Of Cw Phase Delay Patents (Class 356/5.1)
  • Patent number: 9453728
    Abstract: A measuring system for determining a distance between a sensor device and a measured object, wherein the sensor device comprises a light source for generating an illumination light beam and a detector for detecting a portion of the illumination light beam reflected on the surface of the measured object and wherein the measured object is designed so it is transparent at least for a wavelength range of the visible light, is designed and further developed under consideration of the most reliable distance measurement possible in all types of measuring situations, that the illumination light beam has a wavelength in the violet or ultraviolet range and that the measured object is designed in such a way that the illumination light beam is diffusely reflected on the surface of the measured object. In addition, a corresponding measuring system is specified for measuring measured objects that are essentially impermeable to light.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 27, 2016
    Assignee: MICRO-EPSILON Optronic GmbH
    Inventor: Torsten Stautmeister
  • Patent number: 9329272
    Abstract: A method comprises obtaining first information, the first information including depth information with a first range of unambiguity. A first image processing is performed on the first information to generate first modified information. Furthermore, second information is obtained, the second information including depth information with a second range of unambiguity.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 3, 2016
    Assignee: Infineon Technologies AG
    Inventor: Gerwin Fleischmann
  • Patent number: 9313372
    Abstract: An image sensor is provided which includes a plurality of unit pixels, ones of which are configured to convert an input light signal into at least four frame signals. The image sensor also includes a signal processor that is configured to measure a distance from an object based on the at least four frame signals from one of the plurality of unit pixels.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 12, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minseok Oh, Haekyung Kong, Han Soo Lee, Taechan Kim, Jungchak Ahn, Moosup Lim
  • Patent number: 9253471
    Abstract: A depth camera includes a sensor unit receiving a reflected light and in response thereto outputting an electrical sensing signal; and a synchronization information calculation unit calculating a performance index with reference to the sensing signal, and with reference to the performance index, generating synchronization information for synchronizing a demodulation clock for sensing the received reflected light. The sensor unit adjusts the frequency and/or phase of the demodulation clock with reference to the synchronization information.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 2, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwanghyuk Bae, Kyu-Min Kyung, Tae-Chan Kim, Seunghee Lee
  • Patent number: 9193471
    Abstract: A system for detecting the status of a tube for fuel transfer. It includes a nozzle for a telescoping tube employed in air to air refueling and transfer of fuel on a tanker aircraft with a system that detects the status of the connection of the nozzle with respect of a receptacle in a receiving aircraft, the system detecting the characteristics of the status of the connection of the nozzle in the receptacle by direct measurement of parameters in the nozzle itself of the tanker aircraft.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 24, 2015
    Assignee: EADS Construcciones Aeronauticas, S.A.
    Inventors: Francisco Javier Fernandez Garcia, Santiago Flores Giraldo
  • Patent number: 9188427
    Abstract: A projective optical metrology system including a first optical unit, which includes: an optical input that receives a first light signal; a number of optical paths; and a separator, which is optically interposed between the optical input and the optical paths and separates a number of components of the first light signal received by the optical input and couples each of the separate components to a corresponding optical path. The first optical unit also includes a light target, which emits a second light signal and is formed by a number of light elements, each light element being optically coupled to a corresponding optical path, so as to be illuminated, in use, by the component of the first light signal coupled to the corresponding optical path. The metrology system also includes a second optical unit, which generates the first light signal and receives the second light signal.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: November 17, 2015
    Assignee: Thales Alenia Space Italia S.p.A. Con Unico Socio
    Inventors: Fulvio Bresciani, Fabio Musso
  • Patent number: 9189858
    Abstract: A method is disclosed for determining coordinates of a target in relation to a surveying instrument wherein a first image is captured using a first camera in a first camera position and orientation, a target is selected by identifying at least one object point in the first image, and first image coordinates of the object point in the first image are measured. In at least one embodiment, a second image is captured using a second camera in a second camera position and orientation, the object point identified in the first image is identified in the second image, and second image coordinates of the object point in the second image are measured. Target coordinates of the target in relation to the rotation center of the surveying instrument are then determined based on the first camera position and orientation, the first image coordinates, the second camera position and orientation, the second image coordinates, and first and second camera calibration data.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 17, 2015
    Assignee: TRIMBLE AB
    Inventors: Set Svanholm, Michael Vogel, Christian Grässer
  • Patent number: 9165368
    Abstract: A method and system analyzes data acquired by image systems to more rapidly identify objects of interest in the data. In one embodiment, z-depth data are segmented such that neighboring image pixels having similar z-depths are given a common label. Blobs, or groups of pixels with a same label, may be defined to correspond to different objects. Blobs preferably are modeled as primitives to more rapidly identify objects in the acquired image. In some embodiments, a modified connected component analysis is carried out where image pixels are pre-grouped into regions of different depth values preferably using a depth value histogram. The histogram is divided into regions and image cluster centers are determined. A depth group value image containing blobs is obtained, with each pixel being assigned to one of the depth groups.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 20, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Abbas Rafii, Salih Burak Gokturk
  • Patent number: 9154223
    Abstract: An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, the beat signal may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 6, 2015
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Andrew B. Lewis, Stuart Russell
  • Patent number: 9148219
    Abstract: An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 29, 2015
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Justin Hayward, Andrew B. Lewis, Stuart Russell
  • Patent number: 9094606
    Abstract: Methods and devices for correcting for motion blur in range cameras without increasing acquisition speed or reducing the overall quality of the distance determinations, by identifying moving objects in a scene and determining the speed and direction of the objects.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 28, 2015
    Assignee: WaikatoLink Limited
    Inventors: Lee Vincent Streeter, Adrian Andrew Dorrington, Andrew Dean Payne
  • Patent number: 9086123
    Abstract: In the transmission of mechanical movements, a mechanical angular positioning device is provided, and applies to optical instruments to position an element like a mirror according to three predefined positions. The angular positioning device comprises a frame and two imbricated mechanical movement transmission assemblies. The first assembly comprises a first support in pivot connection with the frame according to a first axis, which is rotatable by a first motor via two connecting rods which generate two dead centers for the first support. The second mechanical assembly comprises a second support in pivot connection with the first support, according to a second axis, not parallel with first axis. This second support is rotatable by a second motor via two connecting rods which generate two dead centers for the second support. One of the dead centers of the first support can coincide with one of the dead centers of the second support.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: July 21, 2015
    Assignee: THALES
    Inventors: Stephane Vezain, Yannick Baudasse, Sebastien Guionie
  • Patent number: 9063549
    Abstract: A light detection and ranging (LIDAR) device that scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses is disclosed. The LIDAR device scans the scanning zone by directing light toward a rotating mirror to direct the light pulses through the scanning zone. The rotating mirror is driven by a conductive coil in the presence of a magnetic field. The conductive coil is coupled to the rotating mirror and arranged in a plane perpendicular to the axis of rotation of the mirror. The axis of rotation of the mirror is oriented substantially parallel to a reflective surface of the mirror and passes between the reflective surface and the conductive coil.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: June 23, 2015
    Assignee: Google Inc.
    Inventors: Gaetan Pennecot, Pierre-yves Droz, Zachary Morriss, William McCann
  • Patent number: 9052382
    Abstract: Embodiments of the present invention provide methods to produce a high performance, feature rich TOF system, phase-based or otherwise using small TOF pixels, single-ended or preferably differential, as well as TOF systems so designed. IC chip area required for pixels is reduced by intelligently off-loading or removing from within the pixel certain components and/or functionality. In some embodiments during a single TOF system capture period, analog values from each pixel are repeatedly sampled and converted to digital values, which are combined and manipulated on the sensor chip. Combining this plurality of values enables appropriately compact data from the sensor chip. Embodiments of the present invention implement a TOF system with high ambient light resilience, high dynamic range, low motion blur and dealiasing support, while advantageously reducing pixel area size relative to prior art TOF pixels.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 9, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Cyrus Bamji, Swati Mehta
  • Patent number: 9041916
    Abstract: A 3D image sensor includes a depth pixel that includes; a photo detector generating photo-charge, first and second floating diffusion regions, a first transfer transistor transferring photo-charge to the first floating diffusion region during a first transfer period in response to a first transfer gate signal, a second transfer transistor transferring photo-charge to the second floating diffusion region during a second transfer period in response to a second transfer gate signal, and an overflow transistor that discharges surplus photo-charge in response to a drive gate signal. Control logic unit controlling operation of the depth pixel includes a first logic element providing the first transfer gate signal, a second logic element providing the second transfer gate signal, and another logic element providing the drive gate signal to the overflow transistor when the first transfer period overlaps, at least in part, the second transfer period.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min Seok Oh, Hae Kyung Kong, Tae Chan Kim, Jung Chak Ahn, Moo Sup Lim
  • Patent number: 8988664
    Abstract: Disclosed is a distance measuring device configured to irradiate an object with light and receive reflected light therefrom to measure a distance from the object, including a light source device having at least one light-emitting part, a deflection part being provided rotatably around a predetermined axis line and having plural deflection faces configured to reflect light from the light source device toward the object, a reflection part being provided rotatably around the axis line and integrally with the deflection part and having plural reflection faces being provided to correspond to the plural deflection faces individually and reflecting a portion of light reflected from a corresponding deflection face and reflected from the object, and a light-receiving part having at least one light-receiving element configured to receive light reflected from the reflection part, wherein respective inclination angles of the plural deflection faces with respect to the axis line are mutually different.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: March 24, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Shuichi Suzuki, Mitsuru Nakajima, Kenichi Yoshimura
  • Patent number: 8988661
    Abstract: Phase-based TOF systems operate with reduced depth error due to motion blur, and/or spatial blur, and/or pixel offset by intelligently determining how best to combine pixel values, and how best to compensate for individual pixel offsets. Such determination(s) may be carried out on a per pixel basis, dynamically, in real-time during TOF operation, or on archived TOF data. Offsets for individual pixels may be dynamically calculated and subtracted from the values acquired by those pixels Individual pixel offsets may be calculated for example by combining data acquired by the same pixel at two acquisitions, 180° out of phase with respect to each other. Calculated offsets may be averaged, or on a per pixel basis, and if target object motion is detected, one or more offset calculations can be discarded rather than averaged to reduce motion blur. Offsets acquired a priori during a TOF system calibration procedure may be used.
    Type: Grant
    Filed: May 29, 2010
    Date of Patent: March 24, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Gage Hills, Travis Perry, Cyrus Bamji
  • Patent number: 8964169
    Abstract: The invention relates to the topographic technique field, and provides a ranging method and a system, wherein the ranging method comprises the following steps: modulating measured beam, by a modulated signal of which the frequency is continuously changed over time; emitting the modulated measured beam to a measured object; receiving the reflected measured beam and converting the beam into the measured signals; and comparing the frequency of the modulated signal generated when the measured beam is received with the frequency of the measured signals, thus determining the measured distance.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: February 24, 2015
    Assignee: Mileseey Technology, Inc.
    Inventors: Zhi Chou, Weiming Li, Hongfei Wang
  • Patent number: 8958057
    Abstract: Separate reception/transmission apertures enhance pointing: reception is more efficient than transmission (kept smaller for MEMS steering). Apparatus aspects of the invention include lidar transmitters emitting laser beams, and scan mirrors (or assemblies) angularly adjustable to deflect the beams in orthogonal directions. In one aspect, afocal optics magnify deflection; a transmitter aperture transmits the beam; a lidar receiver doesn't share the transmitter aperture. In another aspect, auxiliary optics calibrate the deflection. A method aspect of the invention notices and responds to a remote source—using a similar local laser, adjustable scan mirror or assembly, afocal deflection magnifier, transmission aperture and separate receiver. Method steps include operating the receiver to notice and determine location of the remote source; and controlling the transmitter to direct laser light back toward that location.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: February 17, 2015
    Assignee: Arete Associates
    Inventors: David M. Kane, Jeff T. Daiker, James T. Murray
  • Patent number: 8958056
    Abstract: A triangulation light sensor includes at least one light transmitter for transmitting a light signal into a detection zone, a light receiver having a plurality of receiver elements for receiving light from the detection zone reflected diffusely and/or specularly, and a reception optics arranged between the detection zone and the light receiver in the beam path, with the position of a light spot produced on the light receiver in a triangulation direction by the reflected light resulting in dependence on the distance of the object. The reception optics includes at least one multisegmented lens element having a plurality of lens segments with mutually spaced apart optical axes in the triangulation direction and at least one freeform lens element or one diffractive-optical element having a multisegmented lens element having a plurality of lens segments with optical axes spaced apart from one another in the triangulation direction.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Sick AG
    Inventors: Friedhelm Wiethege, Gerhard Merettig
  • Patent number: 8928865
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays can be employed for range detection. The LIDAR includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. The difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array by first modulating the target and/or reference beam.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 6, 2015
    Assignee: Telaris, Inc.
    Inventor: George Rakuljic
  • Patent number: 8922758
    Abstract: A method of establishing the location of a pair construction points for a stud in a building interior at a construction site and for determining the length of the stud needed to extend between the pair of construction points uses a robotic total station. The points are defined by x and y coordinates and anticipated z coordinates on upper and lower surfaces. The robotic total station establishes the points by directing a beam of laser light toward anticipated points and, through an iterative process, determining the actual location of the points on upper and lower surfaces that have the same x and y coordinates.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 30, 2014
    Assignee: Trimble Navigation Limited
    Inventors: Robert Michael Miller, James M. McCartney
  • Patent number: 8922759
    Abstract: The invention describes an electronic travel aid (ETA) for blind and visually impaired persons implemented in a detachable handle of a white cane. The device enhances the functionality of the white cane giving the user more detailed information about the environment within a defined corridor of interest in front of the user with an extended range of a few meters up to 10 m. It provides a reliable warning if there is a risk of collision with obstacles including those at trunk or head height, which are not recognized by a conventional white cane. Additional sensors are integrated to delimit the defined corridor during the cane sweeping thereby reducing the amount of information that is transmitted to the user via the tactile interface. Alternatively, the device can be used independently from the cane as an object recognition and orientation aid.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: December 30, 2014
    Assignee: MESA Imaging AG
    Inventors: Roger Gassert, Yeongmi Kim, Thierry Oggier, Markus Riesch, Mathias Deschler, Cornelia Prott, Stefan Beat Schneller, Vincent Hayward
  • Patent number: 8908157
    Abstract: A measuring device for optically measuring a distance to a target object includes an emitter device for emitting an optical measuring beam to the target object, a capturing device including a detection surface for detecting an optical beam returned by the target object, and an evaluation device. The detection surface has a plurality of pixels, each pixel having at least one SPAD (single photon avalanche diode) and each of the plurality of pixels is connected to the evaluation device. The emitting device and the capturing device are configured in such a manner that the optical measurement beam returned by the target object simultaneously illuminates a plurality of pixels. The evaluation device is configured in order to determine the distance between the measuring device and the target object based on the evaluation of detection signals of several pixels.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Eisele, Oliver Wolst, Bernd Schmidtke
  • Patent number: 8902409
    Abstract: An optoelectronic sensor (10) for the detection and distance determination of objects in a monitored area (18) transmits a transmission light beam (14), generates a reception signal from remitted transmission light (20), and determines an object distance from a light time of flight. A reception path between light receiver (24) and evaluation unit (30) is divided into a first and a second partial reception path (46, 48, 50, 52) at a splitter element (44) comprising filtering properties to pass higher frequency parts of the reception signal on to the first partial reception path (46, 48) and lower frequency parts on to the second partial reception path (50, 52). An object's distance is determined from the first and an opacity from the second partial reception signal.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 2, 2014
    Assignee: Sick AG
    Inventors: Jorg Sigmund, Stefan Mack, Michael Kerp
  • Patent number: 8902411
    Abstract: A 3 dimensional (3D) image acquisition apparatus and a method of extracting depth information in the 3D image acquisition apparatus are provided. The method of extracting depth information includes sequentially projecting N (N is a natural number equal to or greater than 3) different pieces of projection light onto a object; modulating N pieces of reflection light reflected from the object with an optical modulation signal having a gain waveform; generating N images by capturing the N pieces of modulated reflection light; generating a first averaged image by multiplying the N images by primary weights and generating a second averaged image by multiplying the N images by secondary weights; acquiring an average phase delay from the first and second averaged images; and calculating a distance to the object from the average phase delay.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-hwa Park, Jang-woo You, Yong-chul Cho
  • Patent number: 8896818
    Abstract: Methods and systems for using spectrally separated light pulses to collect more LIDAR information are presented. In one embodiment, a monochromatic pulse is transmitted to collect range information and a white pulse is transmitted a short time afterwards to collect spectral responsivity information or color of the target. In another embodiment, the white light pulse is used to collect both range and spectral responsivity information of the target. In another embodiment, the spectral separated laser is spatially spread in order to collect range information over more than one point at a time.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 25, 2014
    Assignee: Leica Geosystems AG
    Inventors: Gregory C. Walsh, Alan Aindow
  • Patent number: 8891067
    Abstract: TOF system optical power is augmented using auxiliary optical emitter unit(s) that may be a wireless (WOE), or a plug-wired (PWOE). WOE units sense emitted TOF system optical energy Sout and emit optical energy Sout-n preferably dynamically synchronized in frequency and in phase to Sout as received by the WOE. Each WOE includes at least one optical sensor to detect Sout, and internal feedback ensuring that frequency and phase of the WOE emitted Sout-n optical energy are dynamically synchronized with frequency and phase of the TOF emitted Sout optical energy. PWOE units need no internal feedback but are calibrated by the TOF system to cause a close match between frequency and phase of the PWOE-emitted optical energy with what would be emitted by the TOF system primary optical source. If PWOE(s) are used in isolation, delay difference between PWOE and the TOF primary optical energy source can be software-compensated.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 18, 2014
    Assignee: Microsoft Corporation
    Inventor: Cyrus Bamji
  • Patent number: 8885152
    Abstract: Techniques are disclosed that provide a high-speed synchronized interface for command and control between the sensor and the laser of countermeasure systems. The techniques may be implemented, for example, in a countermeasure system configured for operation with a laser and sensor, wherein the system includes an interface with laser and sensor command control words synchronized with a master clock having an embedded System Heart Beat defining a Master Frame period, a command and control protocol for the laser and the sensor within the Master Frame period; and a T0 sensor to measure the time a laser pulse leaves the system, wherein the sensor uses the measured time as reference to set frame start and timing measurements. The system may support both active ranging and passive tracking (e.g., Master Frame period may include both passive and active sub-frames). The active ranging may include both coarse and fine resolution ranging.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: November 11, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Harold T. Wright
  • Patent number: 8879050
    Abstract: A method for adjusting the modulating frequency and the intensity of the IR illumination of a Time of Flight measurement system proportionally to the speed of movement and the ambient light level of the TOF system, thus adjusting the range of vision of the system dependent on speed. In an alternate embodiment the modulating frequency of a TOF measurement system is periodically adjusted to cover a larger range of vision of the TOF.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Dong-Ik Ko
  • Patent number: 8879049
    Abstract: An object sensing device has a radiation part that radiates an exploring wave forward, a sensing part having a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element sense a reflected wave of the exploring wave radiated by the radiation part; and a determination part. The determination part determines a rainfall state ahead based on an intensity of the reflected wave sensed by the first sensing element. The determination part determines existence or non-existence of an object positioned forward based on an intensity of the reflected wave sensed by the second sensing element. A visual-field restricting member is disposed in front of the first sensing element. The visual-field restricting member causes a visual field, in which the first sensing element senses the reflected wave, to differ from a visual field, in which the second sensing element senses the reflected wave.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventor: Daisuke Itao
  • Patent number: 8873026
    Abstract: Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for proximity sensor distance detection ambiguity removal.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 28, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Carlos M. Puig
  • Patent number: 8853604
    Abstract: An Integrated Laser Field Conjugation System (ILFCS) for end-to-end compensation of high-energy laser for propagation through turbulence with non-cooperative target. ILFCS using interferometric slaving technique and stand-alone adaptive optical systems to effect pre-compensation of amplitude and phase aberrations in turbulent medium, providing pre-compensation for aberrations in a laser amplifier. Performing compensation functions in low-power beam paths, increasing capability, reducing cost, reducing size compensation components for phase correction devices. Pre-compensating low-power master oscillator beam for aberrations in both high-power amplifier and turbulent propagation path-to-target with configuration enabling wavefront sensing of aberrations. Can be configured to perform phase compensation, or compensation of phase/amplitude aberrations. Capability to compensate aberrations in master oscillator beam.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 7, 2014
    Inventor: Jeffrey D. Barchers
  • Patent number: 8848171
    Abstract: Highly accurate electro-optical time of flight distance measuring device for determining a distance to a target, including a transmitter for sending out a pulse shaped optical radiation to the target as well as a receiver for an optical signal built for turning the optical signal to an electrical signal, and a filter with a transfer function for filtering the electrical signal whereby the filter is built in such a way that its transfer-function is of at least 4th order, in particular 5th or 7th or higher order, so that aliasing is suppressed. Further a waveform-sampler, as an analog-to-digital-converter, for digitalizing the pulse shape from the filtered electrical signal as time- and value-quantized digital data, and a computation means for a numerical evaluation of the distance according to the pulse shape or a pulse shape representing numerical signature from the digital data.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Leica Geosystems AG
    Inventors: Reto Stutz, Robert Fritsch, Juerg Hinderling, Marcel Rohner
  • Patent number: 8842259
    Abstract: A coordinate measurement device sends a first light beam to a target which returns a portion as a second beam. The device includes: first and second motors that direct the first beam to a first direction determined by a first angle of rotation about a first axis and a second angle of rotation about a second axis, the first and second angles of rotation produced by the first and second motors, respectively; first and second angle measuring devices that measure first and second angles of rotation, respectively; a distance meter that measures a first distance from the device to the target based in part on a first portion of the second beam; a processor that provides a 3D coordinate of the target based in part on the first distance and the first and second angles of rotation; and a retractable handle at the device top side.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 23, 2014
    Assignee: Faro Technologies, Inc.
    Inventors: Jeremy M. Garey, Jonathan Robert Day, Kenneth Steffey, James K. West
  • Patent number: 8842262
    Abstract: A radar apparatus for detecting a distance to an object by receiving an electromagnetic wave reflected by the object is disclosed. The radar apparatus comprises a scan part and an electromagnetic wave emitter. The scan part includes a polarized light separation member configured to pass a preset first component of the electromagnetic wave and reflect a preset second component of the electromagnetic wave. The first and second components, respectively, are polarized lights having first and second polarization directions, which are perpendicular to each other. The scan part scans the second component of the electromagnetic wave in a predetermine scan angle range by rotating the polarized light separation member around a predetermined rotation axis. The electromagnetic wave emitter emits the electromagnetic wave toward the polarized light separation member of the scan part.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 23, 2014
    Assignee: DENSO CORPORATION
    Inventors: Narihiro Haneda, Hiroshi Ando
  • Patent number: 8836920
    Abstract: A structure of an optical path for laser range finding includes a main body and a light-emitting unit assembled in the main body. The main body has a transmitting channel, a receiving channel and a calibration channel. The light-emitting unit is assembled in the transmitting channel. The light-emitting unit emits an external optical beam and an internal optical beam. The external optical beam is emitted through the transmitting channel. The internal optical beam is emitted to the receiving channel via the calibration channel. An included angle is defined between the external optical beam and the internal optical beam. A receiver is mounted in the receiving channel. Under this arrangement, the external optical beam and the internal optical beam do not interfere with each other.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 16, 2014
    Inventor: Nen-Tsua Li
  • Patent number: 8836923
    Abstract: A light source transmits detecting light toward an object. The object reflects the detecting light and forms a reflected light. A sensor is used for sensing the reflected light. Then, an exposure control unit coupled to the sensor performs luminance convergence on the reflected light according to luminance of the reflected light sensed by the sensor. And a distance measurement device coupled to the sensor detects a distance between the object and the light source and/or the sensor according to an image position of the reflected light on the sensor.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 16, 2014
    Assignee: PixArt Imaging Inc.
    Inventors: En-Feng Hsu, Chi-Chieh Liao, Ming-Tsan Kao
  • Patent number: 8836921
    Abstract: Methods, systems, and apparatuses are provided for estimating a location on an object in a three-dimensional scene. Multiple radiation patterns are produced by spatially modulating each of multiple first radiations with a distinct combination of one or more modulating structures, each first radiation having at least one of a distinct radiation path, a distinct source, a distinct source spectrum, or a distinct source polarization with respect to the other first radiations. The location on the object is illuminated with a portion of each of two or more of the radiation patterns, the location producing multiple object radiations, each object radiation produced in response to one of the multiple radiation patterns. Multiple measured values are produced by detecting the object radiations from the location on the object due to each pattern separately using one or more detector elements. The location on the object is estimated based on the multiple measured values.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: September 16, 2014
    Assignee: Chiaro Technologies LLC
    Inventors: Daniel Feldkhun, Benjamin Braker, Eric Daniel Moore
  • Patent number: 8830485
    Abstract: A laser scanner optically scans and measures an environment, the laser scanner having a base resting in the stationary reference system of the laser scanner, a measuring head rotatable about a vertical axis relative to the base, a measuring head rotatable relative to the base about a vertical axis, a motor supported in the measuring head, the motor having a motor shaft and a gear which, when driven by the motor by the motor shaft, turns the measuring head relative to the base, the gear being configured as a planetary gear.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: September 9, 2014
    Assignee: FARO Technologies, Inc.
    Inventor: Andreas Woloschyn
  • Publication number: 20140240317
    Abstract: A distance detecting device and an image processing apparatus including the same are disclosed. The distance detecting device includes a light source to output light based on a first electric signal, a scanner to sequentially perform first direction a scanner to perform first direction scanning and second direction scanning to output the output light, a detecting unit to detect light received from an external target corresponding to the output light and to convert the received light into a second electric signal, and a processor to calculate a distance from the external target based on the first electric signal and the second electric signal and to control the light source to vary intensity or level of the output light. Consequently, power of light output to the external target is increased.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 28, 2014
    Applicant: LG ELECTRONICS INC.
    Inventors: Nakhoon GO, Sangkeun LEE
  • Patent number: 8810779
    Abstract: Systems, methods, and articles of manufacture for automatic target recognition. A hypothesis about a target's classification, position and orientation relative to a LADAR sensor that generates range image data of a scene including the target is simulated and a synthetic range image is generated. The range image and synthetic range image are then electronically processed to determine whether the hypothesized model and position and orientation are correct. If the score is sufficiently high then the hypothesis is declared correct, otherwise a new hypothesis is formed according to a search strategy.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 19, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Jeffrey Jay Hilde
  • Patent number: 8810778
    Abstract: An optical sensor for measuring at least one of a range, a position, and a profile of an object that is to be measured, the measured object emitting electromagnetic radiation due to the temperature of the object to be measured, and the sensor having a light source for illuminating the surface of the measured object and a detector for detecting the illuminating light reflected at the object to be measured, wherein with respect to the measurability even on the bodies that emit electromagnetic radiation, the light generated by the light source has a wavelength below the peak of the Planck radiation spectrum of the object that is to be measured. A corresponding method is specified.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 19, 2014
    Assignee: Micro-Epsilon Optronic GmbH
    Inventors: Torsten Stautmeister, Tobias Otto
  • Patent number: 8797511
    Abstract: A distance-measuring device for contactless measurement of a distance to an object, including a housing; a contactless measuring apparatus utilizing an optical measuring beam arranged in the housing and having a radiation unit, an optical unit with optical elements encompassing at least a transmitting and receiving lens system, an optical transmitting path with an optical axis for emitting a measuring beam onto the target object, an optical receiving path with an optical axis for receiving a measuring beam that is reflected and/or scattered by the target object. At least one optical element is movable relative to an initial position; a motion sensor detects a movement of the object, the optical element movable out of the initial position into a variable compensation position so that the transmitting path can be stabilized at a spatially fixed position.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 5, 2014
    Assignee: Hilti Aktiengesellschaft
    Inventors: Stefan Tiefenthaler, Johann Hofer, Torsten Gogolla
  • Patent number: 8797512
    Abstract: A three dimensional imaging camera comprises a system controller, pulsed laser transmitter, receiving optics, an infrared focal plane array light detector, and an image processor. The described invention is capable of developing a complete 3-D scene from a single point of view. The 3-D imaging camera utilizes a pulsed laser transmitter capable of illuminating an entire scene with a single high power flash of light. The 3-D imaging camera employs a system controller to trigger a pulse of high intensity light from the pulsed laser transmitter, and counts the time from the start of the transmitter light pulse. The light reflected from the illuminated scene impinges on a receiving optics and is detected by a focal plane array optical detector. An image processor applies image enhancing algorithms to improve the image quality and develop object data for subjects in the field of view of the flash ladar imaging camera.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Advanced Scientific Concepts, Inc.
    Inventors: Roger Stettner, Howard Bailey, Brad Short, Laurent Heughebaert, Patrick Gilliland
  • Patent number: 8797513
    Abstract: In a distance measuring system, photoelectrons are generated depending on light energy received in a light-receiving period predetermined for the emission timing of pulsed light emitted to a target object and are cumulatively stored, and a distance to the target object is determined according to a time-of-flight process. A solid-state image sensing device cumulatively stores therein photoelectrons generated depending on the light energy received in each of the first and second light-receiving periods. The first light-receiving period is part of a rise period of the reflected light intensity received by the image sensing device, and the second light-receiving period includes a peak of the reflected light intensity and a fall period thereof.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 5, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tomoyuki Kamiyama, Keisuke Korekado
  • Patent number: 8792088
    Abstract: A distance-measuring system includes a light source, a light detector, and measuring optics for projecting light emitted by the light source to a target and for guiding light reflected from said target towards the light detector. The distance-measuring system also includes reference optics for guiding light emitted by the light source within the system towards the light detector as internal reference light and a variable attenuator for adjusting intensity of light incident on the light detector. The variable attenuator includes an attenuating filter arranged in a beam path between the measuring optics and the light detector and an actuator coupled to the attenuating filter for moving the attenuating filter. The distance-measuring system further includes an optical selector coupled to at least one of the actuator or the attenuating filter and moved by the actuator together with the attenuating filter.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: July 29, 2014
    Assignee: TRIMBLE Jena GmbH
    Inventor: Hermann Goering
  • Patent number: 8786834
    Abstract: An optical distance measuring apparatus which emits emission light from a light source to an object and receives reflection light from the object with a light-receiving unit, and performs distance measurement based on the emission light and the reflection light, the apparatus including a deflection mechanism provided in an optical path to an irradiation light axis from the light source to the object, the deflection mechanism configured to reflect the emission light to incline a direction of the emission light with respect to the emission light axis of the light source, wherein the deflection mechanism has an optically conjugate relationship with a predetermined position on the emission light axis or on the irradiation light axis, the predetermined position being closer to the object than the deflection mechanism when viewed from the light source.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: July 22, 2014
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Kunihiro Hayashi, Kaoru Kumagai
  • Patent number: 8786837
    Abstract: The present application provides a distance measuring apparatus that can measure a distance with accuracy even when a light receiving level of a reflected light becomes saturated. A light emitting section of the distance measuring apparatus emits a measuring light toward an object to be measured. A light receiving section receives the reflected light being reflected from the object to be measured. A distance calculating section obtains a distance to the object to be measured based on an elapsed time which is from a point the measuring light is emitted until a point a light receiving level of the reflected light indicates a peak thereof. A distance correcting section corrects a value of the distance to the object to be measured depending on a length of saturation time of the light receiving level when the light receiving level becomes saturated and the peak is impossible to identify.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: July 22, 2014
    Assignee: Nikon Vision Co., Ltd.
    Inventor: Hitoshi Ohmuro
  • Patent number: 8780331
    Abstract: An evaluation device for path length measurement configured to evaluate a measured signal representing an intensity of a sequence of pulses of electromagnetic radiation, particularly a sequence of light pulses, as a function of time, after the sequence has traveled through a path length to be measured. The sequence of light pulses is generated with a repetition rate by a radiation source, particularly a light source. The evaluation device is configured to evaluate a first component of the measured signal, which oscillates with a first frequency, and a second component of the measured signal, which the second component oscillates with a second frequency that is greater than the first frequency. The first frequency may correspond to the repetition rate or a multiple of the repetition rate. The second frequency may correspond to another multiple of the repetition rate.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: July 15, 2014
    Assignee: Carl Zeiss AG
    Inventors: Bernd Spruck, Frank Hoeller, Cristina Alvarez Diez