Electro-optic Patents (Class 359/315)
  • Patent number: 8784675
    Abstract: The ferroelectric substrate 11 of ferroelectric crystals, while being supported by the support plate 14 which is thicker than the ferroelectric substrate 11, is integrated with the support plate 14 by letting the junction 13 mediate between one major surface S1A of the ferroelectric substrate 11 and one major surface S1B of the support plate 14, and therefore, it is possible through the flat surface polishing to perform thinning of the ferroelectric substrate 11, namely, the ferroelectric crystals, and as a result, it is possible to obtain the thin periodically poled structure. By the voltage application method, the domain inverted region is formed in the ferroelectric substrate 11 which is made thin.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: July 22, 2014
    Assignee: Dainippon Screen Mfg. Co. Ltd.
    Inventors: Masahide Okazaki, Toshiaki Suhara
  • Publication number: 20140198099
    Abstract: A display-mode switching device includes a substrate, a plurality of first electrode stripes, a plurality of second electrode stripes, a plurality of third electrode stripes, a fourth electrode stripes, and a common electrode covering a surface of the substrate. The first electrode stripes, the second electrode stripes, the third electrode stripes and the fourth electrode stripes are disposed on the insulating layer, and each first electrode stripe, each third electrode stripe, each second electrode stripe and each fourth electrode stripe are sequentially arranged along a direction.
    Type: Application
    Filed: April 10, 2013
    Publication date: July 17, 2014
    Applicant: HannStar Display Corp.
    Inventors: Heng-Cheng Tseng, Chih-Hsuan Lee
  • Patent number: 8773749
    Abstract: A variable focusing lens is provided that can change the focal length at a high speed. The variable focusing lens includes: a single crystal electrooptic material having inversion symmetry; a first anode formed on a first surface of the electrooptic material; a second cathode provided to have an interval to the first anode; and a first cathode and a second anode that are formed on a second surface opposed to the first surface and that are formed at positions opposed to the first anode and the second cathode. An optical axis is set so that, when light enters through a third face orthogonal to the first surface, light exists through a fourth surface opposed to the third face. A voltage applied between the first and the second pair of electrodes is changed to thereby change the focal point of light emitted from the fourth surface of the electrooptic material.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 8, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tadayuki Imai, Masahiro Sasaura, Jun Miyazu, Shogo Yagi, Seiji Toyoda
  • Patent number: 8754859
    Abstract: An electro-optic display comprises, in order, a light-transmissive electrically-conductive layer; a layer of a solid electro-optic material; and a backplane (162) bearing a plurality of pixel electrodes. A peripheral portion of the backplane extends outwardly beyond the layer of solid electro-optic material and bears a plurality of radiation generators (166) and a plurality of radiation detectors (168), the radiation generators and detectors together being arranged to act as a touch screen.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: June 17, 2014
    Assignee: E Ink Corporation
    Inventors: Holly G. Gates, Robert W. Zehner, Russell J. Wilcox, Matthew J. Aprea
  • Patent number: 8755104
    Abstract: Embodiments of the present disclosure provide an electrowetting display panel and the manufacturing method thereof The electrowetting display panel comprises: a first glass substrate; a second glass substrate provided opposite to the first glass substrate; a cavity provided between the first glass substrate and the second glass substrate; a colored conductive liquid filled into the cavity; and a reflecting conductive element provided on the surface of the first glass substrate facing away from the second glass substrate, and corresponding to the cavity, wherein the reflecting conductive element is used for controlling the light transmissivity of the colored conductive liquid within the cavity according to the voltage applied to the reflecting conductive element and reflecting the light passing through the colored conductive liquid toward the second glass substrate.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: June 17, 2014
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Qi Yao, Jianshe Xue, Zhanfeng Cao, Tianming Dai, Feng Zhang
  • Publication number: 20140160554
    Abstract: Disclosed is an image display apparatus, including a display device displaying right-eye images and left-eye images. A light-modulating device attached to the display device; and a temperature sensor monitoring the light-modulating device temperature. The light-modulating device deflects the right-eye and left-eye images to an observer's right and left eyes respectively without a temperature variation in the temperature sensor.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Yeong-Feng WANG, Ching-Tung HSU, Yen-I CHOU, Chia-Yen LEE, Meng-Han LIU, Ming-Wei TSAI
  • Publication number: 20140133000
    Abstract: Provided are a photorefractive polymer composite, and a photorefractive devices and hologram display device including the same. The photorefractive polymer composite includes a photoconductive polymer matrix, a nonlinear optical chromophore, a plasticizer, and a graphite-based photocharge generator.
    Type: Application
    Filed: August 20, 2013
    Publication date: May 15, 2014
    Inventors: Chil-sung CHOI, Kyoung-seok PYUN
  • Patent number: 8721074
    Abstract: Ophthalmic lenses, including contact lenses may be enhanced through the incorporation of both active and passive electrical components. Electrical interconnects and die attachment configurations are required to ensure electrical connectivity between the components and the optic portion of the lens as well as providing a means for mounting planar devices on spherical surfaces. Electrical interconnects and die attachment for powered ophthalmic devices, including contact lenses includes realizing conductive traces on optical plastic, attaching planar dies to spherical surfaces and underfilling, overmolding and light blocking to complete the lens.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: May 13, 2014
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Randall Braxton Pugh, Adam Toner, Praveen Pandojirao-S, James Daniel Riall, Daniel B. Otts, Edward Kernick
  • Patent number: 8717280
    Abstract: A lookup table provides voltage waveforms for transitions between a plurality of discrete pixel states forming a set that can be ordered in consecutive states according to a reflectivity of the pixel. An image controller repeatedly executes, in a consecutive drive phase, the steps of retrieving an initial state and update state, matching, when the initial and update states are different, in the ordered set of pixel states of the lookup table, a consecutive state and a corresponding consecutive waveform, the consecutive state forming a path, according to the consecutive drive phase, from the initial state to the update state in the set of pixel states, storing the consecutive state in the memory as new initial state; and controlling a voltage driver to drive the pixel from the initial state to the consecutive state using said consecutive waveform.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Creator Technology B.V.
    Inventors: Cornelis Jan Hendrik de Zeeuw, Robert Sjang Josine van Dijk, Erik van Veenendaal, Leendert Marinus Hage
  • Patent number: 8704891
    Abstract: An electro-optic display unit is disclosed. The electro-optic unit may be mountable to an exterior of a vehicle and may be rotatable about a single axis of rotation.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 22, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jason F. Burch, Michael E. Zimmer
  • Patent number: 8690321
    Abstract: A tracking device (6) for controlling the focus of electroactive spectacles (2), the spectacles (2) comprising electroactive lenses (24, 26), the tracking device (6) comprising: a tracking camera (14), a tracking controller (18), and a transmitter (20); wherein the tracking controller (18) is configured to: capture, via the tracking camera (14), an image (16); detect, in the image (16), a pair of eyes; determine, from the image of the eyes, a target focus; and transmit, via the transmitter (20), a focus message (4) to the spectacles (2), the focus message (4) being indicative of the target focus, and instructive to the spectacles (2) to set the focus of the lenses (24, 26) accordingly.
    Type: Grant
    Filed: April 21, 2012
    Date of Patent: April 8, 2014
    Inventor: Paul Lapstun
  • Publication number: 20140055835
    Abstract: An illumination device capable of suppressing formation of a double image in three-dimensional display, and a display unit including the illumination device are provided. In a light modulation device bonded to a light guide plate, a scattering region that scatters light propagating within the light guide plate, and a transmissive region that allows light propagating within the light guide plate to pass therethrough are formed through control of an electric field. The scattering region scatters light to generate linear illumination light. A reflector is provided directly below the light modulation device. The reflector reflects light, which is part of the scattered light generated in the scattering region and is emitted to a reflector side, to generate reflected light to be focused directly below the scattering region.
    Type: Application
    Filed: May 2, 2012
    Publication date: February 27, 2014
    Applicant: Sony Corporation
    Inventors: Shogo Shinkai, Akira Ebisui, Harumi Sato, Kentaro Okuyama
  • Patent number: 8659816
    Abstract: This disclosure provides mechanical layers and methods of forming the same. In one aspect, a method of forming a pixel includes depositing a black mask on a substrate, depositing an optical stack over the black mask, and forming a mechanical layer over the optical stack. The black mask is disposed along at least a portion of a side of the pixel, and the mechanical layer defines a cavity between the mechanical layer and the optical stack. The mechanical layer includes a reflective layer, a dielectric layer, and a cap layer, and the dielectric layer is disposed between the reflective layer and the cap layer. The method further includes forming a notch in the dielectric layer of the mechanical layer along the side of the pixel so as to reduce the overlap of the dielectric layer with the black mask along the side of the pixel.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 25, 2014
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Yi Tao, Hojin Lee, Fan Zhong
  • Patent number: 8659813
    Abstract: Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: February 25, 2014
    Assignee: Microvision, Inc.
    Inventors: Wyatt O. Davis, Taha Masood
  • Publication number: 20140043672
    Abstract: A fail-safe electro-active lens is presented in which the lens includes a substrate having a diffractive relief surface and an electro-active material in optical communication with the substrate. The electro-active material can include a nematic liquid crystal host. The refractive index of the substrate is equal to the average refractive index of the liquid crystal at a wavelength in the blue light spectrum.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 13, 2014
    Applicant: PixelOptics, Inc.
    Inventors: Roger Clarke, Joshua N. Haddock
  • Patent number: 8634680
    Abstract: The wavelength control device comprises a first Mach-Zehnder filter which receives a first optical signal and outputs an optical signal having a predetermined wavelength, a second Mach-Zehnder filter which receives a second optical signal and outputs an optical signal having a predetermined wavelength, a heating unit heating respective parts of either one of the waveguides of the first and second Mach-Zehnder filters, a first wavelength detecting unit which receives an optical signal from the first Mach-Zehnder filter and detects a wavelength thereof, a second wavelength detecting unit which receives an optical signal from the second Mach-Zehnder filter and detects a wavelength thereof, a power control unit which controls power supplied to the heating unit based on the wavelength received from the first wavelength detecting unit, and an output unit which outputs a wavelength value based on the wavelength received from the second wavelength detecting unit.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 21, 2014
    Assignee: NEC Corporation
    Inventor: Noriyoshi Oku
  • Publication number: 20140009819
    Abstract: A stereoscopic image control module that can be disposed on a display module to form a stereoscopic image display module is provided. The stereoscopic image control module includes a first substrate, a touch composite layer, and a grating composite layer. The first substrate has a first surface and a second surface opposite to the first surface, and the touch composite layer is disposed on at least one of the first surface and the second surface and includes a plurality of touch electrodes. The grating composite layer is disposed on the second surface and includes a plurality of grating control electrodes and a grating layer, wherein the grating control electrodes change a polarity of the grating layer to determine a display mode.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Inventors: Hsu-Ho WU, Chia Hua YU, I Fang WANG, Mu-Kai KANG, Heng-Cheng TSENG
  • Patent number: 8623191
    Abstract: A device and method for displaying grey levels on electronic paper is provided. According to various embodiments, a system for electronic paper can include an electret substrate embedded with at least one first capsule containing a first plurality of charged pigment particles and at least one second capsule containing a second plurality of charged pigment particles. The system can further include a first electrode interfacing with one side of the electret substrate and a second electrode interfacing with a second side of the electret substrate. The first plurality of charged pigment particles can move in the direction of one of the first and second electrodes having a polarity that is opposite to that of the first plurality of the charged pigment particles in response to a voltage applied to the first and second electrodes that is greater than a first threshold.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: January 7, 2014
    Assignee: Honeywell International Inc.
    Inventor: Andrei Cernasov
  • Publication number: 20130335649
    Abstract: An optical component (1) is switchable between a directional mode and a 2-D mode. The optical component (1) comprising a lens array and an electro-optic layer, for example a liquid crystal layer, disposed in the path of light through the lens array. In the 2-D display mode the lens array has an optical effect on light passing through the component and the electro-optic layer at least partially nullifies the effect. For example the electro-optic layer may, in the 2-D display mode, scatter light or diverge light so as to nullify the focusing effect of the lens array. The optical component (1) may be disposed in the path of light through an image display panel (2) to form a display that may be switched between a directional display mode, eg a 3-D display mode, and a 2-D display mode by suitably switching the optical component (1).
    Type: Application
    Filed: March 6, 2012
    Publication date: December 19, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Jonathan Mather, Nathan James Smith
  • Publication number: 20130321899
    Abstract: A display comprising an observer window, which in 3D and/or 2D representation mode of a 3D scene can be adapted to changing eye positions. Several observers can use the display simultaneously. The display includes a light modulation device having an actuatable diffraction unit and a controllable spatial light modulator, in which a 3D scene is coded in an actuatable manner, and a control unit. An observer window can be generated using coherent light beams on alternating eye positions. The diffraction unit includes at least electrodes and a controllable material into which a prism and/or lens function and/or scatter function can be written as a diffraction grating with a phase progression in an at least one-dimensionally controllable manner.
    Type: Application
    Filed: December 9, 2011
    Publication date: December 5, 2013
    Applicant: SEEREAL TECHNOLOGIES S.A.
    Inventor: Ralf Haussler
  • Publication number: 20130314765
    Abstract: Metamaterial devices with environmentally responsive materials are disclosed. In some embodiments, a metamaterial perfect absorber includes a first patterned metallic layer, a second metallic layer electrically isolated from the first patterned metallic layer by a gap, and an environmentally responsive dielectric material positioned in the gap between the first patterned metallic layer and the metallic second layer.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Applicant: The Trustees of Boston College
    Inventors: Willie J. Padilla, Salvatore Savo, Christopher M. Bingham, David Shrekenhamer, Wen-Chen Chen
  • Publication number: 20130307857
    Abstract: This disclosure provides systems, methods and apparatus for mitigating or reducing stiction in electromechanical systems devices. The systems and methods described herein include a piezo-electric layer disposed over at least a portion of the deformable region of the electromechanical systems devices. To reduce or mitigate stiction, a restorative mechanical force is generated by reverse piezo-electric effect to return the deformable region of the electromechanical systems devices to the un-deformed state.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Koorosh Aflatooni, Igor Tchertkov
  • Patent number: 8576470
    Abstract: An electro-optic display having a color filter array is produced by attaching together a direct thermal imaging layer (112) and a backplane (102) having a two-dimensional array of pixel electrodes. The direct thermal imaging layer (112) is then exposed to temperatures sufficient to form a plurality of differently colored areas in the direct thermal imaging layer, the plurality of differently colored areas being aligned with the two-dimensional array of pixel electrodes.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 5, 2013
    Assignee: E Ink Corporation
    Inventors: Richard J. Paolini, Jr., Jay William Anseth
  • Patent number: 8570645
    Abstract: A beam steering device (300) for deflecting a beam of light is provided. The beam steering device comprises a first deflecting member (310), a rotating member (320), and a second deflecting member (330). For an incoming beam of light having components (303, 302) with their polarization parallel (303?) and perpendicular (302?), respectively, to an optic axis (314, 334) of the beam steering device, the parallel component (303) is deflected by a first angle (304) when passing the first deflecting member. When passing the rotating member, the polarization (303?, 302?) of the beam of light is rotated by 90 degrees (303?, 302?). When passing the second deflecting member, the perpendicular component (302) is deflected by a second angle (305).
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 29, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Fetze Pijlman, Marcellinus Petrus Carolus Michael Krijn, Michel Cornelis Josephus Marie Vissenberg, Lieven Raf Roger Desmet, Baptiste Fleury Louis Delplanque, Tim Dekker
  • Publication number: 20130259417
    Abstract: According to an embodiment, a light deflecting element includes a dielectric body, a first electrode, and a second electrode. The second electrode is configured to sandwich the dielectric body with the first electrode so as to apply a voltage to the dielectric body. The second electrode includes orthogonal portions that are substantially orthogonal to an incident direction of a light beam passing through the dielectric body, parallel portions that are substantially parallel to the incident direction of the light beam. The orthogonal portions and the parallel portions are formed in an alternate manner on the light beam incident side of the dielectric body. The second electrode includes a linear sloping portion that slopes in a direction toward intersection with the incident direction of the light beam. The orthogonal portions, the parallel portions, and the linear sloping portion are formed integrally.
    Type: Application
    Filed: December 26, 2012
    Publication date: October 3, 2013
    Inventors: Yuuzo Kamiguchi, Katsuya Sugawara, Masahiro Kanamaru, Keiichiro Yusu, Masatoshi Sakurai
  • Publication number: 20130258452
    Abstract: According to an embodiment, a light deflecting element includes a dielectric body, a first electrode, a second electrode, and a third electrode. Each of the second electrode and third electrode is configured to sandwich the dielectric body with the first electrode. The second electrode includes an electrode having a side that lies substantially orthogonal to an incident direction of a light beam, a side that is substantially parallel to the incident direction, and a side that intersects with the incident direction. The third electrode includes an electrode having a side that is aligned with the second electrode, a side that is substantially parallel to an incident direction of the light beam, and a side that intersects with the light beam, and that slopes in an opposite to that of the side of the second electrode that intersects with the light beam.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 3, 2013
    Inventors: Yuuzo KAMIGUCHI, Masahiro Kanamaru, Katsuya Sugawara, Keiichiro Yusu, Masatoshi Sakurai
  • Patent number: 8542432
    Abstract: The present disclosure is directed to autostereoscopic display systems operable to provide increased number of views and related methods. One embodiment of the display systems comprises a light-modulating display panel comprising a first set of colored subpixels and a second set of colored subpixels, and the number of subpixels in the first set of colored subpixels is greater than the number of subpixels in the second set of colored subpixels. The display system further comprises a lenticular sheet disposed in light paths of the colored subpixels of the display panel.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 24, 2013
    Assignee: RealD Inc.
    Inventors: Michael G. Robinson, Douglas J. McKnight
  • Publication number: 20130242268
    Abstract: A lighting optical system includes a first light source for emitting first color light and second color light, and a second light source for emitting third color light. The first light source includes a semiconductor laser element that emits a linearly polarized laser beam, an excitation light generation unit for spatially and temporally separating the laser beam emitted from the semiconductor laser element to generate first excitation light and second excitation light, the excitation light generation unit including an active diffraction element that transmits the incident laser beam in two different directions to separate it into the first excitation light and the second excitation light having an output direction different from that of the first excitation light, a first phosphor that is excited by the first excitation light to emit first color light, and a second phosphor that is excited by the second excitation light to emit second color light.
    Type: Application
    Filed: December 8, 2010
    Publication date: September 19, 2013
    Inventor: Hiroyuki Saitou
  • Publication number: 20130235441
    Abstract: Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 12, 2013
    Applicant: MICROVISION, INC.
    Inventors: Wyatt O. Davis, Taha Masood
  • Patent number: 8493645
    Abstract: An optically powered optical modulator comprises an optical modulation component, such as an electro-optical modulator, acousto-optic modulator or magneto-optic modulator, in combination with one or two lens assemblies positioned at one or both apertures of the optical modulation component, so that the optical modulator formed by the combination of the lens assembly or assemblies and the optical modulation component has optical focus power.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 23, 2013
    Assignee: PV Labs, Inc.
    Inventor: Eiji Yafuso
  • Patent number: 8492863
    Abstract: Optical modulator having wide bandwidth based on Fabry-Perot resonant reflection is disclosed. The optical modulator includes: a bottom Distributed Bragg Reflector (DBR) layer; a top DBR layer including at least one layer, and a modified layer; and an active layer disposed between bottom and top DBR layers, wherein the at least one layer includes at least one pair of a first refractive index layer having a first refractive index and a second refractive index layer having a second refractive index, the modified layer includes at least one pair of a third refractive index layer having a third refractive index and a fourth refractive index layer having a fourth refractive index, the third and the fourth refractive indexes being different, and at least one of the third and the fourth refractive index layers has a second optical thickness that is not ?/4 or that is not an odd multiple thereof.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 23, 2013
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Yong-chul Cho, Yong-tak Lee, Yong-hwa Park, Byung-hoon Na, Kwang-mo Park, Chang-soo Park
  • Publication number: 20130148186
    Abstract: A surface plasmon polariton modulator capable of locally varying a physical property of a dielectric material to control a surface plasmon polariton. The surface plasmon polariton modulator includes a dielectric layer, including first and second dielectric portions, which is interposed between two metal layers. The second dielectric portion has a refractive index which varies with an electric field, a magnetic field, heat, a sound wave, or a chemical and/or biological operation applied thereto. The surface plasmon polariton modulator is configured to control one of an advancing direction, an intensity, a phase, or the like of a surface plasmon using an electric signal. The surface plasmon polariton modulator can operate as a surface plasmon polariton multiplexer or a surface plasmon polariton demultiplexer.
    Type: Application
    Filed: January 15, 2013
    Publication date: June 13, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8447145
    Abstract: The present invention discloses an ultra-compact optical modulator comprising at least one resonator on a semiconductor chip. The EO modulator modulates incoming light having a certain wavelength range and comprises a waveguide layer accommodating at least one resonator having a periodic complex refraction index distribution structure defining a periodic defect band-edge and a cladding layer; and at least one electrode; the waveguide layer, the cladding layer and the electrode forming a capacitor structure; such that when an external voltage is applied to the capacitor structure the free carrier concentration in the waveguide layer is controlled, enabling a modulation of the resonator's refractive index; wherein the periodic defect band-edge is selected to be within the wavelength range, enabling a slow-light propagation of the incoming light within the waveguide layer.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 21, 2013
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Damian Goldring, David Mendlovic
  • Publication number: 20130114120
    Abstract: A microelectrofluidic device includes: a chamber; a first fluid and a second fluid which are contained in the chamber and are not mixable with each other; and a first electrode group including a plurality of electrodes that are disposed on an inner side of the chamber, and to which a voltage is applied to change an interface between the first fluid and the second fluid, wherein the plurality of electrodes are connected to form a first electrode unit, a second electrode unit, and a third electrode unit that are independently turned on or off, and the plurality of electrodes are annular and coated with an insulating material, and adjacent electrodes are connected to different electrode units
    Type: Application
    Filed: September 14, 2012
    Publication date: May 9, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyu-dong JUNG, Jong-hyeon CHANG, Min-seog CHOI
  • Patent number: 8432599
    Abstract: An optical image modulator and a method of manufacturing the same. The optical image modulator includes a substrate, an N electrode contact layer formed on the substrate, a lower distributed Bragg reflection (DBR) layer, a quantum well layer, an upper DBR layer, and a P electrode contact layer sequentially stacked on the N electrode contact layer, a P electrode formed on the P electrode contact layer, and an N electrode formed on the N electrode contact layer. The N electrode is a frame that surrounds the lower DBR layer.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: April 30, 2013
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Yong-Chul Cho, Yong-Tak Lee, Yong-Hwa Park, Byung-Hoon Na, Bong-Kyu Jeong
  • Patent number: 8432597
    Abstract: According to one embodiment of the present invention a digital micro-mirror device is taught that includes a pixel occupying an area of the device and a hinge coupled to the pixel and positioned such that at least a portion of the hinge falls outside the area of the pixel.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: April 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Richard L. Knipe
  • Patent number: 8427725
    Abstract: The present invention relates to a light modulating device, comprising a SLM and a pixelated optical element, in which a group of at least two adjacent pixels of the SLM in combination with a corresponding group of pixels in the pixelated optical element form a macropixel, the pixelated optical element being of a type such that its pixels comprise a fixed content, each macropixel being used to represent a numerical value which is manifested physically by the states of the pixels of the SLM and the content of the pixels of the pixelated optical element which form the macropixel.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 23, 2013
    Assignee: Seereal Technologies S.A.
    Inventors: Gerald Futterer, Bo Kroll, Steffen Buschbeck
  • Patent number: 8427736
    Abstract: An illumination device is provided and has a light guide plate, a light source and a light modulator, wherein the light modulator has a pair of transparent substrates a pair of electrodes and a light modulator layer. The light modulator layer includes a first region being changed between a transparent state and a scatterable state depending on intensity of an electric field, and a second region being more transparent than the first region in a scatterable state at an electric field having a certain intensity, the electric field being applied when the first region is changed between the transparent state and the scatterable state, and an occupancy rate of the first region in the light modulator layer is increased with increase in distance from the light source.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Sony Corporation
    Inventors: Kentaro Okuyama, Harumi Sato
  • Patent number: 8422108
    Abstract: An interferometric modulator (Imod) cavity has a reflector and an induced absorber. A direct view reflective flat panel display may include an array of the modulators. Adjacent spacers of different thicknesses are fabricated on a substrate by a lift-off technique used to pattern the spacers which are deposited separately, each deposition providing a different thickness of spacer. Or a patterned photoresist may be used to allow for an etching process to selectively etch back the thickness of a spacer which was deposited in a single deposition. A full-color static graphical image may be formed of combined patterns of interferometric modulator cavities. Each cavity includes a reflector, and an induced absorber, the induced absorber including a spacer having a thickness that defines a color associated with the cavity.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 16, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Mark W. Miles
  • Patent number: 8411349
    Abstract: An optical modulator includes an optical modulation substrate, an electrical length adjusting substrate, a package containing the substrates, and a plurality of input ports for inputting high frequency electrical signals. The optical modulation substrate includes a substrate body made of an electro-optic material, a ground electrode and a plurality of signal electrodes provided on the substrate body, optical waveguides propagating lights interacting with the signal electrodes, respectively, and electrode input ports inputting the high frequency electrical signals into the signal electrodes, respectively. The signal electrode includes an interacting part, an input end part provided between the electrode input port and interacting part, and a terminal part. The electrical length adjusting substrate includes conductive lines connected to the input ports for inputting the high frequency electrical signals, respectively.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: April 2, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Osamu Mitomi, Yasunori Iwasaki, Yuji Hori, Kenji Aoki, Jungo Kondo
  • Patent number: 8405899
    Abstract: An optical device includes a non-transparent substrate. The optical device further includes a first optical layer which is at least partially transmissive and at least partially reflective to incident light. The optical device further includes a second optical layer which is at least partially reflective to incident light. The second optical layer is spaced from the first optical layer. At least one of the first optical layer and the second optical layer is movable between a first position at a first distance from the first optical layer and a second position at a second distance from the first optical layer. Movement of the at least one of the first optical layer and the second optical layer between the first and second positions modulates the reflectivity of the device.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: March 26, 2013
    Assignee: Qualcomm Mems Technologies, Inc
    Inventor: Clarence Chui
  • Publication number: 20130050802
    Abstract: In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-deok BAE, Jun-sik HWANG, Chang-youl MOON, Yoon-sun CHOI, Jung-mok BAE, Chang-seung LEE, Eok-su KIM
  • Publication number: 20130038922
    Abstract: Disclosed is an optical element including a first electrode and a second electrode disposed to face each other; an insulating film covering a surface of the first electrode facing the second electrode, the insulating film including a dielectric layer, an ion barrier layer, and a water repellent layer laminated in order; and a polar liquid and a non-polar liquid enclosed between the insulating film and the second electrode and having refractive indices different from each other. The dielectric layer has a larger permittivity than that of the ion barrier layer, the ion barrier layer suppresses permeation of an ion contained in the polar liquid, and the water repellent layer is located in an uppermost layer of the insulating film and exhibits an affinity for the non-polar liquid.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 14, 2013
    Applicant: Sony Corporation
    Inventor: Shina Kirita
  • Patent number: 8368998
    Abstract: A method is provided for color tuning a plasmonic device with a color tunable electronic skin. A plasmonic electronic skin is used, including a first substrate, a plasmonic structure, an electrically conductive transparent first electrode layer, an electrically conductive transparent second electrode layer, and a polymer-networked liquid crystal (PNLC) layer interposed between the first and second transparent electrode layers. In response to receiving a color tuning voltage, a full visible spectrum incident light, and a PNLC switch voltage, the plasmonic structure generates a first primary color. A primary color exhibits a single wavelength peak with a spectral full width at half magnitudes (FWHMs) in the visible spectrum of light. In response to receiving the PNLC switch voltage between the first and second electrode layers, the PNLC layer passes incident light.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: February 5, 2013
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Liang Tang, Akinori Hashimura, Apostolos T. Voutsas
  • Publication number: 20130021545
    Abstract: A spatial light modulator includes a first transparent substrate; a second transparent substrate; a phase modulation unit disposed between the first transparent substrate and the second transparent substrate and configured to modulate a phase of light passing through the phase modulation unit by changing an optical path length of the phase modulation unit according to a voltage applied to the phase modulation unit; and an amplitude modulation unit disposed between the first transparent substrate and the second transparent substrate and configured to modulate an amplitude of light passing through the amplitude modulation unit according to a voltage applied to the amplitude modulation unit.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hoon SONG, Hong-seok Lee, Kyu-hwan Choi
  • Publication number: 20130010301
    Abstract: A true time delay system and method for an optical carrier signal modulated with a microwave signal. The system includes a beam deflector, with the optical signal being imaged onto the beam deflector, a stationary reflective diffractive grating arranged in a Littrow configuration, a focusing element arranged between the beam deflector and the stationary reflective diffractive grating. In operation, the beam deflector steers the optical beam across the clear aperture of the focusing element and the focusing element transmits the steered beam to the reflective diffractive grating. A change in optical path length experienced by the optical beam as the beam is scanned across the grating surface results in a relative phase delay in the optical beam. The beam deflector can be a rotating mirror, an acousto-optic beam deflector, or an electro-optic beam deflector. The focusing element can be a lens or a curved mirror.
    Type: Application
    Filed: June 4, 2012
    Publication date: January 10, 2013
    Inventors: Ross Schermer, Frank Bucholtz, Carl A. Villarruel
  • Patent number: 8346028
    Abstract: The optical device includes a waveguide on a base. The device also includes a modulator on the base. The modulator includes an electro-absorption medium configured to receive a light signal from the waveguide. The modulator also includes field sources for generating an electrical field in the electro-absorption medium. The electro-absorption medium is a medium in which the Franz-Keldysh effect occurs in response to the formation of the electrical field in the electro-absorption medium. The field sources are configured so the electrical field is substantially parallel to the base.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Kotura, Inc.
    Inventors: Dazeng Feng, Po Dong, Ning-Ning Feng, Mehdi Asghari
  • Patent number: 8325411
    Abstract: Embodiments of the invention described herein include metamaterials that exhibit negative permittivity and negative permeability at optical frequencies, methods for preparing such materials, and devices prepared from same.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: December 4, 2012
    Assignee: Triton Systems, Inc.
    Inventors: Keith A. Higginson, Alkim Akyurtlu, Adil-Gerai Kussow
  • Patent number: 8320036
    Abstract: The present invention provides an apparatus that includes a waveguide and one or more pixels deployed adjacent the top surface of the waveguide which contains TIR light therein. Each pixel includes a deformable active layer having a first conductor and a driver electronics layer having a second conductor. The driver electronics layer is deployed in spaced-apart relation to the active layer and opposite the waveguide. In a quiescent state of a pixel, the active layer is in contact or near contact with the top surface of the waveguide so as to optically couple light out via FTIR (i.e., pixel's ON state). To actuate the pixel, the electronics layer is configured to selectively apply an electrical potential difference to the second conductor thereby causing the active layer to move away from the top surface so as to prevent the optical coupling of light out of the waveguide (i.e., pixel's OFF state).
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 27, 2012
    Assignee: Rambus Inc.
    Inventors: Kevin J. Derichs, Carey King, Daniel K. Van Ostrand, Berry Tod Cox, Reed J. Killion
  • Publication number: 20120281273
    Abstract: A light modulation layer disposed between a first transparent substrate and a second transparent substrate generates a plurality of first strip-like illumination light beams extending in a direction intersecting with a first end surface of the first or second transparent substrate at a first angle with use of light from a light source, when an electric field for a first mode is applied from an electrode to the light modulation layer. The light modulation layer generates a plurality of second strip-like illumination light beams extending in a direction intersecting with the first end surface at an angle different from the first angle or a direction parallel to the first end surface with use of light from the light source, when an electric field for a second mode is applied from the electrode to the light modulation layer.
    Type: Application
    Filed: April 18, 2012
    Publication date: November 8, 2012
    Applicant: SONY CORPORATION
    Inventors: Shogo Shinkai, Kentaro Okuyama, Akira Ebisui, Harumi Sato