Liquid Crystal Diffraction Element Patents (Class 349/201)
  • Patent number: 9055248
    Abstract: A lens unit (120) shows longitudinal chromatic aberration and focuses an imaged scene into a first image for the infrared range in a first focal plane and into a second image for the visible range in a second focal plane. An optical element (150) manipulates the modulation transfer function assigned to the first and second images to extend the depth of field. An image processing unit (200) may amplify a modulation transfer function contrast in the first and second images. A focal shift between the focal planes may be compensated for. While in conventional approaches for RGBIR sensors contemporaneously providing both a conventional and an infrared image of the same scene the infrared image is severely out of focus, the present approach provides extended depth of field imaging to rectify the problem of out-of-focus blur for infrared radiation. An imaging system can be realized without any apochromatic lens.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: June 9, 2015
    Assignee: SONY Corporation
    Inventors: Muhammad Atif, Muhammad Siddiqui, Christian Unruh, Markus Kamm
  • Patent number: 8988649
    Abstract: The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 24, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung Jun Jeong, Kyung-Ho Jung, Seung-Hoon Lee, Hee-Seop Kim, Hae-Young Yun, Hwi Kim, Il-Joo Kim, Kyung-Bae Kim, Jung-Hwan Yi
  • Patent number: 8934078
    Abstract: A multiple glazing with variable scattering by liquid crystals includes first and second flat float glass sheets sealed on the edge of their internal faces by a sealing joint, in particular made of a given sealing material, in particular essentially organic, first and second electrodes, and a layer of liquid crystals with an average thickness E between 15 and 60 ?m inclusive of these values and incorporating spacers. The thickness A of each of the first and second glass sheets is less than or equal to 5.5 mm, and each of the internal faces coated with the first and second electrodes has a dioptric defect score, expressed in millidioptres, of less than 12E/15 where the thickness E of the liquid crystals is in ?m.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 13, 2015
    Assignee: Cardinal IG Company
    Inventors: Patrick Gayout, René Poix, Elodie Bouny, Jingwei Zhang
  • Patent number: 8902380
    Abstract: A grating sheet, a LCD device and methods for manufacturing the grating sheet and a liquid crystal display panel are provided. The grating sheet comprises a plurality of primary color gratings in parallel, each of which comprises a red R sub-grating, a green G sub-grating and a blue B sub-grating in parallel, and each sub-grating comprises an opening area and a reflective region disposed around the opening area and corresponds to a pixel unit on a sub-array substrate. The grating sheet, the liquid crystal display panel and methods for manufacturing the grating sheet and a liquid crystal display panel may be applicable to a system with a liquid crystal display.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventor: Linlin Lu
  • Patent number: 8873019
    Abstract: The present disclosure provides a detecting device of a birefringent lens grating. The detecting device includes a projection pattern disposed adjacent to the birefringent lens grating; an illuminating light source for projecting light onto the projection pattern and the birefringent lens grating; an image capturing device for capturing the light out from the birefringent lens grating and obtaining a projection pattern image of the projection pattern; and a controller for comparing the projection pattern image with a reference to determine a refractive index matching degree of the birefringent lens grating. The present disclosure further provides a detecting method, a manufacture method and a manufacture device of the birefringent lens grating.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: October 28, 2014
    Assignee: Superd Co. Ltd.
    Inventor: Bin Yu
  • Patent number: 8865275
    Abstract: A light absorption anisotropic film, wherein content of a liquid crystalline non-colorable low molecular weight compound is 30% by mass or less; and which is obtained by fixing the alignment of a dichroic dye composition comprising at least one type of azo-based dichroic dye having nematic liquid crystallinity; and shows a diffraction peak derived from a periodic structure in a direction parallel to the alignment axis on measurement of X-ray diffraction. The light absorption anisotropic film is high in dichroism.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Fujifilm Corporation
    Inventors: Shinichi Morishima, Nobutaka Iwahashi
  • Patent number: 8854596
    Abstract: An active optical device includes a substrate; a plurality of refractive index variable regions formed on the substrate; and a voltage applier which applies an electric field to the plurality of refractive index variable regions.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-il Kim, Jun-hee Choi
  • Patent number: 8827464
    Abstract: A projection display device includes: a light source unit including light sources emitting light in a plurality of colors, condenser lenses and a color combining optical element; a total reflection prism that totally reflects a combined light flux from the color combining optical element so as to be guided to an image forming unit; and a projection lens. At least one of; an entry surface of the color combining optical element through which substantially parallel light fluxes from the condenser lenses enter, an exit surface of the color combining optical element through which the combined light flux exists, and an entry surface of the total reflection prism through which the combined light flux enters, is formed as a free curved surface where a shape of a section of the combined light flux is altered so as to be matched with a shape of an outline of the display area.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: September 9, 2014
    Assignee: Nikon Corporation
    Inventor: Aiko Namikawa
  • Patent number: 8817208
    Abstract: A display apparatus and a liquid crystal display device are provided. The display apparatus comprises a display device for displaying an image and a diffractive optical element. The diffractive optical element comprises pixel unit regions. Each of the pixel unit regions has a long pixel side and a short pixel side adjacent to each other. The diffractive optical element is disposed on a light emitting side of the display device and comprises first grating regions and second grating regions. The first grating regions have a first diffraction grating. The second grating regions have a second diffraction grating. An azimuth angle of the first diffraction grating is different from an azimuth angle of the second diffraction grating.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: August 26, 2014
    Assignee: Chi Mei Materials Technology Corporation
    Inventors: Wang-Yang Li, Ting-I Wu
  • Publication number: 20140211145
    Abstract: A cycloidal diffractive waveplate (50) comprising first and second substrate layers (52, 54), a liquid crystal layer (60C, 60H) provided between the first and second substrate layers, and transparent positive electrodes (56) and transparent negative electrodes (58) provided on the first substrate layer. The liquid crystal layer has a diffractive state (60C) in which the optical axes of the liquid crystal molecules are periodically rotated across a plane of the waveplate and a non-diffractive state (60H) in which the optical axes of the liquid crystal molecules are all orientated in the same direction in the plane of the waveplate. The electrodes (56, 58) are arranged in an alternating series, such that when an electric voltage is applied to the electrodes an electric field is produced in the plane of the waveplate and the liquid crystal layer is switched from the diffractive state to the non-diffractive state. A method of manufacturing the cycloidal diffractive waveplate is also provided.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: U.S. Government as Represented by the Secretary of the Army
    Inventors: Nelson V. Tabirian, Sarik R. Nersisyan, Brian R. Kimball, Diane M. Steeves
  • Patent number: 8755024
    Abstract: The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: June 17, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung Jun Jeong, Kyung-Ho Jung, Seung-Hoon Lee, Hee-Seop Kim, Hae-Young Yun, Hwi Kim, Il-Joo Kim, Kyung-Bae Kim, Jung-Hwan Yi
  • Patent number: 8698982
    Abstract: A liquid crystal device includes a first substrate and a second substrate that are arranged so as to face each other, a liquid crystal layer that is pinched between the first substrate and the second substrate, one pair of polarizers that are arranged on both outer sides of the first substrate and the second substrate, a first optical element having a polarization separation function that is disposed in at least one spot of the first substrate, and a display area that contributes to display. The first optical element is arranged outside the display area.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 15, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Yutaka Tsuchiya, Takumi Seki
  • Patent number: 8686994
    Abstract: A full-screen 3D image display device provides a dynamic liquid crystal parallax barrier device for solving a 3D image resolution deterioration problem caused by view separation of a multi-view 3D image displayed by a conventional parallax barrier, and achieves the purpose of displaying a multi-view 3D image with a full-screen image resolution through a multi-view image dynamic combination and display procedure and a barrier electrode dynamic driving procedure.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 1, 2014
    Assignee: Unique Instruments Co., Ltd
    Inventor: Ming-Yen Lin
  • Patent number: 8681184
    Abstract: A display unit for binocular representation of a multicolor image including a control unit triggering an imaging element such that the imaging element generates in a temporal successive manner the image to be displayed for a first beam path and a second beam path as a first image and second image, respectively. The images are generated in a pre-distorted manner, opposite of the chromatic aberration of the respective beam path, such that the chromatic aberration generated in the respective beam path is compensated when the first and second image is displayed. The display unit includes a switching module which operates in temporal synchrony with the first and second image being generated, such that a user can see the first image only via the first beam path and the second image only via the second beam path.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 25, 2014
    Assignee: Carl Zeiss AG
    Inventors: Markus Seesselberg, Johannes Ruoff
  • Patent number: 8681423
    Abstract: A light modulator includes a light guide to guide light, a diffraction grating at a surface of the light guide, and a fluid having a refractive index substantially matched to a refractive index of the diffraction grating. The diffraction grating is to couple out a portion of guided light from the light guide using diffractive coupling. The index-matched fluid is to be selectively moved both into contact with the diffractive grating to defeat the diffractive coupling and out of contact with the diffraction grating to facilitate the diffractive coupling to modulate the coupled out guided light.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: March 25, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gary Gibson, David A Fattal
  • Publication number: 20140071394
    Abstract: Provided is an optical diffraction element that restricts overall thickness of the element while maintaining strength. The optical diffraction element comprises a substrate; an orientation layer that is formed on one surface of the substrate and includes anisotropic polymers that are oriented perpendicular to or inclined relative to a surface of the substrate in at least a partial region of the orientation layer; and a liquid crystal layer formed on the orientation layer. The liquid crystal layer includes a plurality of orientation patterns that are formed periodically and include liquid crystal molecules having different orientation directions, and the orientation direction for at least some of the orientation patterns is perpendicular to or inclined relative to the surface of the substrate, as a result of aligning with the orientation of the orientation layer formed on a bottom surface of the orientation patterns.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: ARISAWA MFG. CO., LTD.
    Inventors: Yasuaki UMEZAWA, Kenichi WATABE
  • Publication number: 20140016081
    Abstract: A light diffraction element comprising a transparent substrate and a first orientation layer that is formed on one surface of the substrate and includes anisotropic polymers and a first pattern of an orientation direction arranged periodically in a first direction along the primary plane of the substrate. The first pattern includes three or more small regions that are arranged in the first direction and in which the orientation direction of the polymers included in the first orientation layer are different from each other, and generates diffracted light as a result of interference between light passed respectively through the three or more small regions.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 16, 2014
    Applicant: ARISAWA MFG. CO., LTD.
    Inventors: Yuichi KAKUBARI, Yasuaki UMEZAWA, Kenichi WATABE
  • Patent number: 8587734
    Abstract: An adaptive liquid crystal lens system comprising a first substrate assembly, a second substrate assembly having a continuous phase profile, and a liquid crystal layer disposed between the first and second substrate assemblies. The first substrate assembly includes a first transparent substrate, an alignment layer, and a first conductive layer. The first conductive layer is disposed on the bottom surface of the first transparent substrate and adjacent to the top surface of the alignment layer. The second substrate assembly includes a second transparent substrate, a lens having a grooved surface, and a second conductive layer. The second conductive layer is a continuous layer adjacent to the lens. The liquid crystal layer is received in the grooves of the lens, and is adjacent to the bottom surface of the alignment layer. The alignment layer causes the liquid crystal material in the liquid crystal layer to be in a homeotropic state.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 19, 2013
    Assignee: The Curators of the University of Missouri
    Inventor: Guoqiang Li
  • Publication number: 20130300997
    Abstract: There is provided a device for reducing laser speckle comprising: a first transparent substrate; a second transparent substrate; an SBG sandwiched between said substrates; and transparent electrodes applied to said substrates. The first substrate is optically coupled to a laser source. The face of the second substrate in contact with the SBG is configured as an array of prismatic elements.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern
  • Patent number: 8564756
    Abstract: An optical system includes at least one lens and a liquid crystal optical element. The liquid crystal optical element is constructed so that a first liquid crystal lens and a second liquid crystal lens are oppositely arranged so that orientation directions cross at right angles with each other in a plane perpendicular to the optical axis, a voltage applied to the liquid crystal optical element is controlled and a shift of a focal position relative to incident light from a different object point is corrected, and when the liquid crystal optical element does not have a ray deflecting action, a far object point is brought into focus, while when the liquid crystal optical element has the ray deflecting action, a near object point is brought into focus.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: October 22, 2013
    Assignee: Olympus Corporation
    Inventor: Keiichi Kuba
  • Patent number: 8553197
    Abstract: A variable optical device for controlling the propagation of light has a liquid crystal layer (1), electrodes (4) arranged to generate an electric field acting on the liquid crystal layer, and an electric field modulation layer (3,71) arranged between the electrodes and adjacent the liquid crystal layer for spatially modulating said electric field in a manner to control the propagation of light passing through said optical device. The electric field modulation layer has either an optical index of refraction that is essentially spatially uniform, or a polar liquid or gel, or a very high low frequency dielectric constant material having a dielectric constant greater than 20, and preferably greater than 1000.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 8, 2013
    Assignee: Universite Laval
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan
  • Patent number: 8537310
    Abstract: A liquid crystal device includes a first polarization grating (101), a second polarization grating (102), and a liquid crystal layer (103). The first polarization grating (101) is configured to polarize and diffract incident light (190) into first and second beams (195,196) having different polarizations and different directions of propagation relative to that of the incident light (190). The liquid crystal layer (103) is configured to receive the first and second beams (195,196) from the first polarization grating (101). The liquid crystal layer (103) is configured to be switched between a first state that does not substantially affect respective polarizations of the first and second beams (195,196) traveling therethrough, and a second state that alters the respective polarizations of the first and second beams (195,196) traveling therethrough.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: September 17, 2013
    Assignee: North Carolina State University
    Inventors: Michael James Escuti, Chulwoo Oh, Ravi Komanduri, Brandon L. Conover, Jihwan Kim
  • Patent number: 8523354
    Abstract: Aspects of the present invention provide an electro-active lens and method for manufacturing the same that encapsulates liquid crystal using solid transparent optical material using an improved liquid crystal seal feature. The seal feature greatly reduces the visibility of the liquid crystal seal feature in an assembled electro-active lens. The seal feature is also structurally robust such that the electro-active lens can be processed to fit a spectacle frame without disturbing containment of the liquid crystal and without disrupting electrical connectivity to the lens used to alter the refractive index of the liquid crystal, thereby ensuring fabrication of a commercially viable electro-active lens.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: September 3, 2013
    Assignee: PixelOptics Inc.
    Inventors: Joshua N. Haddock, William Kokonaski, Roger Clarke, Philip Rawlins, Peter Crossley, James John
  • Publication number: 20130201094
    Abstract: This document describes various apparatuses embodying, and techniques for implementing, a virtual image device. The virtual image device includes a projector and a lens configured to generate a virtual image as well as two diffraction gratings, substantially orthogonally-oriented to each other, that act to increase a field-of-view of the virtual image. The virtual image device can be implemented as a pair of eyeglasses and controlled to generate the virtual image in front of lenses of the eyeglasses so that a wearer of the eyeglasses, looking through the lenses of the eyeglasses, sees the virtual image.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: Microsoft Corporation
    Inventors: Adrian Travis, Jaron Z. Lanier, Joel S. Kollin
  • Patent number: 8488098
    Abstract: A phase-type diffraction device includes a substrate having a front surface and a solidified liquid crystal layer formed on the front surface of the substrate and constituted by a continuous film containing at least a liquid crystal compound. The solidified liquid crystal layer is constituted by first, second and third regions arranged periodically, the third region being interposed between the first region and the second region. The first region is optically anisotropic and the second region is optically isotropic, the third region is not optically isotropic, a degree of orientation of mesogens of the liquid crystal compound being lower than that of the first region. An in-plane average refractive index ni of the second region is different from an in-plane average refractive index na of the first region and an in-plane average refractive index nm of the third region is between ni and na.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: July 16, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Sosuke Akao, Takeshi Itoi
  • Patent number: 8488090
    Abstract: A backlight unit including a light source; and a liquid crystal panel. The liquid crystal panel includes a first substrate which guides light incident from the light source disposed at at least one side of the first substrate; a transparent electrode disposed on a surface of the first substrate; a second substrate; a reflective electrode disposed on a surface of the second substrate facing the transparent electrode; a liquid crystal layer disposed between the transparent electrode and the reflective electrodes; and a transparent film disposed between the transparent electrode and the reflective electrodes, the transparent film including a surface contacting the liquid crystal layer and patterned with grooves or ribs , and having a refractive index corresponding to at least one of an ordinary refractive index and an extraordinary refractive index of liquid crystals of the liquid crystal layer.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sergey Shestak, Kyung-hoon Cha
  • Patent number: 8441726
    Abstract: Light from an optical fiber is incident on a frequency dispersion element. The frequency dispersion element disperses the incident light into light beams in different directions according to their frequencies and directs the dispersed light beams to a lens. The lens develops the incident light beams over an xy plane according to their frequencies in a strip-like form. A frequency selective element has pixels arranged in a frequency dispersion direction and brings pixels located at positions corresponding to the frequency to be selected into a reflective state. A light beam selected by the frequency selective element is emitted from an optical fiber through the same path. By changing reflection characteristics of the frequency selective element according to each pixel, optical filter characteristics can be desirably changed so as to achieve change of passband width and frequency shift.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 14, 2013
    Assignee: Santec Corporation
    Inventor: Yasuki Sakurai
  • Patent number: 8436976
    Abstract: To provide a small-size display device of a simple structure which can perform both of superimpose display and finder field-of-view control.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 7, 2013
    Assignee: Nikon Corporation
    Inventor: Hiroyuki Koishi
  • Publication number: 20130107195
    Abstract: A light absorption anisotropic film, wherein content of a liquid crystalline non-colorable low molecular weight compound is 30% by mass or less; and which is obtained by fixing the alignment of a dichroic dye composition comprising at least one type of azo-based dichroic dye having nematic liquid crystallinity; and shows a diffraction peak derived from a periodic structure in a direction parallel to the alignment axis on measurement of X-ray diffraction. The light absorption anisotropic film is high in dichroism.
    Type: Application
    Filed: March 28, 2011
    Publication date: May 2, 2013
    Applicant: Fujifilm Corporation
    Inventors: Shinichi Morishima, Nobutaka Iwahashi
  • Patent number: 8427725
    Abstract: The present invention relates to a light modulating device, comprising a SLM and a pixelated optical element, in which a group of at least two adjacent pixels of the SLM in combination with a corresponding group of pixels in the pixelated optical element form a macropixel, the pixelated optical element being of a type such that its pixels comprise a fixed content, each macropixel being used to represent a numerical value which is manifested physically by the states of the pixels of the SLM and the content of the pixels of the pixelated optical element which form the macropixel.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 23, 2013
    Assignee: Seereal Technologies S.A.
    Inventors: Gerald Futterer, Bo Kroll, Steffen Buschbeck
  • Patent number: 8416371
    Abstract: The wire grid type polarization device includes a substrate, and a metal layer formed on one face of the substrate in a substantially stripe shape in a plan view, a first dielectric layer provided on two side faces opposite to each other among a plurality of side faces of the metal layer and in a top part of the metal layer, and a second dielectric layer provided on the first dielectric layer. A substrate side end portion of the second dielectric layer is located between the one surface of the substrate and the top part of the first metal layer.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 9, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Yoshitomo Kumai
  • Patent number: 8389074
    Abstract: Microstructured optical films, assemblies of films including at least one microstructured optical film, and (e.g. illuminated) display devices including a single microstructured optical film or assembly.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 5, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Clinton L. Jones, Brant U. Kolb, David B. Olson, Emily S. Goenner, Shandon D. Hart, John T. Cowher
  • Patent number: 8384861
    Abstract: A liquid crystal display (LCD) comprises a light source; a light diffractor over the light source configured to diffract light received from the light source; a liquid crystal diffraction grating over the light diffractor and between liquid crystal pixel structures comprising a plurality of liquid crystal pixels; the liquid crystal diffraction grating has a changed diffraction index in response to application of a voltage differential across the diffraction grating, and when having the changed diffraction index aligns diffracted light received from the light diffractor into aligned light directed toward the liquid crystal pixel structure. An LCD may comprise a plurality of liquid crystal pixels each comprising a reflective part and a transmissive part, the reflective part of at least some of the plurality of liquid crystal pixels comprising a retroreflector configured to reflect at least some light rays, received from an external light source, toward the external light source.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 26, 2013
    Assignee: Pixel Qi Corporation
    Inventor: Mary Lou Jepsen
  • Patent number: 8358400
    Abstract: A method of fabricating a switchable liquid crystal polarization grating includes creating a degenerate planar anchoring condition on a surface of a reflective substrate. An alignment layer may be formed on a transmissive substrate and may be patterned to create a periodic alignment condition therein. The transmissive substrate including the patterned alignment layer thereon may be assembled adjacent to the surface of the reflective substrate including the degenerate planar anchoring condition thereon to define a gap therebetween. A liquid crystal layer is formed on the surface of the reflective substrate including the degenerate planar alignment condition. The liquid crystal layer may be formed in the gap directly on the alignment layer such that molecules of the liquid crystal layer are aligned based on the periodic alignment condition in the alignment layer. Related fabrication methods and polarization gratings are also discussed.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: January 22, 2013
    Assignee: North Carolina State University
    Inventor: Michael James Escuti
  • Publication number: 20120314181
    Abstract: A patterned retardation film including a base substrate, a patterned resin layer and a liquid crystal layer is provided. The patterned resin layer having plurality of first areas and a plurality of second areas is disposed on the base substrate. The combination of the first and second areas is a grating-like stripe structure. The patterned resin layer includes an aligning micron structure. The aligning micron structure includes a plurality of first sub micron grooves and a plurality of second sub micron grooves respectively located in the first areas and the second areas. The liquid crystal layer is disposed on the patterned resin layer and aligned with the aligning micron structure. The liquid crystal layer disposed above the first areas provides a first phase retardation. The liquid crystal layer disposed above the second areas provides a second phase retardation.
    Type: Application
    Filed: October 26, 2011
    Publication date: December 13, 2012
    Applicant: BENQ MATERIALS CORP.
    Inventors: Fung-Hsu Wu, Lung-Hai Wu
  • Patent number: 8319937
    Abstract: An alignment layer may align molecules of a liquid crystalline material to a surface of a substrate having a diffractive optical power region using a nonlinear alignment. The alignment layer may align the molecules of the liquid crystalline material in one of a tangential alignment, a piecewise tangential alignment, a perpendicular alignment, a piecewise perpendicular alignment, a continuous intra-zone alignment, or a piecewise continuous intra-zone alignment. The nonlinear alignment may result in optimal or near optimal alignment of the liquid crystalline material thereby resulting in improved optics and fewer vision compromises.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 27, 2012
    Assignee: PixelOptics, Inc.
    Inventors: Roger Clarke, Joshua N. Haddock, William Kokonaski
  • Patent number: 8305527
    Abstract: A color separation system is disclosed, which comprises: a backlight source, being highly collimated and used for providing an incident beam; a color separation module, formed with a first color separation film for separating the incident beam basing on wavelength while deflecting the optical paths of the resulting split beams; and a beam splitting module, being configured with at least one beam splitting plate and a liquid crystal layer; wherein, the at least one beam splitting plate is used for converging the beams from the color separation module while deflecting the optical paths thereof for enabling those to be discharged thereout following a normal direction of a light emitting surface of the backlight source.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Hung Lee, Hui-Hsiung Lin, Jen-Hui Tsai, Yu-Nan Pao, Chin-Ju Hsu
  • Patent number: 8300206
    Abstract: The present invention provides an electro-optic unit. A lens unit disposed at an upper portion of a display panel has a plurality of lens part. An electro-optic unit is disposed between a display panel and a lens unit, and includes an electro-optic material layer formed as a graded refractive index lens in an electric field. A display device shows a two-dimensional and a three-dimensional image according to a mode of the electro-optic unit. A driving part may form the graded refractive index lens to have the same pitch as the pitch of the lens part. The graded refractive index lens may be formed as a convex lens or a Fresnel lens. The electro-optic unit is displayed to form the Fresnel lens. A driving method enhancing mode conversion velocity of the electro-optic unit is displayed.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: October 30, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-Woon Kim, Hee-Seop Kim, Hae-Young Yun, Jiangang Lu, Kyung-Ho Jung, Seung-Hoon Lee
  • Patent number: 8300512
    Abstract: A liquid crystal element includes: a transparent substrate; and a liquid crystal layer including: a liquid crystal material; and a concavo-convex portion including periodic concaves and convexes, wherein the concavo-convex portion is aligned so that a longitudinal direction of liquid crystal molecules that are positioned on a side of the transparent substrate and on a concavo-convex surface that is an interface of the concavo-convex portion substantially becomes a vertical direction with respect to a concavo-convex surface on the side of the transparent substrate, or a longitudinal direction of liquid crystal molecules that are positioned on a side, in which a medium is disposed and which is opposite to the transparent substrate, and on the concavo-convex surface that is the interface of the concavo-convex portion substantially becomes the vertical direction with respect to a concavo-convex surface on the side, in which the medium is disposed, to form a diffraction grating.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 30, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yukihiro Tao, Kenichi Yuyama
  • Patent number: 8294972
    Abstract: A display device may include a substrate, a thin film layer formed on the substrate and/or having a light absorptance that varies according to an electric field applied to the thin film layer, and/or electrodes disposed to apply the electric field to the thin film layer and/or configured to change the electric field applied to the thin film layer.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co, Ltd.
    Inventor: Hyun-jong Chung
  • Patent number: 8243044
    Abstract: Systems and methods for detecting a position of an object in a sensing region are disclosed. One system includes a position sensor having an opaque capacitive proximity sensor, a light source, and a light conductor coupled to the light source and at least partially disposed over the opaque sensor, the light conductor configured to transmit at least a portion of the light from the light source to generate driven light effects in the sensing region. The system further includes a processor configured to control production of the light, and a display configured to illustrate a digital representation based on the position. A method includes the steps of sensing a position of an object in the sensing region based on a conductive property of the object, controlling light produced by a light source, and generating driven light effects in the sensing region using at least a portion of the light.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 14, 2012
    Assignee: Synaptics Incorporated
    Inventors: Bob Lee Mackey, Shawn P. Day, Alfred Woo, Mark Jennings
  • Patent number: 8243251
    Abstract: The present invention is directed to the provision of a liquid crystal Fresnel lens that achieves high focusing performance.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: August 14, 2012
    Assignee: Citizen Holdings Co., Ltd.
    Inventor: Masafumi Yokoyama
  • Patent number: 8168271
    Abstract: Microstructured optical films, assemblies of films including at least one microstructured optical film, and (e.g. illuminated) display devices including a single microstructured optical film or assembly.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 1, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Clinton L. Jones, Brant U. Kolb, David B. Olson, Emily S. Goenner, Shandon D. Hart, John T. Cowher
  • Publication number: 20120086904
    Abstract: An infrared-light reflective plate reflects an infrared-light ?700 nm including a substrate of which fluctuation of retardation in plane at a wavelength of 1000 nm, Re(1000), ?20 nm, on a surface of the substrate, at least two light-reflective layers, X1 and X2, formed of a fixed cholesteric liquid crystal phase, and, on another surface of the substrate, at least two light-reflective layers, Y1 and Y2, formed of a fixed cholesteric liquid crystal phase. The reflection center wavelengths of X1 and X2 are both ?X1 (nm), and the two layers reflect circularly-polarized light in opposite directions; the reflection center wavelengths of Y1 and Y2 both ?Y1 (nm). The two layers reflect circularly-polarized light in opposite directions; ?X1??Y1; and refractive anisotropy of X1 and X2, ?nX1 and ?nX2 satisfy ?nX2<?nX1. Refractive anisotropy of the light reflective layers Y1 and Y2, ?nY1 and ?nY2 satisfy ?nY2<?nY1.
    Type: Application
    Filed: June 10, 2010
    Publication date: April 12, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Kazuhiro Oki, Mitsuyoshi Chihashi
  • Publication number: 20120086903
    Abstract: A polarizer including a polarization grating comprising a polarization sensitive photo-alignment layer and a liquid crystal composition arranged on said photo-alignment layer. An alignment pattern, corresponding to the polarization pattern of a hologram, is recorded in the photo-alignment layer, and the liquid crystal composition is aligned on the photo-alignment layer.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 12, 2012
    Inventors: MICHAEL J. ESCUTI, Carlos Sanchez, Cornelis W.M. Bastiaansen, Dirk J. Broer
  • Patent number: 8120718
    Abstract: A parallax barrier device includes a pair of transparent-electrode substrates each provided with a transparent electrode. A barrier light-shielding part and a light-transmitting part are formed in a gap between the pair of transparent-electrode substrates. A liquid crystal layer is formed in the barrier light-shielding part. A resin layer having the property of transmitting light is formed in the light-transmitting part. The barrier light-shielding part separates light for a first image viewed from a first direction and light for a second image viewed from a second direction different from the first direction. The light-transmitting part transmits the light for the first image and the light for the second image.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 21, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Fukushima, Tomoo Takatani, Masakazu Wada
  • Publication number: 20110304782
    Abstract: A phase-type diffraction device includes a substrate having a front surface and a solidified liquid crystal layer formed on the front surface of the substrate and constituted by a continuous film containing at least a liquid crystal compound. The solidified liquid crystal layer is constituted by first, second and third regions arranged periodically, the third region being interposed between the first region and the second region. The first region is optically anisotropic and the second region is optically isotropic, the third region is not optically isotropic, a degree of orientation of mesogens of the liquid crystal compound being lower than that of the first region. An in-plane average refractive index ni of the second region is different from an in-plane average refractive index na of the first region and an in-plane average refractive index nm of the third region is between ni and na.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 15, 2011
    Applicant: TOPPAN PRINTING CO., LTD.
    Inventors: Sosuke Akao, Takeshi Itoi
  • Publication number: 20110285956
    Abstract: A phase-type diffraction device is provided, which includes a transparent substrate having a front surface and a rear surface, and a solidified liquid crystal layer formed on the front surface of the transparent substrate and constituted by a continuous film includes at least a liquid crystal compound. The solidified liquid crystal layer is constituted by first and second regions arranged periodically. The first region is optically anisotropic and the second region is optically isotropic. The first region differs in in-plane average refractive index from the second region.
    Type: Application
    Filed: July 29, 2011
    Publication date: November 24, 2011
    Applicant: TOPPAN PRINTING CO., LTD.
    Inventors: Sosuke Akao, Takeshi Itoi
  • Patent number: 8064035
    Abstract: A polarizer including a polarization grating comprising a polarization sensitive photo-alignment layer and a liquid crystal composition arranged on said photo-alignment layer. An alignment pattern, corresponding to the polarization pattern of a hologram, is recorded in the photo-alignment layer, and the liquid crystal composition is aligned on the photo-alignment layer.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 22, 2011
    Assignee: Stichting Dutch Polymer Institute
    Inventors: Michael J. Escuti, Carlos Sanchez, Cornelis W. M. Bastiaansen, Dirk J. Broer
  • Publication number: 20110222017
    Abstract: A multi-functional liquid crystal parallax barrier device is a liquid crystal device mainly formed by two parallax barrier structures, namely, a double-view vertical strip parallax barrier and a multi-view slant-and-step parallax barrier, in which the two parallax barriers are disposed in the same horizontal display direction, so as to display a double-view 3D image and a multi-view 3D image, in addition to displaying a 2D image, through the control of an appropriate driving voltage and the use of a flat panel display screen.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: UNIQUE INSTRUMENTS CO.LTD
    Inventor: MING-YEN LIN