Using Plural Mediums Patents (Class 359/250)
  • Patent number: 10743206
    Abstract: Techniques discussed herein can facilitate measurement gap configuration and/or determination of activation or deactivation delays for NR (New Radio) UEs (User Equipments). A first set of aspects can involve coordination of measurement gap configuration for a UE between a MN (Master Node) and SN (Secondary Node). A second set of aspects can involve estimation of timing for activation and/or deactivation of SCell(s) (Secondary Cell(s)) in DC (Dual Connectivity) scenarios. Various embodiments can employ techniques of the first set of aspects and/or the second set of aspects.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventors: Candy Yiu, Jie Cui, Youn Hyoung Heo, Seau Lim, Yang Tang
  • Patent number: 10606093
    Abstract: A retarder that comprises at least two plates, each of which comprise two surfaces that are parallel to, or substantially parallel to one another, said plates being tipped with respect to one another so that the surfaces of one thereof are not parallel to the surfaces of the other, each said plate further comprising a biased fast axis that is neither parallel to, or perpendicular to surfaces of said plates.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 31, 2020
    Assignee: J.A. WOOLLAM CO., INC.
    Inventor: Craig M. Herzinger
  • Patent number: 10073286
    Abstract: The substrate-type optical waveguide includes a rib-slab type core. A depletion layer exists in a rib part and, in any cross section of the core, a width of a first slab part is set to be greater than a width of a second slab part.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: September 11, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Shinichi Sakamoto, Norihiro Ishikura
  • Patent number: 9442362
    Abstract: A method and apparatus involves directing light captured within the field of view of the lens to an aperture plane of the lens, receiving the captured light at a spatial discriminator located proximate the aperture plane, the discriminator including a first portion disposed to transmit light having a first optical state through a first portion of the single imaging path and a second portion disposed to transmit light having a second optical state through a second portion of the single imaging path. The first and second portions of the single imaging path provide respective first and second perspective viewpoints within the field of view of the lens for forming respective first and second images at an image sensor disposed at an image plane of the lens. The first and second images together being operable to represent three dimensional spatial attributes of the objects.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: September 13, 2016
    Assignee: Steropes Technologies, LLC
    Inventors: Thomas N. Mitchell, Ichiro Shinkoda
  • Publication number: 20140340728
    Abstract: An electronically dimmable optical device, including, in sequence, an active absorbing polarizer; a first static reflective polarizer; an active polarization rotator; and a second static reflective polarizer; configured so that the reflectivity and/or transmissivity of the device can be controlled (increased or decreased) by application of a voltage across the active absorbing polarizer and/or the active polarization rotator. One or more polarization levels can be selected by controlling the voltage at the active absorptive polarizer such that setting the active absorptive polarizer to a selected polarization level determines the brightness of an image produced by the device.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 20, 2014
    Inventor: Bahman TAHERI
  • Publication number: 20140333875
    Abstract: A phase retarder comprises first and second ?-cells or other tunable birefringent devices arranged optically in series. The phase retardation value of the phase retarder is a difference between the phase retardation values of the first and second ?-cells. Driving circuitry drives the phase retarder to generate a target phase retardation value by: (1) prior to a relaxation period, biasing the ?-cells to produce the target phase retardation value; (2) during the relaxation period, biasing the first ?-cell at a constant bias value; and (3) during the relaxation period, lowering the bias value of the second ?-cell continuously or stepwise to maintain the target phase retardation value for the phase retarder throughout the relaxation period. In some embodiments the operation (2) comprises applying zero bias to the first ?-cell throughout the relaxation period. In some embodiments the operation (1) comprises applying a maximum operational bias to the second ?-cell.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 13, 2014
    Inventors: Hsienhui CHENG, Achintya Bhowmik, Philip J. Bos
  • Patent number: 8814364
    Abstract: Scanning beam display systems that scan one servo beam and an excitation beam onto a screen that emits visible light under excitation of the light of the excitation beam and control optical alignment of the excitation beam based on positioning of the servo beam on the screen via a feedback control.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Prysm, Inc.
    Inventor: Roger A. Hajjar
  • Patent number: 8804226
    Abstract: An optical modulator unit, an optical modulator, and a method of fabricating are provided. The optical modulator unit includes a first contact layer transmitting infrared rays, a lower reflection layer disposed on the first contact layer, an active layer, including a multiple quantum well, disposed on the lower reflection layer, and an upper reflection layer disposed on the active layer. The optical modulator includes a plurality of optical modulator units sharing the first contact layer. The method includes sequentially stacking a first contact layer, a lower reflection layer, an active layer, an upper reflection layer, and a second contact layer on a substrate; etching the second contact layer, the upper reflection layer, the active layer, and the lower reflection layer, exposing a surface of the first contact layer; forming a first electrode on the first contact layer; and forming a second electrode on the second contact layer.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-hun Lee, Chang-young Park, Jo-ho Lee
  • Patent number: 8599465
    Abstract: A method for making an electrowetting device includes: (a) forming a surrounding wall on an upper surface of a substrate to surround a microchamber, the surrounding wall having an inner surface surrounding the microchamber and a top surface above the inner surface, the upper surface of the substrate being non-hydrophobic; (b) coating the surrounding wall and the upper surface of the substrate with a hydrophobic coating material; (c) removing a portion of the hydrophobic coating material formed on the top surface of the surrounding wall, thereby exposing the top surface of the surrounding wall; and (d) disposing a liquid into the microchamber.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Incha Hsieh
    Inventor: Incha Hsieh
  • Patent number: 8558975
    Abstract: A method of fabricating a liquid crystal display device includes preparing a first substrate and a second substrate, forming a thin film transistor including a gate electrode, semiconductor layer, source electrode, and a drain electrode on the first substrate, forming a pixel electrode connected to the drain electrode on the first substrate, forming a color filter having a transmissive pattern with a plurality of periodic holes, forming a sealant between the first substrate and the second substrate, and bonding the first and second substrates to each other.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 15, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Se-Young Park, Jeong-Hyeon Kim, Sung-Chol Yi, Chang-Gu Lee
  • Patent number: 8526099
    Abstract: A method for manufacturing microcapsules is provided. The microcapsules each include an electrophoretic dispersion liquid containing at least one type of electrophoretic particles in a dispersion medium, and a capsule body made of an organic polymer and containing the electrophoretic dispersion liquid. The method includes forming droplets of the electrophoretic dispersion liquid by dispersing the electrophoretic dispersion liquid in an polar dispersion medium, and forming the capsule bodies by mixing a polymerization initiator and a polymerizable surfactant having a hydrophilic group, a hydrophobic group and a polymerizable group with the polar dispersion medium so as to coat the droplets with the polymerizable surfactant and induce a polymerization reaction to form the organic polymer.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: September 3, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Hitoshi Yamamoto, Takeo Kawase, Toshiyuki Miyabashi
  • Patent number: 8373917
    Abstract: An electrowetting display, a pixel array substrate thereof, and an electrowetting display pixel structure thereof are provided. The electrowetting display pixel structure is disposed on a substrate. The electrowetting display pixel structure includes a pixel electrode, a hydrophobic insulating layer and a wall. The pixel electrode is covered by the hydrophobic insulating layer. The wall is disposed on the hydrophobic insulating layer. The wall has a first side surface, a second side surface and at least one opening penetrating the first side surface and the second side surface. The opening is used for fluid medium to flow therethrough.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: February 12, 2013
    Assignee: Wintek Corporation
    Inventors: Cheng-Yi Chen, Chih-Yuan Wang
  • Publication number: 20120281267
    Abstract: The invention relates to a system for modulating and displaying optical effects, comprising a lighting device (BV) and at least one displaying object (DO) located outside the lighting device, wherein the lighting device (BV) comprises at least one input polarization unit (POE) for influencing polarization, in particular in a location-dependent manner, and at least one modulation unit (OME) for influencing polarization and/or retardance, in particular in a time-dependent and/or location-dependent manner, and wherein the displaying object (DO) comprises at least one object retarder unit (POB) for influencing retardance, in particular in a location-dependent and/or time-dependent manner, the at least one object retarder unit being suitable for reversibly or irreversibly impressing a piece of image information, and an output polarization unit (PE), and wherein the modulated light (Sout) exiting the lighting device (BV) hits the object retarder unit (POB) in order to interact there with the piece of image informat
    Type: Application
    Filed: November 13, 2009
    Publication date: November 8, 2012
    Inventor: Horst Prehn
  • Patent number: 8305676
    Abstract: An optical deflector includes multiple voltage-dependent refractive boundaries. Light passes through the refractive boundaries and accumulates a deflection angle. An electrode placed to apply a voltage to the boundaries may be non-uniform to modulate a wavefront as it passes. A scanning laser projector includes the optical deflector to modulate laser light.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 6, 2012
    Assignee: Microvision, Inc.
    Inventor: Bin Xue
  • Patent number: 8149493
    Abstract: In a general aspect, a device includes a substrate, a light transmission formed on a top surface of the substrate, a first contact, and a second contact. The light transmission structure includes a first doped region; a second doped region doped oppositely to the first region; a lateral junction between a part of the first doped region and a part of the second doped region, the lateral junction oriented substantially perpendicular to the top surface of the substrate; and a vertical junction between a part of the first doped region and a part of the second doped region, the vertical junction oriented substantially parallel to the top surface of the substrate. The first contact is in electrical contact with the first region and the second contact is in electrical contact with the second region.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: April 3, 2012
    Assignee: Sifotonics Technologies (USA) Inc.
    Inventor: Liang Chen
  • Patent number: 8125702
    Abstract: A display has first and second spatial light modulators for modulating light from a light source. The first spatial light modulator has a plurality of elements switchable between ON and OFF states according to a pattern having a spatially-varying density. Transfer optics blur and carry light modulated by the first spatial light modulator to the second spatial light modulator to yield a light field at the second spatial light modulator. The second spatial light modulator has a plurality of elements switchable between ON and OFF states to perform temporal dithering of the light field to provide a reconstruction of the image.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 28, 2012
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Gregory John Ward, Gerwin Damberg, Helge Seetzen
  • Patent number: 8063911
    Abstract: A system and method for gamut mapping out-of-gamut signals. A method includes adjusting each color in a color signal, determining a maximum color value of the color signal, in response to a determining that the maximum color value exceeds a maximum displayable color value, scaling color values of colors not having the maximum color value, and setting the color value of the color having the maximum color value to be equal to the maximum displayable color value. The method further includes leaving the color values of the colors in the color signal unchanged in response to a determining that the maximum color value does not exceed the maximum displayable color value. The scaling of color values not equal to the maximum color value results in a maintaining of a proper hue of the color signal, thereby not introducing color artifacts and other forms of color noise.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: November 22, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Rajeev Ramanath, Larry Layne Jenkins
  • Patent number: 7764415
    Abstract: A photoelastic modulator excited by a plurality of piezoelectric transducers affixed to the surface of a photoelastic bar for generating elastic waves in a plurality of cells each bounded by piezoelectric node drivers between which an antinode driver is disposed, is described. The standing elastic wave in each cell can be made independent of those in the neighboring cells by controlling the phase and amplitude of the drivers. The resulting elastic waves generate birefringence along the optical axis of the bar such that a linearly polarized optical wave propagating along the axis and having an initial phase, experiences a retardation of the phase as it passes through each cell. The cells may be controlled such that the phase of each standing wave does not change between cells and the phase retardation of the optical wave increases monotonically as the optical wave propagates through the bar, thereby, in theory, permitting an arbitrarily large retardation to be generated.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: July 27, 2010
    Inventor: Tudor N. Buican
  • Publication number: 20100157179
    Abstract: It is an object of the present invention to provide an optical waveform shaping device of high resolution. The above-mentioned problem is solved by an optical waveform shaping device (10) comprising a branching filter (1) for branching the light beam from a light source into light beams of each frequency, a condensing part (2) for condensing a plurality of light beams branched by the branching filter (1), a polarizing plate (3) for adjusting the polarization planes of the light beams having passed through the condensing part (2), and a spatial light modulator (4) having a phase modulation part and an intensity modulation part where the light beams having passed through the polarizing plate (3) are incident.
    Type: Application
    Filed: June 13, 2008
    Publication date: June 24, 2010
    Applicant: National Institute Of Information And Communications Technology
    Inventors: Naoya Wada, Seitetsu Boku, Takuya Yoda, Yuki Komai, Fumi Moritsuka, Kashiko Kodate
  • Patent number: 7589881
    Abstract: An electro-optic device includes first and second pixels that form first and second images, respectively. The first and second pixels are arranged alternately in a first direction. A light blocking element overlaps the pixels in plan view. The pixels are divided into pixel groups, each corresponding to every two pixels, which are one of the first pixels and one of the second pixels adjacent to each other in the first direction. The light blocking element has openings, each corresponding to one of the pixel groups and located in a region that overlaps the two pixels of the pixel group in plan view. Each first pixel has a light blocking region that partially intercepts light emitted from the first pixel. Each second pixel has a light blocking region that partially intercepts light emitted from the second pixel. The light blocking regions are positioned symmetrically to each other in plan view.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: September 15, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Nobuo Sugiyama
  • Patent number: 7586664
    Abstract: An electrochromic switchable transparency, e.g. a window and/or a mirror includes an electrochromic switchable medium between a pair of electrode assemblies. At least one of the electrode assemblies is transparent to visible light and includes an electrode over a surface. In one nonlimiting embodiment of the invention, the electrode has two electrically conducting layers and a bridging layer between and interconnecting the two electrically conducting layers. In one nonlimiting embodiment, the bridging layer includes a high electrically resistance connecting layer to provide the electrode with a heating layer to heat the surface and/or a current conducting layer to pass current to the medium. In another nonlimiting embodiment, the bridging layer includes an electrically connecting layer to pass current to electrically enhance the first electrically conductive layer.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: September 8, 2009
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Dennis J. O'Shaughnessy
  • Patent number: 7585800
    Abstract: It is to obtain a silica glass suitable as a material for an optical material constituting an optical system to be used for EUVL, which has a low coefficient of thermal expansion from 0 to 100° C., and on which formation of concave defects is suppressed in a polishing step to achieve a high level of flatness. A silica glass containing from 0.1 to 10 mass % of Sn calculated as SnO2 and from 3 to 10 mass % of Ti calculated as TiO2, which has a homogeneity of the coefficient of thermal expansion from 0 to 100° C. to the temperature of from 50 to 200 ppb/° C., a coefficient of thermal expansion from 0 to 100° C. of 0±250 ppb/° C., and a Vickers hardness of at most 650.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 8, 2009
    Assignee: Asahi Glass Company, Limited
    Inventors: Mitsuhiro Kawata, Akira Takada, Hideaki Hayashi, Naoki Sugimoto, Shinya Kikugawa
  • Patent number: 7567369
    Abstract: To provide an optical apparatus which controls an interface state to change a focal length by using an optical element having a container sealing first liquid that is conductive or polarized and second liquid that does not mutually mix with the first liquid with their interface in a predetermined form and electrodes provided in the container and of which optical characteristics change according to change of interface form due to application of voltage to the electrodes, and in particular an optical apparatus that controls a duty ratio of alternating current voltage applied to said electrodes for changing said interface form.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: July 28, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Onuki, Goro Noto, Eriko Kawanami
  • Publication number: 20090168137
    Abstract: A switchable apochromatic polarization rotator is provided. A first fixed waveplate has a first principal axis fixed in a first orientation. A second fixed waveplate has a second principal axis fixed in a second orientation. First and second switchable waveplates have principal axes oriented such that broad spectral range electromagnetic radiation transmitted through all of the waveplates has a first rotated polarization, wherein, in response to one or more control signals applied to the switchable waveplates, the principal axes of the switchable waveplates rotate such that the electromagnetic radiation transmitted through all of the waveplates has a second rotated polarization. The switchable waveplates utilize ferroelectric liquid crystal material, nematic liquid crystal material, or be mechanically rotated to adjust for orientation of their principal axes. Utilizing waveplates as described may be used to tune for a desired spectral range and/or compensate for temperature dependencies.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 2, 2009
    Inventors: Bing Wen, Milind P. Mahajan, Bruce K. Winker
  • Publication number: 20090167968
    Abstract: A stereo image display, switching between a first display direction and a second display direction, includes a polarized light module for providing a polarized light. A first light grating unit is implemented on the light path of the polarized light. When the first light grating unit is activated, the polarized light is modulated to output light in every two column; and when it is turned off, all the polarized light substantially passes. A second grating unit is implemented on the light path of the polarized light. When the second light grating unit is activated, the polarized light is modulated to output light in every two row; and when it is turned off, all the polarized light substantially passes. By the light passing the light grating units, an image displaying unit displays a first image at odd columns or rows and a second image at even columns or rows.
    Type: Application
    Filed: May 16, 2008
    Publication date: July 2, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Liang Hsu, Chao-Hsu Tsai
  • Patent number: 7551341
    Abstract: A display has first and second spatial light modulators for modulating light from a light source. The first spatial light modulator has a plurality of elements switchable between ON and OFF states according to a pattern having a spatially-varying density. Transfer optics blur and carry light modulated by the first spatial light modulator to the second spatial light modulator to yield a light field at the second spatial light modulator. The second spatial light modulator has a plurality of elements switchable between ON and OFF states to perform temporal dithering of the light field to provide a reconstruction of the image.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 23, 2009
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Gregory John Ward, Gerwin Damberg, Helge Seetzen
  • Patent number: 7426069
    Abstract: An optical apparatus is disclosed. The optical apparatus includes: a first optical element having a first polarizing layer containing a material having a refractive index that changes in accordance with the magnitude of applied voltage and first and second transparent electrodes sandwiching both sides of the first polarizing layer in the direction of thickness and polarizing light passing through the first polarizing layer in the direction of thickness; and a second optical element having a second polarizing layer containing a material having a refractive index that changes in accordance with the magnitude of applied voltage and third and fourth transparent electrodes sandwiching both sides of the second polarizing layer in the direction of thickness and polarizing light passing through the second polarizing layer in the direction of thickness.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: September 16, 2008
    Assignee: Sony Corporation
    Inventor: Tatsuo Makii
  • Publication number: 20080144161
    Abstract: A method for creating an integrated linear polarizer is provided. An electro-optical component is fabricated and may include a bottom electrode, a bottom cladding layer, side cladding features, an electro-optic polymer layer, a top cladding layer, and a top electrode. After fabrication, the electro-optical component is poled to create or enhance polarization properties of the electro-optic polymer layer. The electro-optical component may be heated to at least a first threshold temperature. An electric field may then be applied to the electro-optical component. In the presence of the electric field, the electro-optical component may be cooled to at or below a second threshold temperature that is less than the first threshold temperature. Once the electro-optical component has cooled to the second threshold temperature, the electric field may be removed.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Dashun Steve Zhou, Michael G. Lee, Alexei L. Glebov
  • Patent number: 7388705
    Abstract: To provide an optical apparatus which controls an interface state to change a focal length by using an optical element having a container sealing first liquid that is conductive or polarized and second liquid that does not mutually mix with the first liquid with their interface in a predetermined form and electrodes provided in the container and of which optical characteristics change according to change of interface form due to application of voltage to the electrodes, and in particular an optical apparatus that controls a duty ratio of alternating current voltage applied to said electrodes for changing said interface form.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: June 17, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Onuki, Goro Noto, Eriko Kawanami
  • Patent number: 7298540
    Abstract: A dynamic equalizing optical channel router includes an input port for receiving a wavelength division multiplexed composite optical signal comprising a plurality of channels; at least one output port; a diffraction grating optically coupled to the input and output ports; a lens optically coupled to the diffraction grating at a side opposite to the input and output ports; an array of steering devices optically coupled to the lens at a side opposite to the diffraction grating, wherein each channel is reflected by a different steering device of the array; and a plurality of attenuators, wherein each channel reflected by the array traverses one of the attenuators and the diffraction grating to the at least one output port. The router is able to dynamically adjust optical intensity of each wavelength channel by a different amount while also performing the function of wavelength routing.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: November 20, 2007
    Assignee: Avanex Corporation
    Inventors: Song Peng, Ming Li
  • Patent number: 7274416
    Abstract: A subtractive display device comprising picture elements having sub-pixels, each sub-pixel comprising a stack of switchable layers (5,25) or components and a color filter part (21).
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: September 25, 2007
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Bokke Johannes Feenstra, Robert Andrew Hayes, Lucas Josef Maria Schlangen
  • Patent number: 7206114
    Abstract: The present invention is directed to optical devices. More specifically, the disclosed devices include a film defining a periodic array of surface elements so as to give rise to surface plasmon polaritons. The film also includes at least a single aperture having a diameter less than the wavelength of light. In one embodiment, the surface elements can be an array of anisotropic apertures and the films can act as a polarizer. The disclosed devices can also include a material having a variable refractive index substantially adjacent to the metal film. For example, the refractive index of the adjacent material can vary according to some characteristic of the light incident to the device, for instance, the intensity or the angle of incidence of the light. In this embodiment, resonant coupling of incident light with the SPP, and hence transmittivity of the device, can depend upon the nature of incident light.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 17, 2007
    Assignee: Clemson University
    Inventors: John Ballato, David L. Carroll, Jeffrey R. Dimaio
  • Patent number: 7190519
    Abstract: This specification discloses a polarizing. element for dividing light into first and second polarized lights differing in polarized state from each other by a polarizing dividing surface, directing the first polarized light in a first direction, reflecting the second polarized light by a reflecting surface and directing it in the first direction, and varying the polarized state of at least one of the first and second polarized lights to thereby make the polarized states of the first and second polarized lights coincident with each other, characterized in that the polarizing dividing surface is disposed on one surface of a plane parallel plate and the reflecting surface is disposed on the other surface of the plane parallel plate, and the light enters obliquely from the one surface or the other surface. The specification also discloses a polarizing conversion unit provided with such polarizing element, and a projector provided with such polarizing conversion unit.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: March 13, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nozomu Kitagishi
  • Patent number: 7142344
    Abstract: To provide an optical apparatus which controls an interface state to change a focal length by using an optical element having a container sealing first liquid that is conductive or polarized and second liquid that does not mutually mix with the first liquid with their interface in a predetermined form and electrodes provided in the container and of which optical characteristics change according to change of interface form due to application of voltage to the electrodes, and in particular an optical apparatus that controls a duty ratio of alternating current voltage applied to said electrodes for changing said interface form.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: November 28, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Onuki, Goro Noto, Eriko Kawanami
  • Patent number: 7110154
    Abstract: The present invention is directed to optical devices. More specifically, the disclosed devices include a film defining a periodic array of surface elements so as to give rise to surface plasmon polaritons. The film also includes at least a single aperture having a diameter less than the wavelength of light. In one embodiment, the surface elements can be an array of anisotropic apertures and the films can act as a polarizer. The disclosed devices can also include a material having a variable refractive index substantially adjacent to the metal film. For example, the refractive index of the adjacent material can vary according to some characteristic of the light incident to the device, for instance, the intensity or the angle of incidence of the light. In this embodiment, resonant coupling of incident light with the SPP, and hence transmittivity of the device, can depend upon the nature of incident light.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: September 19, 2006
    Assignee: Clemson University
    Inventors: John Ballato, David L. Carroll, Jeffrey R. Dimaio
  • Patent number: 7023602
    Abstract: An optical imaging system including an illumination system, a Cartesian PBS, and a prism assembly. The illumination system provides a beam of light, the illumination system having an f/# less than or equal to 2.5. The Cartesian polarizing beam-splitter has a first tilt axis, oriented to receive the beam of light. A first polarized beam of light having one polarization direction is folded by the Cartesian polarizing beam splitter and a second polarized beam of light having a second polarization direction is transmitted by the Cartesian polarizing beam splitter. The Cartesian polarizing beam splitter nominally polarizes the beam of light with respect to the Cartesian beam-splitter to yield the first polarized beam in the first polarization direction. The color separation and recombination prism is optically aligned to receive the first polarized beam. The prism has a second tilt axis, a plurality of color separating surfaces, and a plurality of exit surfaces.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: April 4, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: David J. W. Aastuen, Charles L. Bruzzone
  • Patent number: 7002760
    Abstract: An improved adjustable convergence device for adjusting the position of a pixel light modulator of a projector comprising at least two such light modulators mounted on the frame of the projector, said convergence device comprising a plate assembly which is fixed on said supporting frame and which supports the light modulator to be adjusted, wherein said plate assembly is composed of at least two plate elements, respectively a plate element which is fixed to the supporting frame and a plate element on which the light modulator is fixed, whereby these plate elements are connected to each other by means of at least one elastic joint and whereby at least first self-locking adjusting means are provided for transmitting a force in an adjusting direction between these plate elements in order to adjust the relative position between said plate elements.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: February 21, 2006
    Assignee: Barco, Naamloze Vennootschap
    Inventors: Alexander Von Poncet, Bart Van den Bossche
  • Patent number: 6963441
    Abstract: An electro-optically deactivated transmissive material comprises a plurality of chemicals which are sufficient, in combination, to enable formation of an electro-optic material having an index of refraction that is responsive to an electric field. The chemicals are combined with a glassifier so as to form a transmissive material that is less responsive to the electric field than said electro-optic material. The deactivated material has substantially the same refractive index as the electro-optic material in the absence of an electric field. In a preferred embodiment, the deactivated material is arranged with active material to form an optical switch.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: November 8, 2005
    Assignee: Teloptics, Corporation
    Inventor: Gene H. Haertling
  • Patent number: 6958843
    Abstract: Variable optical delay (VOD) systems are provided that include optical switching techniques, and optical manifold techniques, and/or index switching techniques. In certain embodiments, liquid crystal cells are used to impart fine delay in a VOD system. Medium delay may be provided with index switching systems. Course delay may be provided with total-internal-reflection or polarization based optical manifold systems, or micro-fluidic based optical manifold systems. These fine, medium and course delays may be integrated in a single VOD system to provide a wide range and high resolution delay.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: October 25, 2005
    Assignee: PetaComm, Inc.
    Inventors: Seungug Koh, Sadeg M. Faris
  • Patent number: 6950219
    Abstract: To provide an optical apparatus which controls an interface state to change a focal length by using an optical element having a container sealing first liquid that is conductive or polarized and second liquid that does not mutually mix with the first liquid with their interface in a predetermined form and electrodes provided in the container and of which optical characteristics change according to change of interface form due to application of voltage to the electrodes, and in particular an optical apparatus that controls a duty ratio of alternating current voltage applied to said electrodes for changing said interface form.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: September 27, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Onuki, Goro Noto, Eriko Kawanami
  • Patent number: 6947618
    Abstract: Polarization controlling elements equivalent to quarter and half waveplates are constructed from sequences of variable retarder plates having fixed retardation axes. An endless polarization control algorithm is provided.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: September 20, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Massimo Martinelli, Russell Chipman
  • Patent number: 6895688
    Abstract: A liquid crystal polarization rotator device is able to rotate polarization fast enough to compensate polarization mode dispersion. The amount or degree of rotation is rapidly reconfigurable. The device includes a cavity filled with a nematic liquid crystal material. The cavity has electrodes on a first face, e.g., a first substrate, and electrodes on a second face, e.g., a second substrate, opposite the first face. The electrodes are shaped and positioned to produce an electric field across the cavity capable of rotating the alignment direction of the molecules of the liquid crystal material in the cavity. The electrodes are patterned on the ends of optical fibers. Aligning and positioning of the electrodes on the ends of the optical fibers with a predetermined spacing forms the cavity that is filled with the nematic liquid crystal material. The filled cavity is a so-called liquid crystal microcell wave plate.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: May 24, 2005
    Assignees: Lucent Technologies Inc., The University of Minnesota
    Inventors: Bharat R. Acharya, Cheng Cher Huang, Christi Kay Madsen, John A. Rogers
  • Patent number: 6876403
    Abstract: A polarized light color filter for producing R, G and B primary lights from inputted white light in time division. The filter is small in size and strong against mechanical vibration. The projections of the R, G and B lights can be arbitrarily varied in one period. The varying speed is high, and the ratio of utilization of the quantity of light from the light source is high. Elements 36(1), 38(1), 40(1), 38(2), 40(2), 38(3), 40(3), 38(4) and 36(2) are in order stacked and bonded between glass substrates (30, 32). The elements 38(1) to 38(4) are polarized light converting elements for selecting either a mode in which the inputted light is outputted as it is by applied voltage control or a mode in which the inputted light is converted from one polarized light to the other and outputted. The elements 40(1) to 40(3) are narrow-band polarization spectroscopic elements reflecting only the S-polarized components of the R, G and B lights and transmitting the other components.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: April 5, 2005
    Assignee: Fujitsu General Limited
    Inventor: Shinichiro Tajiri
  • Patent number: 6876481
    Abstract: A spatial light modulator includes: a magnetic layer that is made of a magneto-optic material and includes a plurality of pixels in each of which a magnetization direction is independently set and each of which has a function of causing a rotation of a polarization direction of incident light depending on the magnetization direction by a magneto-optic effect; a plurality of first conductor layers and a plurality of second conductor layers arranged to intersect with each other at positions corresponding to the individual pixels, through which currents for generating magnetic fields to set the magnetization directions in the individual pixels are passed; and a plurality of dielectric layers for enhancing the function of the pixels. A polarization direction of light incident on the spatial light modulator is rotated depending on the magnetization direction of each pixel.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: April 5, 2005
    Assignee: Optware Corporation
    Inventors: Mitsuteru Inoue, Jae-Kyong Cho
  • Patent number: 6806988
    Abstract: To provide an optical apparatus which controls an interface state to change a focal length by using an optical element having a container sealing first liquid that is conductive or polarized and second liquid that does not mutually mix with the first liquid with their interface in a predetermined form and electrodes provided in the container and of which optical characteristics change according to change of interface form due to application of voltage to the electrodes, and in particular an optical apparatus that controls a duty ratio of alternating current voltage applied to said electrodes for changing said interface form.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: October 19, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ichiro Onuki, Goro Noto, Eriko Kawanami
  • Patent number: 6801676
    Abstract: An apparatus and method for modulating a phase of optical beam with reduced contact loss. In one embodiment, an apparatus according to embodiments of the present invention includes a first region of an optical waveguide disposed in semiconductor material. The first region has a first conductivity type. The apparatus further includes a second region of the optical waveguide disposed in the semiconductor material. The second region has a second conductivity type, which is opposite to the first conductivity type. A first contact is coupled to the optical waveguide at a first location, which is outside an optical path of an optical beam that is to be directed through the optical waveguide. A first buffer of insulating material is disposed along the optical waveguide between the first contact and the optical path of the optical beam. A buffer plug of insulating material disposed in the optical waveguide on a same side as the first location.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: October 5, 2004
    Assignee: Intel Corporation
    Inventor: Ansheng Liu
  • Patent number: 6768573
    Abstract: The present invention is directed to an optical space switch accommodating a plurality of input light paths and output light paths. The optical space switch comprises a plurality of polarization control optical switches, each consisting essentially of: polarization control means having elements, one for each input light path, for rotating through 90° the polarizing direction of light information incident from each input light path or otherwise retaining the polarizing direction thereof for output; and a light path routing element for routing the light path for the light information output from the polarization control means in accordance with the polarizing direction of the light information. These polarization control optical switches are arranged in a matrix pattern or coupled in cascade to implement a polarization control optical space switch.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: July 27, 2004
    Assignee: Fujitsu Limited
    Inventors: Tetsuya Nishi, Takuji Maeda, Satoshi Kuroyanagi, Tsuyoshi Yamamoto
  • Patent number: 6728020
    Abstract: Platelike first transparent members 321 and platelike second transparent members 322 are prepared. Each first transparent member has substantially parallel first and second surfaces (film forming surfaces). A polarization splitting film 331 is formed on the first film forming surface. A reflecting film 332 is formed on the second film forming surface. The films are not formed on the surfaces of the second transparent members 322. A plurality of the first transparent members 321 and a plurality of the second transparent members 322 are adhered alternately. A block is cut from the so-adhered transparent members at a prescribed angle to the surfaces and the cut surfaces thereof are polished to obtain a polarization beam splitter array 320.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: April 27, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Yajima Akitaka
  • Patent number: 6724513
    Abstract: An electro-optic device has, on a TFT array substrate, a pixel electrode; a TFT connected thereto; a scanning line and a data line connected to the thin film transistor; a pixel potential side capacitance electrode that is connected to the pixel electrode and constitutes a storage capacitor; and a capacitance line that contains a fixed potential side capacitance electrode that is disposed oppositely via a dielectric film to the pixel potential side capacitance electrode and constitutes the storage capacitor. A width W1 of a portion that projects along the data line in the capacitance line is formed the same as or wider than a width W2 of the data line. Thereby, while realizing a lower resistance capacitance line, or an inhibition of an occurrence of a light leakage current in a TFT, an enhancement of an open area ratio can be satisfied.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: April 20, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Masao Murade
  • Patent number: RE39243
    Abstract: Two polarization conversion element arrays are disclosed. Each polarization conversion element array is composed of a plurality of polarization conversion elements for converting light incident upon the polarization conversion element array to a linearly polarized light beam with a predetermined polarization direction. The plurality of polarization conversion elements are disposed opposite to each other with a predetermined space provided between at about the center of the light-outgoing surface of a lens array in the direction of arrangement. Of the light beams (s-polarized+p-polarized light beams) gathered by the lens array, light beam that is not incident upon the polarization conversion element and passes through the predetermined space is a light beam including a predetermined polarized light beam (s-polarized light beam) that is primarily made to leave the array 320a and an ineffective polarized light beam (p-polarized light beam).
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: August 22, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Yasunori Ogawa, Akitaka Yajima, Tomiyoshi Ushiyama