Collapsible, Foldable Or Adjustable Patents (Class 343/915)
  • Patent number: 9057199
    Abstract: A structural insulated building panel with a moisture barrier seal includes a structural insulated panel, a seal section, a first spline-receiving grove, and a second spline-receiving groove. The seal section is extended from a phenolic resin sheet of the structural insulated panel so that the seal section can be positioned in between multiple structural insulated panels in order to prevent moisture penetration. The seal section is adjacently positioned with the second spline-receiving groove of the initial structural insulated panel and extends into the first spline-receiving groove of the adjacent structural insulated panel during the installation of multiple structural insulated panels.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: June 16, 2015
    Inventor: Jerry Gillman
  • Publication number: 20150145726
    Abstract: Apparatus for improving the performance and allowing increased directionality of reflecting-type antenna systems by varying the geometry of the reflecting surface. A reflecting surface is composed of an array of actuated pins which are capable of extending or retracting to alter the overall pattern. An actuator controlling unit has the address of each actuator and is able to extend or retract the pins to the desired degree. The specific pattern which the actuator control unit realizes is determined by the iterative position calculator which utilizes directional inputs from the user and/or inputs from a system which determines the effectiveness of previous pin movements. The apparatus attempts to maximize the received signal by assessing amplitude changes over time and utilizing that information to direct alteration in the reflecting surface for optimal performance.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 28, 2015
    Inventor: Daniel W. Stambovsky
  • Patent number: 9035839
    Abstract: Embodiments disclosed herein relate to diversity receive systems and methods. An antenna system may comprise a reflector and a plurality of feed antennas configured to receive a wireless signal from a common source with directional diversity. A receive system may comprise such antenna system in combination with a plurality of receivers and/or demodulators, and in combination with a combiner and/or controller.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 19, 2015
    Assignee: TROLL SYSTEMS CORPORATION
    Inventors: Julian Scott, Jeff Hopkins
  • Patent number: 9013362
    Abstract: The outdoor antenna includes multiple directors located respectively on a main rod and two assistant rods, and an inner-swing arm and an outer-swing arm fixed on the main rod and coupled with two ends of the assistant rods. When the inner-swing arm and the outer-swing arm are expanded, the assistant rods are fixed on two sides of the main rod; when the inner-swing arm and the outer-swing arm are folded, the assistant rods are positioned in parallel with the main rod. In use, the inner-swing arm and the outer-swing arm are expanded to allow the assistant rods to move toward the two sides of the main rod and maintain in a certain spatial distance to receive as many radio signals as possible. During transportation and storage, the assistant rods can lean against two sides of the main rod, so that occupied space is reduced to achieve usability.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 21, 2015
    Inventor: Kendy Yang
  • Patent number: 8970438
    Abstract: A method of providing an antenna mast for a wireless communication system is presented. The method comprises selecting a lower module and an upper module from a set of modules. This set of modules comprises at least two different lower modules, at least two different upper modules, or at least two different lower modules and at least two different upper modules. The method further comprises assembling the selected lower module and the selected upper module into a mast body of the antenna mast. This mast body forms a supporting structure for an antenna arrangement of the wireless communication system. In assembling the mast body, the method includes the antenna arrangement in the selected upper module and includes in at least one of the selected lower module and the selected upper module a device configured to perform a function other than supporting the antenna arrangement.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 3, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Peter Häger, Anders Röhl
  • Publication number: 20150009085
    Abstract: A reflector for an antenna is formed from a metallized fabric composite material including a first fabric layer, a second fabric layer, and a metallic layer positioned between the first and second fabric layers and secured to each of the first and second fabric layers.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Inventor: Patrick Lawrence
  • Patent number: 8922456
    Abstract: A deployable antenna which has a larger aperture diameter by four-side links provided in at least three stages and which includes: six deployment link mechanisms (20) arranged radially from a central shaft so as to support an outer edge portion of a flexible reflector mirror surface; and one deployment driving mechanism (30) arranged at a lower portion of a center of arrangement of the six deployment link mechanisms, for unfolding the six deployment link mechanisms. Each of the six deployment link mechanisms includes a first four-side link (5), a second four-side link (6), and a third four-side link (7) arranged in an order from a position of the central shaft, around which the six deployment link mechanisms are arranged, toward an outer side of the each of the six deployment link mechanisms so that the each of the six deployment link mechanisms is structured to be foldable in three stages.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 30, 2014
    Assignees: NEC TOSHIBA Space Systems, Ltd., Japan Aerospace Exploration Agency
    Inventors: Minoru Tabata, Kiyoshi Fujii, Kyoji Shintate, Satoru Ozawa
  • Patent number: 8860627
    Abstract: A reconfigurable reflector for electromagnetic waves, comprising: a rigid support element (10) having a front surface (13); an elastically deformable reflective membrane (30) lying over the front surface of said rigid support element; and a plurality of linear actuators (20) for deforming said reflective membrane by operating on predetermined points thereof; wherein said linear actuators are embedded within said rigid support element, and have shafts (22) protruding by the front surface thereof for operating on predetermined points of said elastically deformable reflective membrane. Preferably, the rigid support element comprises a reflector dish having a sandwich structure having a honeycomb core (11) made of CFRP or aluminum, in which the linear actuators are embedded by conventional potting techniques. Antenna system comprising such a reconfigurable reflector, possibly operating as a subreflector (SR), and spacecraft telecommunication.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: October 14, 2014
    Assignee: Agence Spatiale Europeenne
    Inventors: Lucio Gerardo Scolamiero, Marco Sabbadini
  • Patent number: 8849194
    Abstract: Methods and systems for a mesh network utilizing leaky wave antennas (LWAs) are disclosed and may include configuring one or more devices as a mesh network in a wireless device coupled to a plurality of LWAs, and communicating data between said devices via the configured mesh network. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. A plurality of the LWAs may be configured to enable beamforming. The LWAs may comprise microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The plurality of LWAs may be integrated in one or more of: integrated circuits, integrated circuit packages, and printed circuit boards. The devices may be internal to the wireless device. The data may be communicated via the mesh network to devices external to the wireless device.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 30, 2014
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8803761
    Abstract: In the field of antenna reflectors with a deformable reflecting surface, an actuation system, with which such a reflector may be equipped wherein the reflector includes a chassis, a flexible membrane fixed to the chassis, comprises: a support fixed to the chassis, a set of deformation devices, each deformation device including a pusher element adapted to be driven in translation relative to the support along an axis, the pusher element including a part adapted to come into contact with the flexible membrane at a point to deform it, an actuation device adapted to drive the pusher element of one of the deformation devices in translation at the same time, and a selector device adapted to move the actuation device toward each of the deformation devices.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: August 12, 2014
    Assignee: Thales
    Inventors: Yannick Baudasse, Stéphane Vezain
  • Patent number: 8729440
    Abstract: A radio frequency heater is disclosed including a vessel for containing material to be heated and a radio frequency radiating surface. The vessel has a wall defining a reservoir. The radio frequency radiating surface at least partially surrounds the reservoir. The radiating surface includes two or more circumferentially spaced petals that are electrically isolated from other petals. The petals are positioned to irradiate at least a portion of the reservoir, and are adapted for connection to a source of radio frequency alternating current. A generally conical tank or tank segment having a conically wound radio frequency applicator is also contemplated. Also, a method of heating an oil-water process stream is disclosed. In this method a radio frequency heater and an oil-water process stream are provided. The process stream is irradiated with the heater, thus heating the water phase of the process stream.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: May 20, 2014
    Assignee: Harris Corporation
    Inventor: Francis Eugene Parsche
  • Patent number: 8723752
    Abstract: In certain embodiments, a segmented reflector and an antenna having a segmented reflector are disclosed. In certain embodiments, the segments of the reflector are held in side-by-side relationship by the antenna transceiver. In certain other embodiments, the segments of the reflector are held in side-by-side relationship by magnets in each of the segments that are attracted to magnets in adjacent segments. In some embodiments, interengaging male and female detents are provided in the segment endwalls in order to resist shear forces once the segmented reflector is assembled. Other embodiments are also disclosed.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 13, 2014
    Inventor: Gregory L. Strydesky
  • Patent number: 8675715
    Abstract: A high-bandwidth communication modem such as an ultra wideband (UWB) communication modem or a high-giga wideband (HGWB) modem includes an interface configured to transceive data in connection with a host device, a baseband processor configured to process, in a parallel manner, a baseband signal being transceived between the interface and a parallel/serial converter, the parallel/serial converter configured to combine a parallel signal into a serial signal and output the serial signal, and separate a serial signal into a parallel signal and output the parallel signal, a radio frequency (RF) processor configured to reduce a frequency of a received UWB or HGWB signal and transmit the frequency-reduced signal to the parallel/serial converter, and increase a frequency of the serial signal received from the parallel/serial converter and transmit the frequency-increased signal to a directional antenna, and the directional antenna configured to transceive a wireless signal by forming a directional beam and control a
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mun Geon Kyeong, Yun Ho Choi, Woo Yong Lee
  • Patent number: 8654035
    Abstract: There is provided an antenna reflector including at least first and second reflector segments, each having first and second sides. The first and second reflector segments being configured to be connected together wherein the first sides of the first and second reflector segments define a substantially continuous surface of an antenna reflector. A first latch member is attached to the second side of the first reflector segment and a second latch member is attached to the second side of the second reflector segment. Each latch member includes an abutting surface which contacts one another when the first and second reflector segments are connected together. At least one protrusion extends from the abutting surface of the first latch member. There is at least one recess in the abutting surface of the second latch member. The protrusion is received in the recess when the respective abutting surfaces contact one another.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: February 18, 2014
    Assignee: AvL Technologies, Inc.
    Inventors: Michael A. Proffitt, John W. Gurney
  • Patent number: 8633864
    Abstract: An antenna is provided, which is located within an enclosure. The antenna includes one or more arms, where each arm has an electrical length corresponding to an intended frequency band of transmission, and along said length of the arm a source of external loading will have a variable effect. The enclosure includes one or more anticipated points of contact, where a source of external loading will be brought into proximity with said enclosure, and where the one or more arms are constructed and arranged to locate the relatively high impedance areas of the antenna at least a predetermined distance from the one or more anticipated points of interest, and the relatively low impedance areas of the antenna are located more proximate the anticipated points of interest.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 21, 2014
    Assignee: Motorola Mobility LLC
    Inventors: Tadd M. Scarpelli, Eric L. Krenz
  • Patent number: 8616328
    Abstract: A tensegrity apparatus having multiple tensegrity units for the transmission of solitary waves with adjustable profiles into a material or structure, and the detection of such waves from a material or structure.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: December 31, 2013
    Assignee: California Institute of Technology
    Inventors: Chiara Daraio, Fernando Fraternali
  • Patent number: 8558734
    Abstract: A ground based avian radar receive antenna is implemented using a vertically oriented offset parabolic cylindrical antenna. The desired azimuth beamwidth is determined by the width of the parabolic cylinder reflector surface and the desired elevation beamwidth by the height of the parabolic cylinder reflector surface. A vertical array of antenna elements is mounted along the vertical focal line to provide electronic scanning in elevation. Low sidelobe levels are obtained using tapered antenna element illumination. Low cost modular construction with high reflector accuracy is obtained by attaching a thin metal reflector to thin ribs machined or stamped in the shape of the parabolic cylinder reflector surface. The antenna is enclosed in a radome and mechanically rotated 360 degrees in azimuth.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 15, 2013
    Inventor: Gregory Hubert Piesinger
  • Patent number: 8558753
    Abstract: A method for assembly of a segmented reflector antenna, including coupling a central segment upon an antenna mount. Attaching a peripheral segment to a bottom portion of the central segment. Rotating the central segment to present a bottom portion of the central segment without a peripheral segment, and attaching a peripheral segment to the bottom portion. In additional steps, a secondary ring of peripheral segments may be applied, each connected to an outer edge of a peripheral segment connected to the bottom portion of the central segment.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 15, 2013
    Assignee: ASC Signal Corporation
    Inventor: Richard Haight
  • Publication number: 20130265209
    Abstract: The present invention relates to an in-service reconfigurable antenna reflector comprising a rigid support and a membrane, deformable and having radio-electric reflectivity properties. According to the invention, the reflector comprises a plurality of coupling means connecting the rigid support and the membrane, comprising a first link of finger ball joint type connected to the rigid support, and a second link of finger ball joint type connected to the membrane. Each coupling means furthermore comprises a linear actuator, comprising a rotary motor and a screw-nut assembly, connected to the two links of finger ball joint type, and able to generate, in an operational configuration, a translational motion allowing the deformation of the membrane.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Applicants: CENTRE NATIONAL D'ETUDE SPATIALES (CNES), THALES
    Inventors: Jerome BROSSIER, Ludovic SCHREIDER, Serge DEPEYRE, Victorien BELLOEIL, Levi DATASHVILI
  • Publication number: 20130207880
    Abstract: A reflector is provided according to various embodiments. The reflector may include a backing structure having various configurations. The backing structure, for example, can comprise a plurality of trusses, flexible couplings, stiffeners, and crossbeams in any number of arrangements.
    Type: Application
    Filed: August 15, 2012
    Publication date: August 15, 2013
    Applicant: Composite Technology Development, Inc.
    Inventors: Robert Taylor, Dana Turse, Philip N. Keller, Larry Adams
  • Publication number: 20130207881
    Abstract: A deployable antenna reflector includes a surface cable network formed of a plurality of cables coupled to each other in a mesh pattern. The surface cable network includes at least one rigid rod member that reduces a maximum tensile force caused in the surface cable network.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Inventors: Kiyoshi FUJII, Minoru TABATA, Kyoji SHINTATE
  • Patent number: 8508430
    Abstract: An antenna reflector (100, 700) comprising a centrally located hub (120), inner ribs (108) rotatably secured at a proximal end to the hub, outer ribs (110) extendible from the inner ribs, and a guideline truss structure (132, 160) configured to support a flexible antenna reflector surface (122). The inner ribs are rotatable from a stowed position in which they are generally aligned with a central axis of the hub, to a rotated position in which they extend in a radial direction relative to the central axis. The guideline truss structure is secured to each outer rib using standoff cords attached at intermediate locations along a length of the outer rib between opposing ends (116, 118) thereof. The outer ribs are configured to be linearly displaced respectively along an elongated length of the inner ribs from a proximal position adjacent to the hub, to an extended position distal from the hub.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 13, 2013
    Assignee: Harris Corporation
    Inventors: William R. Palmer, Bibb B. Allen, Sr., Angelo Bersani
  • Publication number: 20130201072
    Abstract: A tunable projected artificial magnetic minor (PAMM) includes a plurality of artificial magnetic minor (AMM) cells and a control module. The AMM cells collectively produce an artificial magnetic conductor (AMC) having a geometric shape a distance from a surface of the tunable PAMM for an electromagnetic signal in a given frequency range. The control module is operably coupled to the plurality of AMM cells and provides control information to one or more of the AMM cells to tune at least one of the geometric shape of the AMC and the distance of the AMC from the surface of the tunable PAMM.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 8, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Nicolaos G. Alexopoulos, Alfred Grau Besoli, Chryssoula Kyriazidou
  • Patent number: 8504111
    Abstract: In various embodiments of the present disclosure, an apparatus for wirelessly transmitting or receiving communication signals may include multiple active elements to transmit or receive communication signals wirelessly; and multiple active modules correspondingly coupled to the multiple active elements and configured to cooperate with respective ones of the multiple active elements; in which the respective ones of the multiple active modules include a power amplifier configured to amplify communication signals to be transmitted and a low noise amplifier configured to amplify communication signals received, and in which the respective ones of the multiple active modules further include a first phase shift configured to shift phases of the communication signals to be transmitted and a second phase shift configured to shift phases of the communication signals received. Other embodiments may be described and claimed.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Empire Technology Development LLC.
    Inventor: Jigang Liu
  • Patent number: 8487830
    Abstract: The invention proposes a solution to the problem of installing an antenna with long focal length on a satellite, and, as a non-limiting example, on satellites at a height that is less than the required focal length. It is based, on the one hand, on a reflector stored “inverted and head down”, and, on the other hand, on a deployment movement sequence employing a long arm taken up in the top portion of the reflector via an articulation (1 axis) and a conventional deployment mechanism (1 or 2 axes).
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 16, 2013
    Assignee: Thales
    Inventors: Emmanuel Texier, Eric Boban, Stéphane Ramin, Thierry Longo
  • Patent number: 8480241
    Abstract: A space based occulter is provided. It comprises a base portion and a blanket section extending radially from the base portion. A plurality of starlight blocking petals are attached to the base portion and attached to the blanket section, the petals extending radially from the base portion, each of the petals being hingedly connected to an adjacent petal.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Domenick Tenerelli, Sean McCully, David Putnam
  • Patent number: 8462078
    Abstract: A reflector useful for communications, radar and sensing application in space and on earth includes thin shell gores emanating from a geometric center of the reflector at its hub. Gores are provided in a spiraled pattern and are in elastic connection to said hub and wrapped around their point of convergence at the hub when the reflector is stowed. The gores emanate from the geometric center of the reflector hub at their elastic connection to the hub when they are deployed and operational as a reflector with a point of convergence to promote operation as a reflector. Thin shell gores can have an inner perimeter and outer perimeter, can be provided in a spiraled pattern, and can be interlocked at their outer perimeter, or in-between their inner and outer perimeter, while also remaining in elastic connection at their inner perimeter to said hub.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: June 11, 2013
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventors: Thomas W. Murphey, Jeremy A. Banik, Whitney D. Reynolds, Laura A. Stiles
  • Publication number: 20130076590
    Abstract: In the field of antenna reflectors with a deformable reflecting surface, an actuation system, with which such a reflector may be equipped wherein the reflector includes a chassis, a flexible membrane fixed to the chassis, comprises: a support fixed to the chassis, a set of deformation devices, each deformation device including a pusher element adapted to be driven in translation relative to the support along an axis, the pusher element including a part adapted to come into contact with the flexible membrane at a point to deform it, an actuation device adapted to drive the pusher element of one of the deformation devices in translation at the same time, and a selector device adapted to move the actuation device toward each of the deformation devices.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 28, 2013
    Applicant: THALES
    Inventors: Yannick BAUDASSE, Stéphane VEZAIN
  • Patent number: 8405570
    Abstract: An antenna reflector includes a central segment with a peripheral coupling portion and a plurality of peripheral segments, each provided with a reflector portion and a shield portion. A proximal portion of each shield portion is dimensioned to couple with the peripheral coupling portion, a reflector portion edge of each peripheral segment is dimensioned to couple with adjacent reflector portion edges and a shield portion edge of each peripheral segment is dimensioned to couple with adjacent shield portion edges. The central segment and the reflector portion of the peripheral segments together form a reflector dish. The shield portions together provide a circumferential shield extending from a periphery of the reflector dish along an antenna boresight of the reflector dish.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: March 26, 2013
    Assignee: Andrew LLC
    Inventors: Matthew Lewry, Stephen Simms, Steven Bell
  • Publication number: 20130069849
    Abstract: Reflector systems (10) comprising a reflector (11) formed from rigid panels (14) mounted on a centrally-located hub (12) are provided. The panels (14) can be stowed in a relatively compact manner in which the panels (14) overlap. The panels (14) can translate with a combination of rotational and linear motion so that the panels (14) become disposed in a side by side relationship, thereby deploying the reflector (11) so that the reflector (11) can focus electromagnetic energy incident thereupon.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: HARRIS CORPORATION
    Inventor: Gustavo A. Toledo
  • Patent number: 8384614
    Abstract: Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 26, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Timothy F. Kennedy, Patrick W. Fink, Andrew W. Chu, Gregory Y. Lin
  • Patent number: 8384613
    Abstract: A non-planar surface support structure that is compatible with deployable thin shell reflector segments. The structure is composed of multiple four strut closed loops connected to compliant hinges at the nodes to create an effective surface. The deployed surface shape is determined by the strut lengths (L) and the node locations and the packaged compatibility constraint in which L1+L3?L2?L4 approximately equals zero. Each of the compliant hinges have degrees of freedom such that the compact configuration of the support structure is obtained by the translation of two opposite nodes of each loop upwards and the remaining two nodes downwards in a continuous process until all struts are approximately parallel and tightly bundled and the hinges lock out all degrees of freedom in the deployed configuration.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventors: Thomas W. Murphey, Joseph N. Footdale
  • Patent number: 8378919
    Abstract: An angle adjustment apparatus for a dish antenna comprises a base, a first rotating frame, a second rotating frame, and a second rotation angle adjustment mechanism. The first rotating frame is fixed to the base, and can relatively rotate around the base with a first rotating angle. The second rotating frame is fixed to the first rotating frame, and can relatively rotate around the first rotating frame with a second rotating angle. The second rotation angle adjustment mechanism comprises a first screw rod, a screw nut post, and a second screw rod. One end of the first screw rod is fixed to the first rotating frame, and the other end is equipped with first threads and engaged with the screw nut post. One end of the second screw rod pivots on the second rotating frame, and the other end is equipped with second threads and engaged with the screw nut post. The first threads and second threads have different screw directions, or have the same screw direction but with different thread pitches.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: February 19, 2013
    Assignee: Microelectronics Technology Inc.
    Inventor: Chao Chun Yeh
  • Patent number: 8374660
    Abstract: An apparatus for reducing the electromagnetic interference between two or more co-located antennas is described herein. In one embodiment, the apparatus is positioned proximate to a second antenna for intercepting electromagnetic energy radiated from a first antenna during transmission of a signal. To reduce interference at the second antenna, the apparatus includes a plurality of resonant circuit elements, each being configured to resonate at or near a carrier frequency of the transmitted signal for redirecting at least a portion of the electromagnetic energy away from the second antenna. A method for reducing the electromagnetic interference between two or more antennas coupled to a wireless communication device is also disclosed herein.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: February 12, 2013
    Assignee: Motion Computing, Inc.
    Inventors: Todd W. Steigerwald, Jerry Mayfield
  • Publication number: 20120229355
    Abstract: A reconfigurable reflector for electromagnetic waves, comprising: a rigid support element (10) having a front surface (13); an elastically deformable reflective membrane (30) lying over the front surface of said rigid support element; and a plurality of linear actuators (20) for deforming said reflective membrane by operating on predetermined points thereof; wherein said linear actuators are embedded within said rigid support element, and have shafts (22) protruding by the front surface thereof for operating on predetermined points of said elastically deformable reflective membrane. Preferably, the rigid support element comprises a reflector dish having a sandwich structure having a honeycomb core (11) made of CFRP or aluminum, in which the linear actuators are embedded by conventional potting techniques. Antenna system comprising such a reconfigurable reflector, possibly operating as a subreflector (SR), and spacecraft telecommunication.
    Type: Application
    Filed: September 24, 2007
    Publication date: September 13, 2012
    Inventors: Lucio Gerardo Scolamiero, Marco Sabbadini
  • Patent number: 8259033
    Abstract: A shape-memory reflector is provided according to various embodiments. The shape-memory reflector may comprise any of various shapes; for example, the shape-memory reflector may comprise an off-axis paraboloid or a non-asymmetric shape. The shape-memory reflector may include a plurality of panel shape-memory stiffeners and a plurality of longitudinal stiffeners. In a stowed configuration, the shape-memory reflector is stowed with reversing bends in the panel shape-memory stiffeners. In a deployed state, the panel shape-memory stiffeners may be unfolded and/or extended. The reflector transitions between the stowed and deployed states by heating the panel shape-memory stiffeners. Various methods for stowing and deploying the shape-memory reflector are also disclosed.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 4, 2012
    Assignee: Composite Technology Development, Inc.
    Inventors: Robert Taylor, Rory Barrett, Will Francis, Dana Turse, Phil Keller, Larry Adams
  • Patent number: 8253638
    Abstract: An easily transportable multiband antenna array. The antenna array is fabricated on a multi-sided structure, such as a four-sided cube, made from a wire frame and fabric. The multi-sided structure is constructed so that it may be folded by first folding the faces against each other, and then twisting them to form a stack of loops. The antenna elements are fabricated on the faces, and comprise at least a loop antenna around the perimeter of each face, and a bow-tie antenna attached to each face. The antenna elements are fabricated and attached so that they do not inhibit the folding of the structure.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: August 28, 2012
    Assignee: Southwest Research Institute
    Inventors: Patrick J. Siemsen, Robert R. King
  • Publication number: 20120206299
    Abstract: Methods and systems for establishing a non-line of sight millimeter wave connection that include a transmitter unit having beam-steering capability, a receiver unit having beam-steering capability, and a reflecting unit in a position having a line-of-sight path to the transmitter unit and the receiver unit. The reflecting unit includes an attachment mechanism configured to attach to a mounting point on an object or surface, a reflecting surface that is reflective to millimeter-wave radiation, and an adjustable pivot connected between the attachment mechanism and the reflecting surface configured to permit directional positioning of the reflecting surface relative to the attachment mechanism.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Alberto Valdes-Garcia
  • Patent number: 8218228
    Abstract: A two-terminal, variable capacitance device is described that is constructed by connecting multiple MEMS devices having different actuation or “pull in” voltages in parallel.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 10, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Je-Hsiung Lan, Evgeni Gousev, Ernest Tadashi Ozaki
  • Publication number: 20120146873
    Abstract: A reflector useful for communications, radar and sensing application in space and on earth includes thin shell gores emanating from a geometric center of the reflector at its hub. Gores are provided in a spiraled pattern and are in elastic connection to said hub and wrapped around their point of convergence at the hub when the reflector is stowed. The gores emanate from the geometric center of the reflector hub at their elastic connection to the hub when they are deployed and operational as a reflector with a point of convergence to promote operation as a reflector. Thin shell gores can have an inner perimeter and outer perimeter, can be provided in a spiraled pattern, and can be interlocked at their outer perimeter, or in-between their inner and outer perimeter, while also remaining in elastic connection at their inner perimeter to said hub.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Thomas W. Murphey, Jeremy A. Banik, Whitney D. Reynolds, Laura A. Stiles
  • Patent number: 8169375
    Abstract: A stabilizing mechanism and method for a reflector antenna, in a mobile satellite system on a transport, such as a vehicle, for substantially minimizing damage to the reflector antenna when stowed. The stabilizing mechanism uses a stabilizing surface and a pair of stabilizing devices connected on opposite sides of the reflector antenna to provide a pre-load separation distance between a stabilizing surface and the reflector antenna when the reflector antenna is stowed. The pre-loaded separation minimizes any movement of the reflector antenna towards the stabilizing surface during movement of the transport or in adverse environmental conditions.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 1, 2012
    Assignee: Winegard Company
    Inventor: Timothy John Conrad
  • Publication number: 20120092225
    Abstract: A deformable reflecting membrane includes, in thickness, an alternating superposition of layers of conductive elastomer and at least two reinforcing layers, each reinforcing layer being divided up into individual patches spaced apart from one another and distributed periodically in the plane of the reinforcing layer. The membrane is applicable notably to the space domain.
    Type: Application
    Filed: February 25, 2011
    Publication date: April 19, 2012
    Applicants: CENTRE NATIONAL D'ETUDES SPATIALES, THALES
    Inventors: Ludovic SCHREIDER, Serge DEPEYRE, Victorien BELLOEIL, Philippe LEPELTIER, Jean-Philippe TAISANT
  • Patent number: 8021122
    Abstract: Apparatus for maintaining differential internal fluid pressure in a dual fluid chamber object where it is desired for one chamber to have greater internal pressure than the other includes a sensor for generating a differential signal indicating the difference in pressure between the chambers, a pressure sensor for generating a pressure signal indicating the pressure inside the chamber desired to have less pressure, a comparator for generating a first output when the differential signal is less than a predetermined minimum differential value, a second comparator for generating a second output when the pressure signal is less than a predetermined minimum pressure value, where the predetermined minimum pressure value biased by the first output, and blowers coupled to the respective chambers and responsive to said first and second outputs respectively.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: September 20, 2011
    Assignee: GATR Technologies
    Inventors: William R. Clayton, Paul A. Gierow
  • Patent number: 8013798
    Abstract: According to the invention, a system for aiming an antenna in a direction below-horizon is disclosed. The system may include a support member, a spherical structure, and at least one arm. The support member may be coupled with a surface. The spherical structure may be coupled with the support member and the spherical structure may be at least partially spherical in shape about a central point. The at least one arm may be rotatably coupled with the spherical structure. The at least one arm may be coupled with the antenna. The at least one arm may at least partially defines a void. And the support member may be at least partially disposed within the void when the antenna is aimed in the direction below-horizon.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: September 6, 2011
    Assignee: Viasat, Inc.
    Inventor: E. Mitchell Blalock
  • Publication number: 20110187627
    Abstract: An antenna reflector (100, 700) comprising a centrally located hub (120), inner ribs (108) rotatably secured at a proximal end to the hub, outer ribs (110) extendible from the inner ribs, and a guideline truss structure (132, 160) configured to support a flexible antenna reflector surface (122). The inner ribs are rotatable from a stowed position in which they are generally aligned with a central axis of the hub, to a rotated position in which they extend in a radial direction relative to the central axis. The guideline truss structure is secured to each outer rib using standoff cords attached at intermediate locations along a length of the outer rib between opposing ends (116, 118) thereof. The outer ribs are configured to be linearly displaced respectively along an elongated length of the inner ribs from a proximal position adjacent to the hub, to an extended position distal from the hub.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Applicant: Harris Corporation
    Inventors: William R. Palmer, Bibb B. Allen, SR., Angelo Bersani
  • Patent number: 7969370
    Abstract: A fluidic antenna is described, using an electromagnetic energy coupler, a non-metallic container coupled to the electromagnetic energy coupler, a fluid having charged particles moving through the non-metallic container at a predetermined rate, and a charge focuser disposed about the non-metallic container, wherein the electromagnetic energy coupler is configured to couple energy between the fluid and at least one of a transmitter and receiver, and the charge focuser is configured to adjust a cross sectional area of charged particles in the fluid to result in a fluid characteristic impedance that approaches that of a surrounding medium, thereby enabling at least one of launching and receiving electromagnetic energy.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: June 28, 2011
    Assignee: The United States of America as repesented by the Secretary of the Navy
    Inventors: Vincent V. Dinh, Eric W. Hendricks
  • Patent number: 7965256
    Abstract: An antenna reflector provided with a plurality of segments, each of the segments provided with a plurality of end faces positioned along surfaces of the segments. The end faces of adjacent segments arranged in lateral and radial pairs, the lateral and radial pairs coupled together. At least one of the end faces of the radial pairs and of the lateral pairs extending proud of the respective surfaces, whereby when the radial pairs and the lateral pairs are connected, the adjacent segments contact one another only via the radial and lateral pairs.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 21, 2011
    Assignee: ASC Signal Corporation
    Inventor: Richard Haight
  • Publication number: 20110122047
    Abstract: A method of manufacturing an antenna comprising: providing a millimeter wave (MMW) antenna attached to a signal pad on an integrated circuit mounted on a substrate, and adjusting one or more parameters of the antenna to conform to predetermined desired thresholds, levels or ranges, wherein the adjustment is selected from the group consisting of: locating a conducting or dielectric object at a desired tuner location in proximity to the antenna to tune the central signal frequency, locating a conducting reflector at a desired reflector location in proximity to the antenna to tune the radiation direction or pattern, and selecting a conducting patch or object as a radiator/detector element to modify the bandwidth. Also a millimeter wave (MMW) antenna.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 26, 2011
    Applicant: SONY CORPORATION
    Inventors: Yugang Ma, Kenichi Kawasaki
  • Patent number: 7937983
    Abstract: A curved surface forming apparatus includes a first member to be curved; a second member which is placed with a distance from the first member and holds the first member; and a pressurizing mechanism which pressurizes the first member and the second member to curve at least a part of the first member toward at least the second member.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 10, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Kenichi Yoshimura, Kouji Terasawa
  • Patent number: RE43498
    Abstract: An adaptive reflector antenna includes an adaptive reflector and a mechanism for simultaneously effecting feed rotation and shape change for the adaptive reflector so as to maintain antenna performance with large scan angles while simultaneously reducing weight, complexity, and cost.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: July 3, 2012
    Assignee: The Aerospace Corporation
    Inventor: Ivan Bekey