Optical Computing Without Diffraction Patents (Class 359/107)
  • Publication number: 20120008182
    Abstract: A quantum bit computation method includes operating a two-quantum-bit gate on quantum bits of a first physical system and a second physical system, second energy states of second physical systems except for the first physical system and the second physical system do not change, three energy states being represented by |0>, |1> and |3>, the two energy states being represented by |2> and |4>, energies of |2> and |4> being higher than energies of |0>, |1> and |3>, a transition frequency between |3> and |2> being equal to the resonance frequency, |0> and |1> representing quantum bits, flipping quantum bits of first physical systems after operating the two-quantum-bit gate, executing no operations by a time equal to a time for operating the two-quantum-bit gate, after flipping the quantum bits, and again flipping the quantum bits of the first physical systems after executing no operations.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Inventors: Hayato GOTO, Kouichi Ichimura
  • Patent number: 8090558
    Abstract: A method is presented for selecting the order in which parameters are evaluated for inclusion in a model of a film stack, which is by ranking them according to measurement precision. Further, a method is presented for determining which parameters are to be floated, set, or discarded from the model, which is by determining whether average chi-square and chi-square uniformity decreases or increases when the parameter is added to the model. In this manner, a model for the film stack can be quickly assembles with a high degree of accuracy.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: January 3, 2012
    Assignee: KLA-Tencor Corporation
    Inventor: Thaddeus G. Dziura
  • Patent number: 8054072
    Abstract: A quantum computer includes a unit including thin films A, B and C each containing a physical-system group A, B and C formed of physical systems A, B and C, the films A, B and C being alternately stacked in an order of A, B, C, A, . . . , each of the systems A, B and C having three-different-energy states |0>x, |1>x , |e>x, a quantum bit being expressed by a quantum-mechanical-superposition state of |0>x and |1>x , a light source generating light beams having angular frequencies ?A(E), ye, g, ?A(E), ye, e, ?x, ye, gg, ?x, ye, ge, ?x, ye, eg and ?x, ye, ee, ?A(E), ye, g, a unit controlling frequencies and intensities of the beams, and a unit measuring intensity of light emitted from or transmitted through physical-system group A(E) contained in a lowest one of the thin films A to detect a quantum state of the group A(E).
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Ichimura, Hayato Goto
  • Patent number: 8049943
    Abstract: A quantum bit computation method includes operating a two-quantum-bit gate on quantum bits of a first physical system and a second physical system, second energy states of second physical systems except for the first physical system and the second physical system do not change, three energy states being represented by |0>, |1> and |3>, the two energy states being represented by |2> and |4>, energies of |2> and |4> being higher than energies of |0>, |1> and |3>, a transition frequency between |3> and |2> being equal to the resonance frequency, |0> and |1> representing quantum bits, flipping quantum bits of first physical systems after operating the two-quantum-bit gate, executing no operations by a time equal to a time for operating the two-quantum-bit gate, after flipping the quantum bits, and again flipping the quantum bits of the first physical systems after executing no operations.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hayato Goto, Kouichi Ichimura
  • Patent number: 8027587
    Abstract: A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N×1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M×N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: September 27, 2011
    Assignee: Sandia Corporation
    Inventor: Michael R. Watts
  • Patent number: 8009937
    Abstract: An optical resonator configured to be tuned using a charge-based memory cell includes an optical cavity configured to transmit light and receive injected charge carriers; a charge-based memory cell in proximity to or within the optical cavity, the memory cell containing a number of trapped charges which influence the resonant optical frequency of the optical resonator. A method of tuning an optical resonator includes applying a voltage or current to a charge-based memory cell to generate a non-volatile charge within the memory cell, the nonvolatile charge changing a resonant frequency of the optical resonator.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Mathai, Alexandre Bratkovski, Duncan Stewart
  • Patent number: 7920704
    Abstract: Systems and methods for obtaining information on a key in the BB84 (Bennett-Brassard 1984) protocol of quantum key distribution are provided. A representative system comprises a quantum cryptographic entangling probe, comprising a single-photon source configured to produce a probe photon, a polarization filter configured to determine an initial probe photon polarization state for a set error rate induced by the quantum cryptographic entangling probe, a quantum controlled-NOT (CNOT) gate configured to provide entanglement of a signal with the probe photon polarization state and produce a gated probe photon so as to obtain information on a key, a Wollaston prism configured to separate the gated probe photon with polarization correlated to a signal measured by a receiver, and two single-photon photodetectors configured to measure the polarization state of the gated probe photon.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: April 5, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Howard E. Brandt
  • Patent number: 7858177
    Abstract: The present invention provides: a microcapsule composition for electrophoretic displays; a production process for the microcapsule composition for the electrophoretic displays; a production process for a sheet for the electrophoretic displays; and a handling method for microcapsules for the electrophoretic displays; wherein the microcapsule composition contains microcapsules and, when used for the electrophoretic displays, can make them as excellent as conventional in various performances (e.g. longtime stability of displaying, respondability of displaying, contrast, and number of times of display rewritability) and, particularly above all, can make the electrophoretic displays exhibit a very high performance as to the contrast.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 28, 2010
    Assignees: Seiko Epson Corporation, Nippon Shokubai Co., Ltd.
    Inventors: Sadao Kanbe, Hideyuki Kawai, Mitsuo Kushino, Makoto Matsumoto
  • Publication number: 20100309535
    Abstract: A method for shutter glass eyewear control provides for a command sequence having precise shutter timing and control information for opening and closing the left and right shutters of shutter glass eyewear. The infrared signal commands are offset from the corresponding shutter action to minimize interference while still allowing the eyewear to track changes in the timing of the infrared signal received from a display system. Command sequence encodings are provided for enhanced interference rejection.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 9, 2010
    Applicant: RealD INC.
    Inventors: Roger Landowski, Greg Graham, Robert R. Rotzoll, Douglas J. Gorny
  • Publication number: 20100284050
    Abstract: An N-nary photonic transistor (PT) based on a heterojunction optical semiconductor microstructure is presented. The PT has one control signal input, one data signal input, and one output. The lights for each input can be one of the wavelengths within the N number (N-nary) of predetermined lightwaves. The output light of the PT is determined by the inputs in accordance with the switching function of the PT. The PT can be used to construct either N-nary digital logic gates or binary Boolean logic gates. For the N-nary system, both the wavelength domain and intensity domain of the lights are used which forms a two dimensional logic system. An optical AND gate, which can be used as either N-nary or binary, is constructed using the current photonic transistor, which is also presented herein.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 11, 2010
    Inventor: Shaowen Song
  • Patent number: 7831117
    Abstract: An N-nary photonic transistor (PT) based on a heterojunction optical semiconductor microstructure is presented. The PT has one control signal input, one data signal input, and one output. The lights for each input can be one of the wavelengths within the N number (N-nary) of predetermined lightwaves. The output light of the PT is determined by the inputs in accordance with the switching function of the PT. The PT can be used to construct either N-nary digital logic gates or binary Boolean logic gates. For the N-nary system, both the wavelength domain and intensity domain of the lights are used which forms a two dimensional logic system. An optical AND gate, which can be used as either N-nary or binary, is constructed using the current photonic transistor, which is also presented herein.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: November 9, 2010
    Inventor: Shaowen Song
  • Patent number: 7801309
    Abstract: A private key delivery system and a private key delivery method are disclosed. The private key delivery system includes a transmitter, a receiver, and an optical transmission line connecting the transmitter and the receiver. The transmitter includes a single photon generating unit for simultaneously generating two or more single photons having different wavelengths using a quantum dot structure that has quantum dots of various sizes, an optical splitter for splitting the single photons by wavelengths, a phase modulating unit for modulating each of the single photons split by the wavelengths with private key information, and an optical multiplexer for multiplexing the modulated single photons of the different wavelength and for transmitting the multiplexed single photons to the optical transmission line. The multiplexed single photons are received by the receiver, and the private key information is taken out from the received single photons.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: September 21, 2010
    Assignee: Fujitsu Limited
    Inventors: Kazuya Takemoto, Tatsuya Usuki
  • Patent number: 7791780
    Abstract: Nonlinear elements can efficiently implement quantum information processing systems such as controlled phase shifters, non-absorbing detectors including parity detectors, quantum subspace projections, non-absorbing Bell state analyzers, non-absorbing encoders/entanglers, and fundamental quantum gates such as CNOT gates. The non-absorbing detectors permit improvements in the efficiency of a probabilistic quantum gate by permitting reuse of the same photonic resources during multiple passes through the probabilistic gate.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 7, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: William J. Munro, Timothy P. Spiller, Kae Nemoto
  • Patent number: 7791052
    Abstract: A method of generating a single photon, includes preparing an optical resonator including a resonator mode of a resonance angular frequency ?c, preparing a material contained in the optical resonator, including a low energy state |g> and a high energy state |e>, and including a transition angular frequency ?a between |g>?|e> that is varied by an external field, applying, to the material, light of an angular frequency ?l different from the resonance angular frequency ?c, and applying a first external field to the material to vary the transition angular frequency ?a to resonate with the angular frequency ?l, such that a state of the material is changed to |e>, and then applying a second external field to the material to vary the transition angular frequency ?a to resonate with the resonance angular frequency ?c, such that the state of the material is restored to |g>.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Ichimura, Hayato Goto
  • Publication number: 20100165432
    Abstract: Improved optical vector matrix multipliers are disclosed. The multipliers comprise: a plurality of light sources, each operable to radiate light of intensity ui; fan-out optics arranged to expand the light radiated by the light sources in one dimension; a spatial light modulator comprising a plurality of light modulating zones, each zone receiving light from one of the light sources and being operable to modulate the intensity of said received light by a factor of vij; and fan-in optics arranged to focus the modulated light onto a plurality of light detectors. The fan out optics, spatial light modulator, and fan-in optics are arranged such that an intensity of light proportional to ? i ? ? u i ? v ij is received at each light detector; and the fan-out optics comprise guided-wave optical components. Specific embodiments are disclosed in which the fanout optics comprise optical splitters, or a partially guiding wedge prism.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 1, 2010
    Applicant: BAE SYSTEMS plc
    Inventors: Leslie Charles Laycock, Vincent Andrei Henderek
  • Patent number: 7719736
    Abstract: In the field of optical quantum information processing, manipulation of single photon qubits in frequency modes employs a frequency beamsplitter employs an asymmetric two-path interferometer, reversible down to the quantum limit. A first partially transmitting mirror splits photons into first and second paths. A time delay element introduces a differential time delay into the second path. And a second partially transmitting mirror mixes the two paths again to form two outputs. A half-wave plate utilizes two of the beam splitters.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 18, 2010
    Assignee: Qucor Pty Ltd. A.C.N.
    Inventors: Timothy Cameron Ralph, Elanor Huntington
  • Publication number: 20100085496
    Abstract: An optical processing system is described that allows rapid evaluation of derivatives and partial derivatives by means of optical Fourier transformation. In embodiments, separate filtering steps are used to provide phase and amplitude changes.
    Type: Application
    Filed: March 10, 2008
    Publication date: April 8, 2010
    Applicant: Cambridge Correlators Ltd
    Inventors: Nicholas James New, Andrew John Lowe, Timothy David Wilkinson, John Robert Brocklehurst
  • Publication number: 20100079833
    Abstract: A system and method for the controlled generation, manipulation, and conversion of individual photons in and for a quantum computing environment or a quantum communication environment are provided. Systems and methods for doubling a single photon in a first propagation mode into two new photons in one or two new propagation modes, combining two photons in one or two propagation modes into a single photon of a single propagation mode, and implementing a pi phase shift on a two-photon state but not on the one-photon state in a fully controlled, consistent, and repeatable fashion are also provided, as well as a source of individual photons having clearly defined and fully controllable properties. Embodiments of the above allow for generation and conversion operations that are up to 100% efficient. The generation, conversion, combination, and phase shifting operations are preferably carried out inside a non-linear ?3 material of a predetermined length.
    Type: Application
    Filed: September 28, 2009
    Publication date: April 1, 2010
    Inventors: Nathan K. Langford, Sven Ramelow
  • Publication number: 20100033786
    Abstract: An optical circuit comprises a bistable optical waveguide (34) having a first and a second transmission state. The waveguide is more transmissive to light of a given wavelength in the second state than in the first state. A first light source (11) and a second light source (21) emit light of a first and second wavelength respectively and are coupled to the waveguide at one end. Selective transmission of a sufficient amount of light of the first wavelength through the waveguide “sets” the waveguide, causing it to switch from the first into the second state, whereas transmission of a sufficient amount of light of the second wavelength “resets” the waveguide causing it to switch back from the second into the first state. A sensing or reading (“test”) light source (36) is arranged at the other end of the waveguide to transmit a sensing light signal through the waveguide (34) in the opposite propagation direction to that of light of the first and second wavelengths.
    Type: Application
    Filed: September 22, 2006
    Publication date: February 11, 2010
    Inventors: Nicola Andriolli, Antonella Bogoni, Luca Poti, Antonio Malacarne
  • Publication number: 20100027087
    Abstract: An optical correlation apparatus is taught which provides a parallel optical signal having a phase modulation representing input data to which a parallel phase modulation based on reference data is applied. In the event of correlation the resulting wavefront is planar and can be interferometrically coupled to give a high intensity signal. The invention involves use of parallel amplitude modulation means for selectively blocking the optical signal in one or more of the channels of the parallel optical signal which allows different sized reference data strings to be searched more easily and also aids in calibration.
    Type: Application
    Filed: December 17, 2007
    Publication date: February 4, 2010
    Applicant: QINETIQ LIMITED
    Inventors: Andrew Charles Lewin, Gregor John McDonald, Douglas Alan Payne, Rebecca Anne Wilson
  • Publication number: 20090296178
    Abstract: To provide an optically reconfigurable logic circuit in which a mount area of an optical circuit is reduced as much as possible and a high gate density is realized. In an optically reconfigurable logic circuit 1 provided with a plurality of configuration information input circuits 6 for converting an optical signal including logic circuit configuration information into an electric signal and holding and outputting this electric signal and a logic configuration variable circuit 7 for performing logic configuration on the basis of the logic circuit configuration information, the configuration information input circuits 6 holds the logic circuit configuration information as electric charge with use of a junction capacitance and a floating capacitance of a photoconductive device P. An inter-terminal voltage of the photoconductive device P is converted into binary data by a binary circuit and output as a circuit configuration signal.
    Type: Application
    Filed: May 11, 2005
    Publication date: December 3, 2009
    Applicant: Japan Science and Technology Agency
    Inventors: Minoru Watanabe, Fuminori Kobayashi
  • Publication number: 20090273820
    Abstract: The invention is a system and method for performing all-optical modulation. A semiconductor layer having a defined thickness has an insulator adjacent one surface of the semiconductor. Conductive layers are provided adjacent the semiconductor layer and the insulator. A photodetector is provided to generate an electric field across the conductive layers in response to an input optical gate signal. An input optical signal is modulated by interaction with a plasmon wave generated at the semiconductor/conductive layer interface. By defining the thickness of the semiconductor layer, a desired wavelength of light supports the plasmon waves. Operation of the all-optical modulator requires the provision of an input optical signal of a desired wavelength and the provision of a gate optical signal. An output optical signal is recovered and can be used to store, display or transmit information, for example over a fiber optic communication system, such as a telecommunication system.
    Type: Application
    Filed: March 24, 2009
    Publication date: November 5, 2009
    Inventors: Jennifer A. Dionne, Kenneth A. Diest, Luke Sweatlock, Harry A. Atwater
  • Publication number: 20090273821
    Abstract: An all-optical modulation format converter for converting optical data signals modulated in an on-off-keying (OOK) format to a phase-shift-keying (PSK) format. The OOK-to-PSK converter can be coupled to a delay-line interferometer to provide an all-optical wavelength converter for differential PSK (DPSK). The OOK-to-PSK converter can also be used in all-optical implementations of various functions, including, for example, exclusive-OR (XOR/NXOR) and OR logic, shift registers, and pseudo-random binary sequence (PRBS) generators.
    Type: Application
    Filed: July 6, 2009
    Publication date: November 5, 2009
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Inuk KANG
  • Publication number: 20090219597
    Abstract: A multivariate optical computing and analysis system includes a light source configured to radiate a first light along a first ray path; a modulator disposed in the first ray path, the modulator configured to modulate the first light to a desired frequency; a spectral element disposed proximate the modulator, the spectral element configured to filter the first light for a spectral range of interest of a sample; a cavity disposed in communication with the spectral element, the cavity configured to direct the first light in a direction of the sample; a tube disposed proximate the cavity, the tube configured to receive and direct a second light generated by a reflection of the first light from the sample, the tube being further configured to separate the first and second lights; a beamsplitter configured to split the second light into a first beam and a second beam; an optical filter mechanism disposed to receive the first beam, the optical filter mechanism configured to optically filter data carried by the firs
    Type: Application
    Filed: November 27, 2006
    Publication date: September 3, 2009
    Applicant: UNIVERSITY OF SOUTH CAROLINA
    Inventors: Michael L. Myrick, Jonathan H. James, John C. Blackburn, Robert P. Freese
  • Publication number: 20090213444
    Abstract: A quantum bit computation method includes operating a two-quantum-bit gate on quantum bits of a first physical system and a second physical system, second energy states of second physical systems except for the first physical system and the second physical system do not change, three energy states being represented by |0>, |1> and |3>, the two energy states being represented by |2> and |4>, energies of |2> and |4> being higher than energies of |0>, |1> and |3>, a transition frequency between |3> and |2> being equal to the resonance frequency, |0> and |1> representing quantum bits, flipping quantum bits of first physical systems after operating the two-quantum-bit gate, executing no operations by a time equal to a time for operating the two-quantum-bit gate, after flipping the quantum bits, and again flipping the quantum bits of the first physical systems after executing no operations.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 27, 2009
    Inventors: Hayato GOTO, Kouichi ICHIMURA
  • Patent number: 7560726
    Abstract: Quantum information processing structures and methods use photons and four-level matter systems in electromagnetically induced transparency (EIT) arrangements for one and two-qubit quantum gates, two-photon phase shifters, and Bell state measurement devices. For efficient coupling of the matter systems to the photons while decoupling the matter systems from the phonon bath, molecular cages or molecular tethers maintain the atoms within the electromagnetic field of the photon, e.g., in the evanescent field surrounding the core of an optical fiber carrying the photons. To reduce decoherence caused by spontaneous emissions, the matter systems can be embedded in photonic bandgap crystals or the matter systems can be selected to include metastable energy levels.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: July 14, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Adrian P. Kent, Philip J. Kuekes, William J. Munro, Timothy P. Spiller, R. Stanley Williams
  • Patent number: 7554707
    Abstract: An optical logic circuit is disclosed. The optical logic circuit is configured on a substrate of a first material. The optical logic circuit also has an optical layer which overlays the substrate layer and is at least partially configured of a second material. The optical layer is patterned to provide a plurality of optical pathways. At least one of the optical pathways transmits an optical bias and at least one optical pathway is configured to provide an optical input and at least one optical pathway is configured to provide an optical output. The optical pathways are configured to provide a Boolean logic output based on the at least one optical input.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: June 30, 2009
    Assignee: Mindspeed Technologies, Inc.
    Inventor: Khosrow Golshan
  • Publication number: 20090153952
    Abstract: An optical resonator includes a master resonator configured to resonate an electromagnetic wave, one structure or a pair of structures adjacent to each other, each of which is arranged at a position that overlaps one of resonance modes of the master resonator, is made up of a material in which a real part of a permittivity assumes a negative value, and an absolute value of the real part is larger than an absolute value of an imaginary part of the permittivity, and has a size which makes scattering that the electromagnetic wave suffers be Rayleigh scattering, and one or a plurality of particles, each of which is laid out near the structure by a distance smaller than the size of the structure.
    Type: Application
    Filed: September 19, 2008
    Publication date: June 18, 2009
    Inventors: Satoshi MITSUGI, Kouichi ICHIMURA, Hayato GOTO
  • Publication number: 20090091812
    Abstract: A quantum computer includes physical systems, included in an optical resonator, having at least four energy states, and in which letting |0>, |1>, |3>, and |2> be the four energy states, an energy of |2> is higher than energies of |0>, |1>, and |3>, a transition frequency of a |0>?|2> transition is equal to the resonance frequency, and |0> and |1> express a quantum bit, a first source emitting light that resonates with the optical resonator, a second source irradiating specific physical systems of the physical systems with light that couples |3> and |2>, a light detector detecting a photon emitted from the optical resonator, and a controller controlling the first source to irradiate the optical resonator with light and controlling the light detector to perform light detection during irradiation of the light that couples |3> and |2> from the second source to the specific physical systems.
    Type: Application
    Filed: September 18, 2008
    Publication date: April 9, 2009
    Inventors: Hayato GOTO, Kouichi Ichimura
  • Patent number: 7512237
    Abstract: A multiplexing technique for optical communications used to create a pseudo-random communications signal in the optical domain such that only the sender and/or receiver can decode the signal. The multiplexing technique may include one or more information-bearing optical signals combined with one or more dynamic pseudo-randomly-generated optical signals to create a combined dynamic subcarrier multiplexed privacy-protected output signal. The information-bearing signal is protocol-independent and can be of mixed type, such as RF, analog, and/or digital. Only the receiver of the privacy-protected signal may decode the pseudo-random signal so as to disclose the information-bearing signal. The present invention may use dynamic subcarrier multiplexing selection based on standard digital encryption and the use of optical range time to ensure synchronization.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: March 31, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Howard J. Schantz, Rick C. Stevens, Steven H. Ernst
  • Patent number: 7492494
    Abstract: A quantum computer includes: N (where N is an integer of at least 2) physical systems having five states |0>, |1>, |2>, |3> and |4> in which transitions between three lower states |0>, |1> and |2> and two upper states |3> and |4> are optically allowed; and an optical resonator in which the N physical systems are disposed. A transition frequency of a transition between |2> and |3> in all physical systems is equal to a resonant frequency of the optical resonator, a distribution width of a transition frequency between |3> and |4> is at least N times greater than a maximum value of transition frequencies between the three lower states, and light which is resonant with a transition between |0> and |4>, between |1> and |4>, or between |2> and |4> in a certain physical system is sufficiently off-resonant with all optical transitions in other physical systems.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 17, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hayato Goto, Kouichi Ichimura
  • Patent number: 7426444
    Abstract: Various embodiments of the present invention are directed to methods for determining a phase shift acquired by an entangled N-qubit system represented by a NOON state. In one embodiment, a probe electromagnetic field is coupled with each qubit system. The phase shift acquired by the qubit systems is transferred to the probe electromagnetic field by transforming each qubit-system state into a linear superposition of qubit basis states. An intensity measurement is performed on the probe electromagnetic field in order to obtain a corresponding measurement result. A counter associated with a measurement-result interval is incremented, based on the measurement result falling within the measurement-result interval. A frequency distribution is produced by normalizing the counter associated with each measurement-result interval for a number of trials.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: September 16, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, William J. Munro, Timothy P. Spiller, Pieter Kok, Sean D. Barrett, Kae Nemoto
  • Patent number: 7423793
    Abstract: A method for decoding a digital signal includes receiving a multiple-bit digital signal that includes information to be transmitted; arraying bit strings of the received multiple-bit digital signal to thereby generate a received signal image as a two-dimensional image; arraying all types of predetermined proper signals used for signals transmitted and bit strings of patterns including errors each derived from each proper signal to thereby generate a different two-dimensional image and disposing a set of received signal patterns, each comprised of an arbitrary proper signal and a group of two-dimensional images of patterns having the arbitrary proper signal added with an error, in a state that enables identification of each proper signal to thereby generate a received signal pattern image; using optical signal processing to evaluate a coefficient of correlation between the received signal image and the received signal pattern image to thereby obtain a correlation projection image in which depth and brightness
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: September 9, 2008
    Assignee: National Institute of Information and Communication Technology
    Inventor: Motokazu Shikatani
  • Patent number: 7421414
    Abstract: Split machine learning systems can be used to generate an output for an input. When the input is received, a determination is made as to whether the input is within a first, second, or third range of values. If the input is within the first range, the output is generated using a first machine learning system. If the input is within the second range, the output is generated using a second machine learning system. If the input is within the third range, the output is generated using the first and second machine learning systems.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 2, 2008
    Assignee: Timbre Technologies, Inc.
    Inventors: Wei Liu, Junwei Bao
  • Publication number: 20080192315
    Abstract: A quantum computer includes: N (where N is an integer of at least 2) physical systems having five states |0>, |1>, |2>, |3> and |4> in which transitions between three lower states |0>, |1> and |2> and two upper states |3> and |4> are optically allowed; and an optical resonator in which the N physical systems are disposed. A transition frequency of a transition between |2> and |3> in all physical systems is equal to a resonant frequency of the optical resonator, a distribution width of a transition frequency between |3> and |4> is at least N times greater than a maximum value of transition frequencies between the three lower states, and light which is resonant with a transition between |0> and |4>, between |1> and |4>, or between |2> and |4> in a certain physical system is sufficiently off-resonant with all optical transitions in other physical systems.
    Type: Application
    Filed: February 11, 2008
    Publication date: August 14, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hayato Goto, Kouichi Ichimura
  • Patent number: 7411807
    Abstract: A memory device includes a semiconductor substrate in which memory circuitry has been fabricated. An address converter and a control signal converter are coupled to an address decoder and control logic, respectively. The address and control converters are operable to receive and convert optical address and control signals, respectively, into corresponding electrical address signals applied to the address decoder and control signals applied to the control logic. A read/write circuit on the substrate is coupled to a data converter formed in the substrate. The data converter is operable to receive and convert optical write data signals into corresponding electrical data signals to be applied to the read/write circuit and to receive and convert electrical read data signals into corresponding optical read data signals.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: George R. Taylor
  • Patent number: 7359101
    Abstract: Quantum testing can compare unknown photon states in a manner suitable for a validation check of a quantum digital signature, testing of the operation of a quantum gate, or detecting of entanglement. The effect of the QSC system can be used to entangle input photon states. QSC system can include a control swap gate having a control channel that is measured, a beam splitter and a controlled phases gate with a control channel that is measured, or a beam splitter with a parity detector on an output channel. The operation of the QSC system can also be used to generate an entangled photon state.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 15, 2008
    Assignee: Hewleet-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, William J. Munro, Timothy P. Spiller, Willem K. van Dam
  • Patent number: 7359928
    Abstract: A hardware quantum gate for running quantum algorithms in a very fast manner exploits the fact that a large number of multiplications required by an entanglement operation of the quantum algorithm provides a null result since only one component per row of the entanglement matrix UF is not a null. The entanglement operation generates an entanglement vector by permuting pairs of opposite components of a linear superposition vector, depending on the value assumed by the function f. More specifically, if function f is null in correspondence to the vector identified by the first (leftmost) n qubits in common with the two n+1 qubit vectors, in which a pair of opposite components of the superposition vector is referred to, then the corresponding pair of components of the entanglement vector is equal to that of the superposition vector, otherwise it is the opposite.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: April 15, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventors: Domenico Porto, Marco Branciforte, Lucio Ticli
  • Patent number: 7355769
    Abstract: An optical switch and optical storage loop are used as the basis of a single-photon source and a quantum memory for photonic qubits. To operate as a single-photon source, the techniques include a source of a pair of photons, such as a parametric down-conversion crystal, which is known to emit photons in pairs. The detection of one member of the pair activates the switch, which re-routes the other member into the storage loop. The stored photon is then known to be circulating in the loop, and can be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. To operate as a quantum memory for photonic qubits, a single-photon in an arbitrary initial polarization state is coherently stored in the loop, and coherently switched out of the loop when needed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 8, 2008
    Assignee: The Johns Hopkins University
    Inventors: Todd B. Pittman, James D. Franson
  • Patent number: 7334008
    Abstract: A quantum gate for running a Grover's quantum algorithm using a binary function having a vector basis of n qubits is provided. The quantum gate includes a superposition subsystem, an entanglement subsystem and an interference subsystem. The interference subsystem performs an interference operation on components of entanglement vectors for generating components of output vectors. The interference subsystem performs the interference operation in a very fast manner by using an adder receiving as input signals representing even or odd components of an entanglement vector, and generating a sum signal representing a weighted sum with a scale factor of the even or odd components.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: February 19, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventors: Marco Branciforte, Antonio Calabro', Domenico Porto
  • Publication number: 20070273945
    Abstract: An inspection system may be configured to inspect objects, such as semiconductor wafers, using narrow-pulse broadband illumination. The illumination may be obtained in some embodiments using a laser configured to emit light into a material having a spectral broadening effect. The inspection system can include various filters which may be selectively placed in the illumination and/or imaging path in order to tune the spectrum of light impinging on the wafer and the light that is detected. The filters may include selectable filters, fixed filters, and filters whose characteristics can be adjusted in-place. In some embodiments, filters may be used to match the illumination/detection spectra of different tools. Additionally, the broadband illumination may be tuned between inspections and/or during inspections for best results. The system may support Fourier filtering whereby light, related to repetitive features of the object and in one or more wavelength sub-bands of the illumination, may be filtered.
    Type: Application
    Filed: March 9, 2007
    Publication date: November 29, 2007
    Inventors: Dov Furman, Shai Silberstein
  • Patent number: 7289347
    Abstract: A memory device includes a semiconductor substrate in which memory circuitry has been fabricated. An address converter and a control signal converter are coupled to an address decoder and control logic, respectively. The address and control converters are operable to receive and convert optical address and control signals, respectively, into corresponding electrical address signals applied to the address decoder and control signals applied to the control logic. A read/write circuit on the substrate is coupled to a data converter formed in the substrate. The data converter is operable to receive and convert optical write data signals into corresponding electrical data signals to be applied to the read/write circuit and to receive and convert electrical read data signals into corresponding optical read data signals.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 30, 2007
    Assignee: Micron Technology, Inc.
    Inventor: George R. Taylor
  • Patent number: 7218430
    Abstract: A Combinatorial Optical Processor and method for the architecture of optical systems utilizes one or more optical modules, each module including a number of individually addressable optical elements. The optical elements are arranged and addressed in a combinatorial-arithmetic fashion such that a set of optical filter functions are defined, and can be performed, by the optical modules. The number of optical filter functions may be an exponential function of the number of addressable optical elements. Additionally, each of the optical filter functions may be addressed at random and a plurality of such functions may be addressed simultaneously. Apparatus, such as imaging systems, may employ the Combinatorial Optical Processor in order to include without limitation the features of being solid-state, projection of images into free space and random addressability of the filter functions of the system.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: May 15, 2007
    Inventor: Robert G Batchko
  • Patent number: 7203715
    Abstract: A method of performing a Grover's or a Deutsch-Jozsa's quantum algorithm being input with a binary function defined on a space having a basis of vectors of n of qubits includes carrying out a superposition operation over input vectors for generating components of linear superposition vectors referred to a second basis of vectors of n+1 qubits. An entanglement operation is performed over components of the linear superposition vectors for generating components of numeric entanglement vectors. The method allows a non-negligible time savings because the entanglement operation does not multiply a superposition vector for an entanglement matrix, but generates components of an entanglement vector simply by copying or inverting respective components of the superposition vector depending on values of the binary function. An interference operation is performed over components of the numeric entanglement vectors for generating components of output vectors.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: April 10, 2007
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gianguido Rizzotto, Paolo Amato, Domenico Porto
  • Patent number: 7200024
    Abstract: A memory device includes a semiconductor substrate in which memory circuitry has been fabricated. An address converter and a control signal converter are coupled to an address decoder and control logic, respectively. The address and control converters are operable to receive and convert optical address and control signals, respectively, into corresponding electrical address signals applied to the address decoder and control signals applied to the control logic. A read/write circuit on the substrate is coupled to a data converter formed in the substrate. The data converter is operable to receive and convert optical write data signals into corresponding electrical data signals to be applied to the read/write circuit and to receive and convert electrical read data signals into corresponding optical read data signals.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventor: George R. Taylor
  • Patent number: 7180645
    Abstract: An apparatus for generating a quantum state of a two-qubit system including two qubits, each qubit being represented by a particle which invariably travels through one of two paths, includes a quantum gate composed of an interferometer for implementing an-interaction-free measurement. The apparatus receives two particles having no correlation and generates a Bell state with asymptotic probability 1. A Bell measurement of a state of a two-qubit system is performed by observing a quantum gate composed of the interferometer after the quantum gate has processed the state and selecting the state from the Bell bases. An approximate fidelity of a quantum gate composed of the interferometer is calculated, if an absorption probability with which a first particle absorbs a second particle in the interferometer is less than 1, under the condition that the number of times the second particle hits beam splitters in the interferometer is sufficiently large.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: February 20, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroo Azuma
  • Patent number: 7164955
    Abstract: The process for the on-line characterization of a surface in motion, preferably a galvannealed sheet, essentially comprises an industrial microscope associated with a stroboscopic laser illumination device, a positioning assembly, an assembly for acquiring and processing images. The obtained view fields vary between 125 ?m and 2000 ?m in width, the spatial resolution is at least 0.5 ?m, and the focussing of the system is precise to a micrometer. The images are taken on a product moving at a speed of between 1 m/s and 20 m/s and are frozen by the use of a stroboscopic illumination device with a duration of illumination of at least 10 ns. The obtained images are processed in several steps. A background average level is first of all regularly evaluated in order to be eliminated from each current image. The processed image is then divided into several zones. The sharpness of each zone is evaluated and stored in memory.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: January 16, 2007
    Assignee: Centre de Recherches Metallurgiques, A.S.B.L.
    Inventors: Geneviève Moreas, Yves Hardy, Marc Schyns
  • Patent number: 7133173
    Abstract: Nonlinear electromagnetic elements can efficiently implement quantum information processing tasks such as controlled phase shifts, non-demolition state detection, quantum subspace projections, non-demolition Bell state analysis, heralded state preparation, quantum non-demolition encoding, and fundamental quantum gate operations. Direct use of electromagnetic non-linearity can amplify small phase shifts and use feed forward systems in a near deterministic manner with high operating efficiency. Measurements using homodyne detectors can cause near deterministic projection of input states on a Hilbert subspace identified by the measurement results. Feed forward operation can then alter the projected state if desired to achieve a desired output state with near 100% efficiency.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: November 7, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Jr., William J. Munro, Timothy P. Spiller, Sean D. Barrett, Pieter Kok, Kae Nemoto
  • Patent number: 7130093
    Abstract: Method and an optical computation device for obtaining an indication about the existence of a feasible solution for a bounded instance of a problem that belongs to the non-deterministic polynomial class of problems, using parallel optical computations employing a multitude of light rays simultaneously propagating along paths in an optical arrangement. An optical arrangement that can implement a universal non deterministic Turing Machine that can solve bounded instances of problems of the class is determined. An initial incoming ray is directed to a point in the optical arrangement, that represents the initial configuration of the universal non deterministic Turing Machine, such that the initial configuration corresponds to the bounded instance. Each incoming ray is split within the optical arrangement into two or more outgoing rays at pre-determined locations in the optical arrangement.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: October 31, 2006
    Inventors: Shlomo Dolev, Yuval Nir
  • Patent number: 7126731
    Abstract: An optical latch based on a lasing semiconductor optical amplifier is disclosed. The optical latch is configured to achieve one or more stable states in response to the input of predetermined signals at a “SET” input and a “RESET” input of the optical latch. The optical latch includes first and second LSOAs, each of which is configured to receive a pump input and generate an amplifier output. Each LSOA is also associated with a respective combiner and splitter. The combiner associated with each LSOA combines an input signal from the “SET” or “RESET” input, as applicable, with a signal received from the splitter of the other LSOA and the resulting combined signal is then input to the LSOA. Each splitter receives a ballast laser output from the associated LSOA, which is then split into two signals, namely, an input to the combiner of the other LSOA and an output signal.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 24, 2006
    Assignee: Finisar Corporation
    Inventors: Sol P DiJaili, Jeffrey D Walker, John M Wachsman