Lamp Beam Direction Or Pattern Patents (Class 356/121)
  • Patent number: 10113904
    Abstract: An optical sensor comprises a light transmitter; a light receiver; an evaluation unit; at least one mirror unit that comprises a plurality of micromirror elements having an at least regionally reflective surface and comprising an electrode arrangement connected to the micromirror elements; and a control device that is configured to adjust the mirror unit between at least two different functional states by controlling the electrode arrangement. The mirror unit comprises an at least substantially transparent substrate at which the micromirror elements are arranged. The control device is configured to temporarily set the mirror unit into a transmission state in which the micromirror elements are in an open position and light radiation incident onto the mirror unit moves past the micromirror elements through the transparent substrate.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: October 30, 2018
    Assignee: SICK ENGINEERING GMBH
    Inventor: Kai Klinder
  • Patent number: 10058019
    Abstract: A bonding apparatus includes: a backup unit including a light-transmissive transmission member having a support surface which supports at least a bonding region of a light-transmissive board from below; a pressure-bonding unit which presses an electronic component placed on the bonding region via a photo-curable adhesive agent; and a light irradiation unit which irradiates the supporting surface with light which promotes hardening of the adhesive agent. The electronic component is bonded to the board by pressing the electronic component mounted on a top surface of the adhesive agent in a state in which light from the light irradiation unit is incident upon the adhesive agent through the supporting surface. The bonding apparatus further includes a light distribution measuring unit which measures a distribution of light from the light irradiation portion in the supporting surface.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 21, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasutaka Tsuboi, Akira Yamada, Toshihiko Tsujikawa
  • Patent number: 10025424
    Abstract: A vehicle including: a headlight that produces a beam, a touchscreen, a camera, processor(s) configured to: (a) display images captured by the camera on the touchscreen; (b) recast the beam according to touch inputs on the images; (c) disable (b) when the vehicle exceeds a predetermined speed; (d) recast the beam by sweeping the beam from an original position to a final position.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: July 17, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Fernando Cruz Solis, Tania Garcia, Jhammel Montes, Hector Amador
  • Patent number: 9891422
    Abstract: Various embodiments of microscopy systems, devices, and associated methods of analysis are described herein. In one embodiment, a method of operating a microscope includes acquiring a profile of a light signal from a sample with a photo detector without passing the light signal through a physical pinhole. The method also includes determining a parameter of the sample based on generally the entire acquired profile of the light signal.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 13, 2018
    Assignee: Washington State University
    Inventor: Matthew D. McCluskey
  • Patent number: 9876575
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 23, 2018
    Assignee: Infinera Corporation
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Jr., Donald J. Pavinski, Jie Tang, David Coult
  • Patent number: 9874819
    Abstract: A mirror array includes a multiplicity of displaceable individual mirrors which are subdivided into at least two groups. The individual mirrors of the first group are displaceable in a very precise manner, and the individual mirrors of the second group are displaceable in a very quick manner.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 23, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stig Bieling, Markus Hauf, Lars Wischmeier, Fabian Haacker, Martin Endres, Johannes Eisenmenger
  • Patent number: 9816812
    Abstract: Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: November 14, 2017
    Assignee: California Institute of Technology
    Inventors: Terrance L. Huntsberger, Arturo Rankin, Hrand Aghazarian, Andrew B. Howard, Rene Felix Reinhart
  • Patent number: 9801760
    Abstract: A test device to calibrate the pulse energy of a laser device which provides pulsed laser radiation includes a measuring head with multiple measuring probes. The test device is used in such a way that by means of the laser radiation, multiple test ablations are made on a test surface, in an arrangement corresponding to the relative spatial arrangement of the measuring probes, and the depths of the test ablations are then measured, with simultaneous use of the multiple measuring probes of the measuring head.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 31, 2017
    Assignee: Wavelight GmbH
    Inventors: Evi Goos, Christof Donitzky, Christian Wuellner
  • Patent number: 9753216
    Abstract: An embodiment of the invention relates to a MMF with a structure for enabling stable manufacture of the MMF suitable for wide-band multimode optical transmission, for realizing faster short-haul information transmission than before. In the MMF, when an input position of a DMD measurement pulse on an input end face is represented by a distance r from a center of a core with a radius a, a power of the DMD measurement pulse on an output end face with the input position r of the DMD measurement pulse being 0.8a is not more than 70% of a power of the DMD measurement pulse on the output end face with the input position r of the DMD measurement pulse being 0.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: September 5, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuhiro Yonezawa, Tadashi Enomoto
  • Patent number: 9709438
    Abstract: An M2 value beam profiling apparatus and method is described. The M2 value beam profiler comprises an optical axis defined by a focussing lens assembly and a detector, wherein the focussing lens acts to create an artificial waist within an optical field propagating along the optical axis. The beam profiler also comprises a multiple blade assembly having a first set of blades located at an artificial waist position and a second set of blades longitudinally separated along the optical axis from the artificial waist position. The multiple blade assembly therefore provides a means for selectively passing the blades through the location of the optical axis. Employing these measured widths allows for the M2 value of the optical field to be determined.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: July 18, 2017
    Assignee: M SQUARED LASERS LIMITED
    Inventor: Gordon Robertson
  • Patent number: 9622327
    Abstract: A device for testing a lighting device including a plurality of light emitting diodes (LEDs) and an LED driver configured to drive the plurality of LEDs to emit light includes a camera configured to image a surface on which light output by the LED lighting device is incident, and generate image data corresponding to an output of the LED lighting device; and a controller configured to compare the image data with a reference condition, and in response to the output of the LED lighting device deviating from the reference condition, control the LED driver to modify brightness of at least a portion of the plurality of LEDs.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 11, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sun Ki Kim
  • Patent number: 9606529
    Abstract: Embodiments are directed towards enabling users to customize data collection and analysis. A collection computer may automatically detect and dynamically update each of a plurality of sensors that may be currently providing real-time data regarding at least one characteristic of a machine. At least one sensor may be selected for local storage of its corresponding real-time data at the collection computer. And at least one sensor may be selected for remote storage of its corresponding real-time data by a server computer. A template may be employed to remotely display at least one characteristic of the machine based on current real-time data provided by at least one of the sensors identified by the template. In response to the user selecting at least one sensor for remote display, the template may be modified to include the remote display of the at least one sensor's corresponding current real-time data.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 28, 2017
    Assignee: MIQ LLC
    Inventors: Adam Monroe Livesay, Michael Thomas Larson
  • Patent number: 9573168
    Abstract: A method and apparatus for sorting objects is described, and which provides high-speed image data acquisition to fuse multiple data streams in real-time, while avoiding destructive interference when individual sensors or detectors are utilized in providing data regarding features of a product to be inspected.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: February 21, 2017
    Assignee: Key Technology,. Inc
    Inventors: Dirk Adams, Johan Calcoen, Timothy L. Justice, Gerald R. Richert
  • Patent number: 9515452
    Abstract: Disclosed herein is a coherent dynamically controllable narrow band light source (10), comprising a first sub-light source (12), said first sub-light source being electrically controllable such as to generate controllable time-dependent intensity patterns of light having a first wavelength, a Raman active medium (30) suitable to cause Raman scattering of light having said first wavelength, a second sub-light source (20) capable of emitting light with a second wavelength, said second wavelength being longer than said first wavelength, and an optical fiber or wave guide, wherein said light emitted by said first and second sub-light sources traverses a length of said optical fiber (30) or wave guide in a feed-forward configuration to facilitate a non-linear wavelength conversion step involving said Raman-active medium. At least one of said first and second sub-light sources (12, 20) has a coherence length longer than 0.05 mm, preferably longer than 0.5 mm and most preferably longer than 2 mm.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: December 6, 2016
    Assignee: Ludwig-Maximilians-Universität München
    Inventors: Robert Alexander Huber, Sebastian Karpf, Matthias Eibl
  • Patent number: 9513564
    Abstract: Provided is an exposure method that includes setting a first exposure condition so as to calculate a coefficient for predicting the fluctuation in the imaging characteristics of the projection optical system under a certain exposure condition; determining the coefficient and a permissible value calculated from aberration measurement reproducibility based on a fluctuation characteristic model; calculating a predicted amount of the fluctuation in the imaging characteristics under the first exposure condition based on the coefficient; determining whether or not the predicted amount is less than the permissible value for each time instant; and starting calculation of the predicted amount of the fluctuation in the imaging characteristics under a second exposure condition at the time at which it is determined by the determining that the predicted amount is less than the permissible value.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: December 6, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Kazuyoshi Ozawa
  • Patent number: 9505340
    Abstract: A method for adapting a headlight beam boundary of a light cone of at least one headlight of a vehicle includes the following steps: detecting at least one area of a roadway, the area being situated in the travel direction of the vehicle; determining a topography of the at least one area of the roadway; and providing a control signal for adapting the headlight beam boundary as a function of the topography.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: November 29, 2016
    Assignee: Robert Bosch GmbH
    Inventor: Johannes Foltin
  • Patent number: 9429420
    Abstract: The present invention relates to a distance measurement apparatus. The distance measurement apparatus according to the present invention has, mounted thereon, a light transmitting portion which emits light, and a light receiving portion including a light receiving element where a spot of the light is collimated. The present invention comprises: a tilting base; and a rotating reflector which reflects the light emitted by the light transmitting portion to an object, and reflects the light reflected or scattered by the object to the light receiving portion.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 30, 2016
    Assignee: LG ELECTRONICS INC.
    Inventors: Sungjin Cho, Gyeongeon Lee, Hyunjoon Kim, Sunghoon Cha, Jeonguk Lee, Hyunseok Shin
  • Patent number: 9285596
    Abstract: A diode laser beam combining apparatus for producing a high combined beam power density in the far field at reduced levels of power consumption and heat dissipation includes an array of semiconductor laser emitters arranged in a collinear manner. The apparatus includes a cylindrical lens for collimating emitter beams generated by the laser emitters in a direction perpendicular to a junction plane of the laser emitters. The apparatus further includes a micro-optic array and a long focal length cylindrical lens. The micro-optic array is configured to perform a rotational transformation of the collimated emitter beams. The micro-optic array has a lateral spacing in a direction parallel to the junction plane of the laser emitters that matches the emitter pitch. The long focal length cylindrical lens collimates emitter beams in the direction perpendicular to the junction plane after passing through the micro-optic array.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 15, 2016
    Assignee: DHPC TECHNOLOGIES, INC.
    Inventors: Yakov G Soskind, Richard Gifford, Joseph Aletta
  • Patent number: 9279716
    Abstract: The present subject matter relates to a capacity detector, a waveguide and a manifold for use with a coin sensor as well as methods for sensing a capacity of a coin receptacle. In one aspect, the waveguide for use with a coin sensor comprises an excitation end for receiving an acoustic signal, a horn end for disposition adjacent to a coin receptacle, and a conduit interconnecting the horn end and the excitation end. In embodiments, the horn end of the waveguide may define a horn selected from a tapered horn, an exponential horn, a tractrix horn, or a modified tractrix horn.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: March 8, 2016
    Assignee: Crane Payment Innovations, Inc.
    Inventors: John D. Snider, Edward M. Zoladz, Jr., Christopher S. Carmine
  • Patent number: 9240036
    Abstract: In one embodiment, a control method for a projector comprises picking up an image of an area including a screen and an image light and generating a picked-up image; calculating each side of an outer peripheral line of the image light, based on the picked-up image; calculating each side of an outer peripheral line of the screen, based on the picked-up image; and calculating a correction image light modulation area that is an area in a part of a light modulation area so as to fit inside a second imaginary screen outer peripheral line.
    Type: Grant
    Filed: June 7, 2014
    Date of Patent: January 19, 2016
    Assignee: Seiko Epson Corporation
    Inventors: Miki Nagano, Shiki Furui
  • Patent number: 9212899
    Abstract: A fabrication system comprises one of a substrate and work piece having at least one working surface, a tool coupled to a tool holder, at least one measurement system, and a control system. The at least one working surface comprises one or more regions. A first location of the tool, tool holder, and the one of a substrate and work piece are calibrated with reference to a coordinate system. The tool is adapted to affect creation of a device within the one or more regions. The at least one measurement system is adapted to obtain location information of at least a portion of at least one of the tool, tool holder, and one of a substrate and a work piece. The control system is adapted to receive the location information, determine a second location, and provide one or more output signals to one or more adjustment devices.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 15, 2015
    Assignee: ASCENTIA IMAGING, INC.
    Inventors: Greg Johnson, Ed Dowski, Brad Sissom
  • Patent number: 9170170
    Abstract: In order to determine the focus position of a laser beam (60, 60a) in an ophthalmological laser projection system (1), at least one measurement marking (3) applied to a reference area (20) is passed over by means of the laser beam (60, 60a) along a scanning path. A measurement signal created by passing over the measurement marking (3) is captured. Time values from at least one signal edge created in the measurement signal when passing over edges of the measurement marking (3) are determined and the focus position is established on the basis of the time values. By scanning defined measurement markings (3) and establishing time values of signal edges created when edges of the measurement marking (3) are passed over, it is possible to determine the focus position of the laser beam (60, 60a) without focusing movements being required for this during the measurement.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 27, 2015
    Assignee: ZIEMER OPHTHALMIC SYSTEMS AG
    Inventor: Christian Rathjen
  • Patent number: 9146015
    Abstract: The invention relates to a method and an apparatus for checking a lighting driving assistance system of vehicles. In this case, a vehicle is positioned in front of a body and a light of the vehicle is aimed at this body. Brightness distributions are obtained by adjusting the light in the horizontal and vertical directions in a plurality of angular positions and are recorded by an image capture unit. The recorded brightness distributions are used to calculate the distance and angular offset as well as the position of the body and actual values of the angular positions. These actual values are compared with preset desired values, and recommended settings for minimizing a difference between desired and actual values are output.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 29, 2015
    Assignee: Hella KGAA Hueck & Co.
    Inventors: Christian Schmidt, Ingo Hoffmann
  • Patent number: 9124451
    Abstract: A radio receiving apparatus according to the present invention receives a preamble signal through one frequency band and also detects a periodic symbol timing in a receiving period of a part of a symbol that composes the preamble signal. A frequency correction circuit includes a generating unit, a detecting unit, and a correction unit. The generating unit generates a detection window of a predetermined time width including each of a first and a second symbol timing that are previously determined among the periodic symbol timings in the receiving period of a remaining symbol that composes the preamble signal. The detecting unit sequentially receives a correlation value between the preamble signal and a reference signal and detects a maximum value from the correlation value input during a period when the detection window is opened. The correction unit corrects a frequency deviation of the one frequency band based on the maximum value.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 1, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Junya Tsuchida
  • Patent number: 9116044
    Abstract: The disclosure is directed to a system and method for determining at least one characteristic of an illumination beam emanating from an illumination source. A substrate having a plurality of apertures may be actuated through an illumination beam so that apertures at different spatial offsets are scanned through the illumination beam at one or more levels of focus. Portions of illumination directed through scanned apertures may be received by at least one detector. At least one characteristic of the illumination beam may be extracted from data points associated with intensity levels associated with detected portions of illumination. Furthermore, multiple determinations of a beam characteristic made over a period of time may be utilized to calibrate the illumination source.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 25, 2015
    Assignee: KLA-Tencor Corporation
    Inventor: Daniel Hey
  • Patent number: 9086322
    Abstract: A method for determining a radiation characteristic for a vehicle illumination device to be produced from possible radiation characteristics based on a parameter is provided. The parameter is selected from an illumination geometry that can be generated by the device in a surroundings of the device, a device position, and a person-related type of perception. The method includes determining a first value of a light intensity that can be generated for a first point located within an illuminatable area based on the parameter. A second value of the light intensity that can be generated by the illumination device is determined for second points based on the first value. The second points are arranged in the surroundings of the illumination device. A light distribution that can be generated by the illumination device is determined based on the first and second values and the light distribution is outputted to an interface.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 21, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Philipp Roeckl, Jan Schuladen, Ingolf Schneider
  • Publication number: 20150146196
    Abstract: A positional deviation between a phase distribution in a wavefront sensor and a compensation phase pattern in a wavefront modulator is corrected in a short time and with high accuracy by a method including a first step of causing the wavefront modulator to display a singularity generation pattern, a second step of measuring in the sensor an adjustment wavefront shape when an optical image modulated by the singularity generation pattern enters the wavefront sensor, a third step of detecting a position of a singularity in the adjustment wavefront shape from a measurement result in the sensor, and a fourth step of adjusting a positional deviation between a wavefront shape measured in the wavefront sensor and a compensation pattern displayed on the wavefront modulator based on a positional deviation of the position of the singularity.
    Type: Application
    Filed: April 1, 2013
    Publication date: May 28, 2015
    Inventor: Hongxin Huang
  • Patent number: 9030675
    Abstract: The invention relates to a method for determining a distance between charged particle beamlets in a multi-beamlet exposure apparatus. The apparatus is provided with a sensor comprising a converter element for converting charged particle energy into light and a light sensitive detector provided with a two-dimensional pattern of beamlet blocking and non-blocking regions. The method comprises scanning a first beamlet over the pattern, receiving light generated by the converter element, and converting the received light into a first signal. Then the two-dimensional pattern and the first beamlet are moved relatively with respect to each other over a predetermined distance. Subsequently, the method comprises scanning a second beamlet over the pattern, receiving light generated by the converter element, and converting the received light into a second signal. Finally, the distance between the first beamlet and second beamlet is determined based on the first signal, the second signal and the predetermined distance.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: May 12, 2015
    Assignee: Mapper Lithography IP B.V.
    Inventor: Jan Andries Meijer
  • Patent number: 8989487
    Abstract: Provided are an image composition apparatus for composing color images with black-and-white images including infrared components, and an image composition method thereof. The image composition method includes generating a first image signal with color information and a second image signal including infrared components without color information, dividing the first image signal into a brightness signal and a color signal, composing the brightness signal of the first image signal with a brightness signal of the second image signal to generate a composed brightness signal, and composing the composed brightness signal with the color signal of the first image signal to generate a color image.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-hee Choe, Jae-hyun Kwon, Seong-deok Lee
  • Patent number: 8988673
    Abstract: New systems for characterizing laser beams, using measurements performed on light which has been Rayleigh scattered from the beam. Different implementations are used for beam profiling, using images of the Rayleigh scattered light, and for laser beam power measurement, using the integrated Rayleigh scattered light. Both of these implementations can be applied to laser beams having high powers, since the measurements do not require insertion of any element into the beam itself, but rather depend on light scattered laterally from the passing beam. The measurements can thus be termed “non contact” measurements, in contrast to prior art methods which require an element inserted into the beam. The systems use Rayleigh scattering from the laser beam passing through ambient air, such that no special scattering chambers or liquids are required for the measurements. Special cancellation algorithms or filters are used to discriminate from light arising from scattering from dust particles.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 24, 2015
    Assignee: Ophir-Spiricon, LLC
    Inventors: Jeffrey L. Guttman, John M. Fleischer, Mark E. Minshall
  • Patent number: 8988672
    Abstract: A method of aiming a light source includes using an image-capturing device to capture a light beam pattern from the light source. Here, the light beam pattern is configured to include a plurality of contrast ratios transitioning from a first intensity region to a second intensity region. The method includes processing the contrast ratios of the light beam pattern to obtain corresponding values of the contrast ratios, transitioning from the first intensity region to the second intensity region, where the corresponding values are logarithmic values, which in turn generate a related response curve. Finally, the method provides for using the logarithmic values and the response curve to aim the light source.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: John Wesley Wilds, Michael Wegrzyn, Stephanie Askew, Albert Ekladyous, Arun Kumar, Diane Marie LaHaie
  • Patent number: 8982341
    Abstract: A light distribution characteristic measurement apparatus includes: a detecting unit for detecting light from a light source; a mirror for reflecting the light from the light source to direct the light to the detecting unit; a movement mechanism for moving the detecting unit and the mirror relatively to the light source; a rotation mechanism for rotating the mirror while maintaining an optical path length from the light source to the detecting unit; and a processor adapted to calculate the light distribution characteristic of the light source, based on a plurality of measurement results that are detected by the detecting unit under a condition that the detecting unit and the mirror are arranged at a plurality of measurement positions relative to the light source and the mirror is oriented at different rotational angles for each measurement position.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Otsuka Electronics Co., Ltd.
    Inventor: Yoshi Enami
  • Publication number: 20150034614
    Abstract: A laser irradiation apparatus is provided. The laser irradiation apparatus includes a laser beam generator configured to generate laser beams; a slit unit configured to selectively transmit the laser beams; a mirror unit configured to change a path of the selectively transmitted laser beams, so as to irradiate the selectively transmitted laser beams onto a processing target; a first optical system, wherein a first portion of the selectively transmitted laser beams penetrates through the mirror unit and is projected to the first optical system; and a second optical system, wherein a second portion of the selectively transmitted laser beams penetrates through the mirror unit and is projected to the second optical system.
    Type: Application
    Filed: January 31, 2014
    Publication date: February 5, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Joon-Hyung KIM, Hae-Sook LEE, Sung-Gon KIM, IL-Young JEONG, Gyoo-Wan HAN, Je-Kil RYU, Kyoung-Seok CHO
  • Publication number: 20150015853
    Abstract: A detection image generation section generates a detection image, which is an image for detection a state of a projection image, image, and includes a plurality of detection image parts, and background images covering respective peripheries of the detection image parts. Each of the detection image parts includes a plurality of regions with respective luminance values different from each other, and the background images have luminance values lower than the luminance values of the detection image parts. The detection image generation section changes at least one of a luminance distribution of each of the detection image parts of the detection image to be generated and a size of each of the background images so that a luminance distribution of each of the detection image parts of the taken detection image obtained by imaging is approximated to a luminance distribution of corresponding one of the detection image parts of the detection image.
    Type: Application
    Filed: March 19, 2013
    Publication date: January 15, 2015
    Applicant: Seiko Epson Corporation
    Inventor: Yoshitaka Nakashin
  • Patent number: 8934091
    Abstract: Methods, systems, and structures for monitoring incident beam position in a wafer inspection system are provided. One structure includes a feature formed in a chuck configured to support a wafer during inspection by the wafer inspection system. The chuck rotates the wafer in a theta direction and simultaneously translates the wafer in a radial direction during the inspection. An axis through the center of the feature is aligned with a radius of the chuck such that a position of the axis relative to an incident beam of the wafer inspection system indicates changes in the incident beam position in the theta direction.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: January 13, 2015
    Assignee: KLA-Tencor Corp.
    Inventors: Juergen Reich, Aleksey Petrenko, Richard Fong, Bret Whiteside, Jien Cao, Christian Wolters, Anatoly Romanovsky, Daniel Kavaldjiev
  • Patent number: 8928869
    Abstract: A method for aiming headlamps on a vehicle achieves a reduced variation in beam heights without making any changes to existing test equipment. A cutoff height of a first headlamp is measured. The first headlamp is adjusted until a first measured cutoff height is within a predetermined range centered on a predetermined fixed height. A cutoff height of a second headlamp is measured. The second headlamp is adjusted until a second measured cutoff height is within the predetermined range centered on the first measured cutoff height.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Albert Ekladyous, John W. Wilds, Arun Kumar, Venkatesan Balaraman, Sleiman N. Abdelnour, Mahendra S. Dassanayake, Candace C. Glasgow
  • Patent number: 8928871
    Abstract: According to a flare measuring method in an embodiment, a reflective mask, in which one reflective coordinate in a slit direction in a mask surface is determined when one scanning coordinate is determined, is placed on a scanner that includes a reflective projection optical system. Moreover, a light intensity of the exposure light is measured by performing a scanning exposure on an illuminance sensor moved to a predetermined position in the slit direction in a slit imaging plane. Then, an amount of flare at an intra-slit position corresponding to a position of the illuminance sensor in the slit direction is calculated by using a light intensity of exposure light received from an intra-slit position that does not correspond to the position of the illuminance sensor in the slit direction in the exposure light.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Suzuki, Nobuhiro Komine
  • Patent number: 8913244
    Abstract: A testing box for testing light sources, the testing box comprising: an enclosure comprising an opening for receiving a light source; a sensor of a light property for light emitted inside the enclosure; and a comparator of the light property sensed by the sensor and a shifted test box boundary for the light property, wherein the shifted test box boundary is based on a correlation between a measured light property of a test light source in an integrating sphere and a measured light property of the test light source in the testing box.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: December 16, 2014
    Assignee: Cooper Technologies Company
    Inventor: Kevin Charles Broughton
  • Patent number: 8902414
    Abstract: An exposure system includes an exposure apparatus, a mask, a test pattern portion and a uniformity measuring part. The exposure apparatus includes a first module and a second module. The first and second modules each emit light and are overlapped in an overlapping area. The mask includes a plurality of transmission portions which are spaced apart from each other. Each of the transmission portions has a width less than a width of the overlapping area. The test pattern portion includes a plurality of test patterns which are patterned by using the light transmitted through the transmission portions of the mask. The uniformity measuring part measures a uniformity of the test patterns.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: December 2, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jung-In Park, Cha-Dong Kim, Su-Yeon Sim, Sang-Hyun Yun, Hi-Kuk Lee
  • Patent number: 8891077
    Abstract: A wavefront measuring method using a Shack-Hartmann sensor includes the steps of provisionally determining one of a plurality of light receiving elements as a center-of-gravity position in a spot having a light intensity distribution of light condensed on the light receiving element, calculating a distance between the provisionally determined center-of-gravity position and an adjacent center-of-gravity position, setting an area smaller than and inside of a spot that partially overlaps another spot, and setting a spot that does not overlap another spot to the area, calculating a center-of-gravity position for each area, and calculating the wavefront based upon a shift amount between an ideal center-of-gravity position when parallel light enters the micro lens array and the center-of-gravity position of each area.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: November 18, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yuuichi Takaie
  • Publication number: 20140315330
    Abstract: There is provided a measuring apparatus including: an illuminator configured to illuminate, with an illumination light, a substrate having a pattern formed by exposure on a surface; a detector configured to detect the illumination light modulated by the pattern to output a detection signal; and a measuring unit configured to measure an exposure condition of the pattern of a desired portion by using the detection signals detected at a plurality of portions of the pattern.
    Type: Application
    Filed: November 29, 2012
    Publication date: October 23, 2014
    Inventor: Yoshihiko Fujimori
  • Patent number: 8854610
    Abstract: Provided are an apparatus and a method for measuring a three dimensional shape with improved accuracy. The apparatus includes a stage, at least one lighting unit, a plurality of image pickup units and a control unit. The stage supports an object to be measured. The lighting unit includes a light source and a grid, and radiates grid-patterned light to the object to be measured. The image pickup units capture, in different directions, grid images reflected from the object to be measured. The control unit calculates a three dimensional shape of the object from the grid images captured by the image pickup units. The present invention has advantages in capturing grid images through a main image pickup portion and sub-image pickup portions, enabling the measurement of the three dimensional shape of the object in a rapid and accurate manner.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: October 7, 2014
    Assignee: Koh Young Technology Inc.
    Inventors: Seung-Jun Lee, Kwang-Ill Kho, Moon-Young Jeon, Sang-Kyu Yun, Hong-Min Kim, Jung Hur
  • Publication number: 20140293274
    Abstract: A wavefront measuring system with large dynamic measuring range includes a measuring unit, a control unit, and a processing unit. The measuring unit includes a wavefront dividing component, a focusing component and a photosensor. The wavefront dividing component samples a part of a laser beam (a sampled light beam) in a measuring plane, the focusing component focuses the sampled light beam on a photosensitive surface of the photosensor to form a light spot, the photosensor detects the presence of the light spot, the data processing unit acquires the locational information of the light spot and calculates the direction of the sampled light beam beam. The control unit drives the measuring unit to a different position in the same measuring plane, the wavefront dividing component samples another sampled light beam. The data processing unit calculates the wavefront distribution on the measuring plane based on the direction determined sampled light beams.
    Type: Application
    Filed: August 22, 2013
    Publication date: October 2, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: LI-YING WANG HE
  • Patent number: 8848178
    Abstract: An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 30, 2014
    Assignee: Haas Laser Technologies, Inc.
    Inventor: Michael J. Scaggs
  • Patent number: 8848177
    Abstract: An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 30, 2014
    Assignee: Haas Laser Technologies, Inc.
    Inventor: Michael J. Scaggs
  • Patent number: 8848179
    Abstract: An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 30, 2014
    Assignee: Haas Laser Technologies, Inc.
    Inventor: Michael J. Scaggs
  • Publication number: 20140285877
    Abstract: A beam shaping system including: a first and second optical modules that are accommodated in a spaced-apart relationship in an optical path of light through the system to sequentially apply beam shaping to light incident thereon. The beam shaping system includes first and second alignment modules respectively carrying the first and second optical modules and operable for laterally positioning the optical modules with respect to the optical path. A calibration module of the beam shaping system is connectable to the first and second alignment modules and is operable to sequentially calibrate and align the respective lateral positions of the first and second optical modules with respect to the optical path. The system thereby enables shaping of an incoming light beam of given predetermined wave-front and lateral intensity distribution to form an output light beam having desired wave-front and desired lateral intensity distribution.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 25, 2014
    Applicant: Applied Materials Israel, Ltd.
    Inventors: Binyamin Kirshner, Haim Eder
  • Publication number: 20140240697
    Abstract: Apparatus and methods for detecting wave front aberration of a projection objective lens in a photolithography machine are disclosed. The apparatus comprises: a light source system configured to generate an illuminating beam; a spatial filter configured to receive the illuminating beam and generate ideal spherical wave; a splitter plate arranged downstream to the spatial filter at a predetermined angle with respect to an optical axis of the spherical wave and having a transflective film being applied on a surface thereof; the projection objective lens configured to receive a beam from the splitter plate and generate an output beam; a spherical mirror configured to reflect the output beam from the projection objective lens to the projection objective lens, light passing through the projection objective lens being reflected by the splitter plate; and an interferometer configured to receive light reflected by the splitter plate and measure the wave front aberration of the projection objective lens.
    Type: Application
    Filed: November 30, 2011
    Publication date: August 28, 2014
    Applicant: Changchun Institute of Opitcs, Fine Mechanics and Physics, Chinese Academy of Sciences
    Inventors: Yang Xiang, Changsong Yu
  • Publication number: 20140233022
    Abstract: An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Haas Laser Technologies, Inc.
    Inventor: Michael J. Scaggs
  • Publication number: 20140233021
    Abstract: An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Haas Laser Technologies, Inc.
    Inventor: Michael J. Scaggs