 2021
    Date of Patent: August 22, 2023
    Assignee: Innolux Corporation
    Inventors: Chen-Lin Yeh, Ming-Sheng Lai, Yan-Zheng Wu
  • Patent number: 11735830
    Abstract: An antenna device and a method for manufacturing the same are provided. The antenna device includes a carrier and an antenna element. The carrier includes a plurality of pads and has a surface exposing the pads. The antenna element is disposed above the pads. A lateral surface of one of the pads is farther from a central axis of the antenna element substantially perpendicular to the surface than from a lateral surface of the antenna element.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: August 22, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jenchun Chen, Chang-Fu Lu
  • Patent number: 11721910
    Abstract: A communication device includes a lens having a defined shape. A feeder array comprising a plurality of antenna elements that are positioned in a specified proximal distance from the lens to receive a lens-guided beam of input radio frequency (RF) signals through the lens. The specified proximal distance is less than a focal length of the lens. The lens covers the feeder array as a radome enclosure. A distribution of a gain from the received lens-guided beam of input RF signals is substantially equalized from a radiation surplus region to a radiation deficient region of the feeder array to increase at least a reception sensitivity of the plurality of antenna elements for at least the lens-guided beam of input RF signals, based on the defined shape of the lens and the specified proximal distance of the feeder array to the lens.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: August 8, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11699862
    Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: July 11, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
  • Patent number: 11688948
    Abstract: A log periodic antenna system with conformal radiating elements includes a feed layer with phase shifters and filters associated with each radiating element. The filters may be low-pass or band-pass filters. The log periodic conformal radiating elements produce superior gain and bandwidth, and reduce directionality of the antenna at least along a radial axis of the antenna. Sets of conformal radiating elements are disposed on opposing sides of the antenna, or periodically around the surface of the antenna, to further reduce directionality.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: June 27, 2023
    Assignee: Rockwell Collins, Inc.
    Inventors: Alexander B. Kozyrev, James B. West, Jiwon L Moran
  • Patent number: 11682843
    Abstract: A communication device includes a lens having a defined shape. A feeder array comprising a plurality of antenna elements that are positioned in a specified proximal distance from the lens to receive a lens-guided beam of input radio frequency (RF) signals through the lens. The specified proximal distance is less than a focal length of the lens. The lens covers the feeder array as a radome enclosure. A distribution of a gain from the received lens-guided beam of input RF signals is substantially equalized from a radiation surplus region to a radiation deficient region of the feeder array to increase at least a reception sensitivity of the plurality of antenna elements for at least the lens-guided beam of input RF signals, based on the defined shape of the lens and the specified proximal distance of the feeder array to the lens.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: June 20, 2023
    Assignee: Movandi Corporation
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11670860
    Abstract: Provided herein are various enhanced antenna structures for radio frequency communications. In one example, an antenna includes a single-arm spiral antenna having an antenna element configured to couple to a radio frequency link at a central node of the spiral. A ground element is disposed proximate to the central node of the spiral and configured to couple to a ground reference for the radio frequency link.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: June 6, 2023
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas Patrick Cencich, W. Neill Kefauver
  • Patent number: 11641063
    Abstract: The present invention relates to a communication technique for fusing a 5G communication system to support a higher data transmission rate than a 4G system, with IoT technology, and a system thereof. This disclosure is based on 5G communication technology and the IoT related technology and can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, safety-related services, or the like). In addition, the present invention provides an antenna module comprising an antenna and a lens, wherein the antenna comprises a first antenna array which deflects and radiates a radio wave from a vertical plane of the antenna by a predetermined first angle, and the lens can be spaced apart from the antenna by a first determined distance to change the phase of the radio wave radiated from the antenna.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 2, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seungtae Ko, Yoongeon Kim, Hyunjin Kim, Jinsu Heo, Youngju Lee
  • Patent number: 11621486
    Abstract: Examples disclosed herein relate to a radiating structure. The radiating structure has a transmission array structure having a plurality of transmission paths, with each transmission path having a plurality of slots. The radiating structure also has a radiating array structure of a plurality of radiating elements, with each radiating element corresponding to at least one slot from the plurality of slots, and at least one radiating element from the plurality of radiating elements comprising an integrated reactance control device. The radiating array structure is positioned proximate the transmission array structure.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: April 4, 2023
    Assignee: METAWAVE Corporation
    Inventor: George Daniel
  • Patent number: 11609324
    Abstract: Synthetic aperture radar transmit and receive antenna systems and methods of transmitting and receiving radar signals are disclosed. In one embodiment, a transmit and receive antenna system includes a transmit antenna array configured to transmit a plurality of radio frequency transmit signals, the transmit antenna array including a plurality of patch antenna elements mounted to a printed circuit board, each patch antenna element belonging to a subarray, and one or more power amplifiers, each power amplifier feeding a subarray of the patch antenna elements, and a reflectarray receive antenna configured to receive radio frequency signals including a plurality of reflectarray antenna elements mounted to a printed circuit board, at least one antenna feed configured to receive radio frequency signals reflected from the plurality of reflectarray antenna elements, and at least one low noise amplifier electrically connected to the at least one antenna feed.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 21, 2023
    Assignee: Planet Labs Inc.
    Inventors: Kiruthika Devaraj, Ming-chun Paul Lee
  • Patent number: 11611936
    Abstract: A method for optimizing power consumption for Narrowband Internet of Things devices, UEs, in idle mode using a coverage class specific paging configuration, where carriers for paging are partitioned by coverage class, whereas the coverage class specific paging configuration, broadcasted by a system information exchanged between the base station and the UE, is extended by an additional NRSRP rsrp-ThresholdPcch threshold, whereas the UE selects one carrier for paging with a Narrowband Reference signal received power (NRSRP) smaller than the rsrp-ThresholdPcch threshold or if a UE is not reachable the eNodeB expands a paging area for the considered UE stepwise into other paging coverage classes in order to reach the UE.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 21, 2023
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventor: Mathias Kurth
  • Patent number: 11605899
    Abstract: A radio frequency (RF) aperture includes an array of electrically conductive tapered projections arranged to define a curved aperture surface, such as a semi-cylinder aperture surface, or a cylinder aperture surface (which may be constructed as two semi-circular aperture surfaces mutually arranged to define the cylinder aperture surface). The RF aperture may further include a top array of electrically conductive tapered projections arranged to define a top aperture surface. The top aperture surface may be planar, and a cylinder axis of cylinder aperture surface may be perpendicular to the plane of the planar top aperture surface. The RF aperture may further include baluns mounted on at least one printed circuit board, each having a balanced port electrically connected with two neighboring electrically conductive tapered projections of the array and further having an unbalanced port.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: March 14, 2023
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raphael Joseph Welsh, Douglas A. Thornton
  • Patent number: 11605904
    Abstract: Provided is an antenna module including: a phased array having a plurality of antennas and configured to communicate a first RF signal and a second RF signal, which are polarized in different directions; a front-end radio frequency integrated circuit (RFIC) including a first RF circuit configured to process or generate the first RF signal and a second RF circuit configured to process or generate the second RF signal; and a switch circuit configured to connect each of the first RF circuit and the second RF circuit to a first port or a second port of the antenna module according to a control signal. The first and second ports are each connectable to a back end RFIC that processes or generates a baseband signal.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: March 14, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-seok Yu, Sang-won Son, Siu-chuang Ivan Lu
  • Patent number: 11575204
    Abstract: Technologies directed to interleaved phased array antennas are described. One apparatus includes a support structure, a first phased array antenna, and a second phased array antenna. The first array antenna includes a first set of antenna elements disposed on a surface of the support structure. The first set of antenna elements are located within a perimeter of a first ellipse. The second antenna includes a second set of antenna elements. The second set of antenna elements are located within a perimeter of a second ellipse. The second ellipse partially overlaps the first ellipse. The majority of the second set of antenna elements are located outside the perimeter of the first ellipse. A majority of the second set of antenna are located in the second ellipse in the area not overlapped by the first ellipse.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: February 7, 2023
    Assignee: Amazon Technologies, Inc.
    Inventor: Murat Veysoglu
  • Patent number: 11575214
    Abstract: A reflectarray antenna system includes an antenna feed configured to at least one of transmit and receive a wireless signal occupying a frequency band. The system also includes a reflector having a reflectarray. The reflectarray includes a plurality of reflectarray elements, where each of the reflectarray elements includes a dipole element. The dipole element of at least a portion of the plurality of reflectarray elements comprises a crossed-dipole portion and a looped-dipole portion. The plurality of reflectarray elements can be configured to selectively phase-delay the wireless signal to provide the wireless signal as a coherent beam.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 7, 2023
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Thomas H. Hand, Michael E. Cooley, David Sall, Gary L. Kempic
  • Patent number: 11574906
    Abstract: A number of monolithic multi-throw diode switch structures are described. The monolithic multi-throw diode switches can include a hybrid arrangement of diodes with different intrinsic regions, all formed over the same semiconductor substrate. In one example, two PIN diodes in a monolithic multi-throw diode switch have different intrinsic region thicknesses. The first PIN diode has a thinner intrinsic region, and the second PIN diode has a thicker intrinsic region. This configuration allows for both the thin intrinsic region PIN diode and the thick intrinsic region PIN diode to be individually optimized. As one example, for a switch functioning in a dedicated transmit/receive mode, the first transmit PIN diode can have a thicker intrinsic region than the second receive PIN diode to maximize power handling for the transmit arm and maximize receive sensitivity and insertion loss in the receive arm.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: February 7, 2023
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: James Joseph Brogle, Joseph Gerard Bukowski, Margaret Mary Barter, Timothy Edward Boles
  • Patent number: 11567187
    Abstract: A radar sensor having a frame, a housing arranged at the frame, a transmission and reception unit for high frequency signals arranged within the housing, wherein a radiation direction of the high frequency signals irradiated by the transmission and reception unit is rotatable about an axis of rotation. The radiation direction of the high frequency signals irradiated by the transmission and reception unit is substantially orthogonally oriented toward the axis of rotation, and the housing is supported at the frame rotatably about a pivot axis.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: January 31, 2023
    Assignee: indurad GmbH
    Inventors: Reik Winkel, Florian Hillen
  • Patent number: 11569584
    Abstract: Antennas such as flat panel, leaky wave antennas with directional coupler feeds and waveguides are disclosed. In one example, an antenna includes a surface having antenna elements, a guided wave transmission line, and a coupling surface. The guided wave transmission line provides a guided feed wave. The coupling surface is between and separates the guided wave transmission line and the surface having antenna elements. The coupling surface controls coupling of the guided feed wave to the antenna elements. The coupling surface can also spatially filter the guided feed wave to provide a more uniform power density for the antenna elements. The guided feed wave can be a high power density electromagnetic wave or a density radially decaying electromagnetic wave.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: January 31, 2023
    Assignee: KYMETA CORPORATION
    Inventors: Benjamin Sikes, Erik Shipton, David Levesque, Mohsen Sazegar, Ryan Stevenson, Chris M. Eylander
  • Patent number: 11527836
    Abstract: The present invention relates to a communication technique, which is a convergence of IoT technology and 5G communication system for supporting higher data transmission rate than 4G system, and a system for same. The present invention can be applied to smart services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security-and safety-related services and the like) on the basis of 5G communication technology and IoT-related technology.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: December 13, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoongeon Kim, Seungtae Ko, Hyunjin Kim, Youngju Lee
  • Patent number: 11515642
    Abstract: An electronic device that communicates a packet or a frame is described. This electronic device includes: at least an antenna having an antenna radiation pattern; an interface circuit; and an antenna cover that includes an integrated static lens, where the antenna cover is selected from a set of antenna covers that includes different integrated static lenses. During operation, the interface circuit may transmit, from the antenna, wireless signals corresponding to the packet or the frame, where the integrated static lens modifies the antenna radiation pattern of the antenna. For example, the integrated static lens may cause the wireless signals to converge or diverge. Alternatively, the integrated static lens may change an angular elevation of the antenna radiation pattern and/or may provide a correction for pathloss as a function of angle. Note that the integrated static lens may be a stepwise approximation to a predefined function.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 29, 2022
    Assignee: ARRIS Enterprises LLC
    Inventors: Rajesh Koganti, Douglas Blake Kough
  • Patent number: 11509042
    Abstract: A novel and useful radome suitable for use in an automotive radar system that employs patch antenna arrays. In one embodiment, the radome is a ‘U’ shaped half cylinder for patch antenna arrays such as on a printed circuit board (PCB). The patch antennas may or may not be situated in the same plane. Each array has its own half cylinder associated with it. Each array may have a different antenna pattern with different gain and side lobes. In this case, each patch antenna array has its own radome configured appropriately. Alternatively, the radome comprises a half sphere shape (or bubble shape) whereby each antenna port has its own individual half sphere shaped radome. This functions to improve the performance of the radome by increasing the number of curved dimensions from one to two.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 22, 2022
    Inventors: Assaf Stav, Abraham Bauer
  • Patent number: 11489265
    Abstract: The present invention discloses a reconfigurable wideband phase-switched screen (PSS) based on an artificial magnetic conductor (AMC). Gap capacitance between patches is controlled by changing the capacitance of varactors, so that periodic units have a plurality of continuous frequency points. A phase difference between two adjacent frequency bands is 143°-217°, so that the periodic structure absorbs incident electromagnetic waves in a wide frequency band, and the broadband PSS is implemented with a relative bandwidth of 45.2%. The AMC structure according to the present invention is simple in structure and easy to process, with a thickness less than one twentieth of the working wavelength, and greatly reduces size and costs.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: November 1, 2022
    Inventors: Yumei Chang, Lin Wang, Bo Li, Yaming Bo, Lei Zhu
  • Patent number: 11469503
    Abstract: An antenna system including one or more a frequency responsive components (FRCs) may employ filters to one or more paths in the antenna system corresponding one or more radiating elements on those paths. The FRCs can block a signal from reaching the radiating elements effectively causing the radiating elements to become non-contributing to the antenna systems radiating pattern performance, and thus, maintain a consistent aperture value associated with the antenna system. In some cases, the FRCs may be configured to block a signal when the antenna system is operating at a particular frequency.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: October 11, 2022
    Assignee: T-Mobile USA, Inc.
    Inventor: Chad Au
  • Patent number: 11431098
    Abstract: An object is to advantageously control a phase of an electromagnetic wave with high efficiency at target operational frequency band. A phase control device (10) comprising a two-dimensional array of three-dimensional units (101) and configured to shift a phase of an electromagnetic wave passing through the three-dimensional units (101). The two nearest three-dimensional units (101) having same phase shift coverage are configured such that the distance difference from phase center of the phase control device (10) to the units (101) is a wavelength of a reference frequency fk, and the reference frequency fk is higher than center frequency fc of operational frequency band and not higher than the highest frequency fh of the operational frequency band.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 30, 2022
    Assignee: NEC CORPORATION
    Inventors: Mingqi Wu, Keishi Kosaka, Eiji Hankui
  • Patent number: 11424520
    Abstract: Provided are a liquid crystal phase shifter and an antenna. The liquid crystal phase shifter includes a first substrate, a second substrate, a liquid crystal layer, and at least one phase shift unit. The first substrate includes a first flexible substrate and a first liquid crystal alignment layer located on a side of the first flexible substrate close to the second substrate. The second substrate includes a second flexible substrate and a second liquid crystal alignment layer located on a side of the second flexible substrate close to the first substrate. The phase shift unit includes a microstrip line and a phased electrode. The microstrip line is located between the first flexible substrate and the first liquid crystal alignment layer, and the phased electrode is located between the second flexible substrate and the second liquid crystal alignment layer.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 23, 2022
    Assignee: CHENGDU TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Yingru Hu, Bo Wu, Xuhui Peng
  • Patent number: 11404794
    Abstract: Examples disclosed herein relate to a multi-layer, multi-steering (“MLMS”) antenna array for millimeter wavelength applications. The MLMS antenna array includes a superelement antenna array layer comprising a plurality of superelement subarrays, in which each superelement subarray of the plurality of superelement subarrays includes a plurality of radiating slots for radiating a transmission signal. The MLMS antenna array also includes a power division layer configured to serve as a feed to the superelement antenna array layer, in which the power division layer includes a dielectric layer interposed between a plurality of conductive layers. The MLMS antenna array also includes a top layer disposed on the superelement antenna array layer. The top layer may include a superstrate or a metamaterial antenna array. Other examples disclosed herein include a radar system for use in an autonomous driving vehicle.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 2, 2022
    Inventors: Chiara Pelletti, Maha Achour
  • Patent number: 11329393
    Abstract: The present invention provides an antenna device that has a radiation pattern whose peak direction is independent of a frequency of an electromagnetic wave emitted. The antenna device includes: a ground layer (11) made of an electric conductor; a plurality of array antennas (22) provided in a layer above the ground layer (11); and a Rotman lens (32) provided in a layer below the ground layer (11). Each array antenna (22i) includes: a power feed line (23Li) at a center of which a feedpoint (23Pi) is located; and a plurality of antenna elements (241i through 248i and 251i through 258i) connected to the power feed line (23Li), and has a point symmetric shape with respect to the feedpoint (23Pi) as a center of symmetry. Each feedpoint (23Pi) is coupled to any one output port (322i) of the Rotman lens (32) via a slot (111i) provided in the ground layer (11).
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 10, 2022
    Assignee: FUJIKURA LTD.
    Inventors: Yuta Hasegawa, Ning Guan
  • Patent number: 11329386
    Abstract: The invention comprises a device for receiving electromagnetic signal and radiating the signal further. With that device the signal can be repeated on the other side of a barrier, for example a wall, which prevents the signal to propagate. The receiving section (1) of the device has been made as a planar aperture antenna, as well as the re-radiating section (2). The above-mentioned planar aperture antenna has been made so that between the antenna parts of conductive material (6) there is an opening (7) which opens in the propagation direction of the signal (4 and 5). Between the above-mentioned receiving section (1) and the re-radiating section (2) there is a signal transmission section (3) which has been implemented as two parallel conductors (8) with a gap (9). The transitions between the receiving section (1), the signal transmission section (3) and the re-radiating section (2) have been realized in stepless manner without separate connectors.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: May 10, 2022
    Inventor: Erkki Tapio Salonen
  • Patent number: 11303020
    Abstract: Examples disclosed herein relate to a high gain relay antenna system that includes a first passive reflect array configured to receive electromagnetic radiation from a transmitting source and generate a transmit beamforming signal with a first gain from the electromagnetic radiation. The high gain relay antenna system also includes a second passive reflect array positioned at a predetermined distance from the first passive reflect array and configured to collimate phases of the transmit beamforming signal from the first passive reflect array and transmit an outbound beamforming signal with a second gain greater than the first gain, to a coverage area. Other examples disclosed herein relate to a dual-reflect array system and a method of high gain relay with multiple passive reflect array antennas.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 12, 2022
    Inventor: Jun Fang
  • Patent number: 11289818
    Abstract: This application relates to a wireless apparatus, and in particular, to an apparatus that is capable of performing beam sweeping. The apparatus provided in embodiments of this application integrates a feed source that may transmit a wireless signal and a lens. The lens covers the feed source, and an inner surface and/or an outer surface of the lens are/is curved surfaces/a curved surface.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 29, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Changshun Deng, Hongyun Li
  • Patent number: 11264729
    Abstract: Systems and methods are provided for wide scan phased array fed reflector systems using ring-focus optics to significantly improve the scan volume of such systems. The subject system includes a reflector having a focal plane and a parabolic curvature configured to receive electromagnetic radiation having a first gain and provide reflected electromagnetic radiation having a second gain greater than the first gain that collimates into a focal ring. The subject system includes a feed array having feed elements positioned about the focal ring, in which each feed element is configured to receive the reflected electromagnetic radiation from the reflector and collimate the reflected electromagnetic radiation into a scanned beam for scanning an annular region. In some aspects, the feed array is centered on the focal ring such that at least one feed element overlaps with the focal ring and remaining feed elements are non-overlapping with the focal ring.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 1, 2022
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas Henry Hand, Arun Kumar Bhattacharyya, Joseph M. Torres, Scott Alan Lundgren, Konrad J. Gojara, Grayeme Everett Platt
  • Patent number: 11233310
    Abstract: A low-profile conformal antenna (“LPCA”) is disclosed. The LPCA includes a plurality of dielectric layers forming a dielectric structure. The plurality of dielectric layers includes a top dielectric layer that includes a top surface. The LPCA further includes an inner conductor, a patch antenna element (“PAE”), and an antenna slot. The inner conductor is formed within the dielectric structure, the PAE is formed on the top surface of the top dielectric layer, and the antenna slot is within the PAE. The LPCA is configured to support a transverse electromagnetic (“TEM”) signal within the dielectric structure.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 25, 2022
    Assignee: THE BOEING COMPANY
    Inventors: John E. Rogers, John D. Williams
  • Patent number: 11205855
    Abstract: A communication device includes a first lens and a feeder array. The first lens has a defined shape, a base, a first tubular membrane connected to the base, and a second membrane arranged as a cap on the first tubular membrane. The feeder array includes a plurality of antenna elements that are positioned in a specified proximal distance from the base of the first lens to receive a first lens-guided beam of input radio frequency (RF) signals through the second membrane of the first lens. The first lens of the defined shape covers the feeder array as a radome enclosure. A distribution of a gain from the received first lens-guided beam of input RF signals is substantially equalized across the feeder array to increase at least a reception sensitivity of the plurality of antenna elements of the feeder array.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: December 21, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11202365
    Abstract: An electronic device in provided, including an antenna using a horn structure capable of using at least a portion of a metal member as a signal waveguide structure of the antenna. The device includes a housing, a display, a printed circuit board, and at least one wireless communication circuit, where a waveguide hole is provided to connect at least a portion of a through hole and an electronic component and is used as an operating channel of the electronic component together with the waveguide hole.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 14, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dongyeon Kim, Seongjin Park, Sehyun Park, Myunghun Jeong, Jehun Jong, Jaehoon Jo, Yoonjung Kim, Gyubok Park
  • Patent number: 11183747
    Abstract: An electronic device includes a housing that includes a front plate facing a first direction, a back plate facing a second direction opposite to the first direction, and a side member surrounding a space between the front plate and the back plate and at least a portion of which is formed of a metal material. A display is viewable through the front plate, and an antenna module is positioned in the space and includes a first surface facing a third direction different from the first direction and the second direction, a second surface facing a fourth direction different from the third direction, and at least one conductive element extended in a fifth direction, which is perpendicular to the third direction and the fourth direction and faces a first portion of the side member, adjacent to the side member, and between the first surface and the second surface.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: November 23, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heecheul Moon, Sangyoup Seok, Kwonho Son
  • Patent number: 11171511
    Abstract: Capacitive wireless power transfer systems are provided. In one embodiment, for example, the system comprises two pair of coupled conducting plates; a first matching network coupled to the first pair of conducting plates; and a second matching network coupled to the second pair of conducting plates. At least one of the first and second matching networks comprises an inductor having inductance value selected based on at least one parasitic capacitance value of the capacitive wireless power transfer system. In another embodiment, a method of designing a capacitive wireless power transfer system is provided comprising determining a parasitic capacitance value of a capacitive wireless power transfer system and determining an inductance value of an inductor of at least one of the first and second matching network having a value selected based on at least one parasitic capacitance value of the capacitive wireless power transfer system.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: November 9, 2021
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Khurram K. Afridi, Brandon Regensburger, Sreyam Sinha, Ashish Kumar
  • Patent number: 11171426
    Abstract: A communication device includes a first lens and a feeder array. The first lens has a defined shape, a base, a first tubular membrane connected to the base, and a second membrane arranged as a cap on the first tubular membrane. The feeder array includes a plurality of antenna elements that are positioned in a specified proximal distance from the base of the first lens to receive a first lens-guided beam of input radio frequency (RF) signals through the second membrane of the first lens. The first lens of the defined shape covers the feeder array as a radome enclosure. A distribution of a gain from the received first lens-guided beam of input RF signals is substantially equalized across the feeder array to increase at least a reception sensitivity of the plurality of antenna elements of the feeder array.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 9, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan
  • Patent number: 11143860
    Abstract: A system, apparatus, and method include an optical steering system including a holder with a plurality of apertures; a photonic crystal mounted in each of the plurality of apertures; a light source to direct a path of light through the photonic crystal; a motion controller to control movement of the holder to sequentially insert each photonic crystal of the plurality of apertures into the path of light; and a sensor to detect optical energy arriving from each direction of the path of light passing through each photonic crystal.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: October 12, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Joshua K. Lentz
  • Patent number: 11145986
    Abstract: A communication device includes a first lens, a feeder array, and control circuitry communicatively coupled to the feeder array. The first lens is associated with a defined shape, which further exhibits a defined distribution of dielectric constant. The feeder array includes a plurality of antenna elements that are positioned in proximity to the first lens. The control circuitry equalizes a distribution of a gain from the received first lens-guided beam of input RF signals across the feeder array and different scan directions of the plurality of antenna elements. The equalized distribution of gain is based on the defined distribution of dielectric constant within the first lens and the proximity of the feeder array to the first lens.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: October 12, 2021
    Assignee: SILICON VALLEY BANK
    Inventors: Ahmadreza Rofougaran, Alfred Grau Besoli, Seunghwan Yoon, Farid Shirinfar, Sam Gharavi, Michael Boers, Maryam Rofougaran, Enver Adas, Kartik Sridharan