Magneto-optic Crystal Material Patents (Class 359/324)
  • Patent number: 11754866
    Abstract: To enable several orders of magnitude increases in average power and energy handling capability of Faraday rotators, the technology utilizes high speed gas cooling to efficiently remove thermal loading from the Faraday optic faces while minimizing the thermal wavefront and thermal birefringence by creating a longitudinal thermal gradient. A recirculating gas cooling manifold accelerates the gas over the surface of the slab to create a turbulent flow condition which maximizes the surface cooling rate. The technology further provides a spatially uniform thermal profile on the Faraday slabs.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: September 12, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Andrew J. Bayramian, Alvin C. Erlandson, Daniel C. Mason
  • Patent number: 11754644
    Abstract: A magnetic field sensor comprises a magnetically responsive light propagating component configured to cause a polarization of light propagating inside the component to be rotated in response to an applied magnetic field, wherein the magnetically responsive light propagating component is formed of a bulk material doped with a dopant, the dopant including at least gadolinium, the dopant concentration being at a sufficiently low concentration such that the dopant is uniformly dispersed in the bulk material to provide a high Verdet constant. The magnetic field sensor also comprises a detector, and a polarization-maintaining light input device to couple the light into the magnetically responsive light propagating component. The detector is configured to measure a property of light output from the magnetically responsive light propagating component to determine a change in polarization of the light, the change caused by the presence of a magnetic field.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: September 12, 2023
    Assignee: UNIVERSITY OF SOUTHAMPTON
    Inventors: Rand Ismaeel, Ali Masoudi, Martynas Beresna, Gilberto Brambilla
  • Patent number: 10359654
    Abstract: Apparatuses for manipulating a color displayed by an article of wear comprising iron oxide colloidal nanocrystals arranged within chains are described. The apparatus includes (a) a magnetic field source, wherein a strength of a magnetic field generated by the magnetic field source is tunable to control the color displayed by the article of wear, and (b) an energy source, wherein energy generated by the energy source is applied to at least some of the chains of nanocrystals to soften materials within the article of wear immediately surrounding the chains of nanocrystals to which the energy is applied.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 23, 2019
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 10345630
    Abstract: Articles of wear comprises iron oxide colloidal nanocrystals arranged within chains are described. The chains of nanocrystals display a color that is determined by a strength of a magnetic field applied to the chains of nanocrystals, wherein the color is maintained when the magnetic field is removed.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 9, 2019
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 9869889
    Abstract: Articles of wear comprises iron oxide colloidal nanocrystals arranged within chains are described. The chains of nanocrystals display a color that is determined by a strength of a magnetic field applied to the chains of nanocrystals, wherein the color is maintained when the magnetic field is removed.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: January 16, 2018
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 9864217
    Abstract: Apparatuses for manipulating a color displayed by an article of wear comprising iron oxide colloidal nanocrystals arranged within chains are described. The apparatus includes (a) a magnetic field source, wherein a strength of a magnetic field generated by the magnetic field source is tunable to control the color displayed by the article of wear, and (b) an energy source, wherein energy generated by the energy source is applied to at least some of the chains of nanocrystals to soften materials within the article of wear immediately surrounding the chains of nanocrystals to which the energy is applied.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: January 9, 2018
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 9507183
    Abstract: Apparatuses for manipulating a color displayed by an article of wear comprising iron oxide colloidal nanocrystals arranged within chains are described. The apparatus includes (a) a magnetic field source, wherein a strength of a magnetic field generated by the magnetic field source is tunable to control the color displayed by the article of wear, and (b) an energy source, wherein energy generated by the energy source is applied to at least some of the chains of nanocrystals to soften materials within the article of wear immediately surrounding the chains of nanocrystals to which the energy is applied.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 29, 2016
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 9482785
    Abstract: Articles of wear comprises iron oxide colloidal nanocrystals arranged within chains are described. The chains of nanocrystals display a color that is determined by a strength of a magnetic field applied to the chains of nanocrystals, wherein the color is maintained when the magnetic field is removed.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 1, 2016
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 8749871
    Abstract: An optical structure for generating nonreciprocal loss is provided that includes a first substrate layer and a magneto-optical layer positioned on the first substrate layer. The magneto-optical layer achieves nonreciprocity with application of an external magnetic field so as to produce resonantly enhanced nonreciprocal loss.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 10, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Juan C. Montoya, Steven J. Spector, Reuel Swint, Caroline A. Ross
  • Publication number: 20130222889
    Abstract: A device for manipulating colloidal particles in a bistable medium, the device includes a microcontroller, which stores a color and/or design scheme for a bistable medium, and a mechanism for changing the bistable medium from a first state to a second state.
    Type: Application
    Filed: August 22, 2011
    Publication date: August 29, 2013
    Applicant: IDEA ZOO, INC.
    Inventors: Pieter Stroeve, Ben Shand Farber, M. Saif Islam, Edmond Edward Routhier
  • Patent number: 8285089
    Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: October 9, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: Clarence Chui
  • Patent number: 8126297
    Abstract: A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 28, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: Clarence Chui
  • Patent number: 7830594
    Abstract: An apparatus for all-optical deflection of an incident optical signal beam, the apparatus comprising: a photorefractive semiconductor crystal; and an electric field source, for applying an electric field across the crystal either through electrodes or by positioning the crystal at a place where an electric field is present. In another embodiment of the invention a second optical beam source, for illuminating the crystal with a background optical beam. The apparatus is used for steering the signal beam, lensing it or for other applications.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: November 9, 2010
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Mordechai Segev, Sharon Shwartz
  • Publication number: 20090073549
    Abstract: It is an object of the present invention to provide a magnetic garnet single crystal capable of reducing the optical loss of the resulting rotator even when the magnetic garnet single crystal is grown using a solvent containing Na by the liquid phase epitaxial process, as well as a Faraday rotator using the same. A magnetic garnet single crystal represented by the chemical formula Bi?Na?M13-?-?-?M2?Fe5-?-?Mg?M3?O12 (M1 is at least one element or more selected from Y, Eu, Gd, Tb, Dy, Ho, Yb and Lu; and M2 is at least one element or more selected from Ca and Sr; M3 is at least one element or more selected from Si, Ge, Ti, Pt, Ru, Sn, Hf and Zr, provided that 0.60<??1.50, 0<??0.05, 1.35<3??????<2.40, 0???0.10, 0???0.10, 0<??0.10, 0<?+??0.10, 0<?+??0.10).
    Type: Application
    Filed: September 17, 2007
    Publication date: March 19, 2009
    Applicant: TDK CORPORATION
    Inventor: Atsushi Ohido
  • Patent number: 7333261
    Abstract: A of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 19, 2008
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Patent number: 7242516
    Abstract: A hard magnetic Bi-substituted rare earth iron garnet material with excellent Faraday rotary moment, temperature property, wavelength property and insertion loss is provided. A Bi-substituted rare earth iron garnet material having a chemical composition of (Bi3-a-b-cGdaTbbYbc) Fe(5-w)MwO12 (where, M is at least one element selected from the group consisting of Ga, Al, Ge, Sc, In, Si and Ti, 0.5?a+b+c?2.5, 0.2?w?2.5) can be provided with hard magnetism and have excellent Faraday rotary moment, temperature property, wavelength property and insertion loss.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: July 10, 2007
    Assignee: TDK Corporation
    Inventors: Tamotsu Sugawara, Atsushi Ohido, Kazuhito Yamasawa
  • Patent number: 7211455
    Abstract: A method for manufacturing a semiconductor module incorporated with an optical isolator making use of a Faraday rotator formed of a magnetic garnet film in which a magnetically saturated condition is maintained even without any external magnetic field, in which, at the time the magnetic garnet film is exposed to a temperature of 100° C. or more in a step during manufacture, an external magnetic field is applied in the same direction as the direction of magnetization of this magnetic garnet film. This manufacturing method has an advantage that the high-coercivity film magnetic garnet film is not removed from its magnetically saturated condition even when heating steps are present in the course of manufacture.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 1, 2007
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Takemi Kawazoe, Ko Yoshimura, Tadahito Kanaizuka
  • Patent number: 7187496
    Abstract: There are provided a manufacturing method of an optical device excellent in expediency, and a technique for stably manufacturing a high performance optical device. After a single crystal film which constitutes a Faraday rotator and can exhibit a substantially rectangular magnetic hysteresis, is obtained, the single crystal film is magnetized in a state where this single crystal film is incorporated in an optical device such as an optical isolator. By performing a magnetizing step after the Faraday rotator is incorporated in the optical device, it becomes unnecessary to discriminate between the front and back surfaces of the single crystal film, and the characteristics of the optical device are also improved.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 6, 2007
    Assignee: TDK Corporation
    Inventors: Tamotsu Sugawara, Atsushi Ohido
  • Patent number: 7170921
    Abstract: A magneto-optic variable optical attenuator is provided that is used to control the intensity of a light signal. The optical attenuator includes at least one polarizing element having an optical polarization axis, wherein the polarizing element transmits a portion of an incident light signal proportional to the angular difference between an optical polarization axis of the incident light signal and that of the polarizing element. The optical attenuator also comprises a variable faraday rotator that includes a semi-transparent material, a magnetic material for applying a magnetic force to a light signal that is passed through the semi-transparent material, and a conductive wire configured to induce a magnetic field on the magnetic material. In various embodiments, the optical attenuator is employed as part of a laser package that includes a laser light source and a plurality of polarizing elements, which are in optical communication with a faraday rotator and/or a variable faraday rotator.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: January 30, 2007
    Assignee: Finisar Corporation
    Inventors: William Freeman, Steve Wang, Frank H. Levinson
  • Patent number: 7133189
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: November 7, 2006
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Patent number: 7050231
    Abstract: A Faraday rotator of multilayer film type is provided which can achieve excellent optical characteristics with a reduced number of layers. In the Faraday rotator, a metal reflection film, a periodic dielectric multilayer film made of silicon dioxide SiO2 and tantalum pentoxide Ta2O5, a magneto-optical thin film, and another periodic dielectric multilayer film made of tantalum pentoxide Ta2O5 and silicon dioxide SiO2 is formed sequentially. Light incident on a polarizer goes therethrough, is reflected at the metal reflection film while traveling trough the periodic dielectric multilayer films, and goes through an analyzer to exit out.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 23, 2006
    Assignee: Minebea Co., Ltd.
    Inventors: Takeshi Matsushita, Mitsuteru Inoue, Hideki Kato, Akio Takayama
  • Patent number: 7024073
    Abstract: A reflection-type variable optical attenuator comprises: a main attenuator unit including a first birefringent crystal plate, a Faraday rotational angle varying unit, and a second birefringent crystal plate arranged in this order; an input port and an output port that are arranged on a side of one end of the main attenuator unit; and a two-point reflection-type optical path varying reflector that is arranged on a side of the other end of the main attenuator unit. Light that comes in from the input port makes a round trip in the main attenuator unit and goes out through the output port.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: April 4, 2006
    Assignee: FDK Corporation
    Inventors: Teruhisa Sahashi, Hidenori Nakada, Shohei Abe, Isao Kojima, Keisuke Ikeda
  • Patent number: 7016094
    Abstract: Perovskite materials having magnetoresistive effect under the influence of an electric field can be employed in the construction of nonvolatile solid state electro-optic modulator. These materials display nonvolatile changes in electrical resistance and reactant when subjected to an electric field. As with other known perovskite materials, this is accompanied by nonvolatile changes in electro-optic properties related to dispersion and absorption of electromagnetic radiation. The nonvolatility of these materials is exploited in the construction of nonvolatile display and nonvolatile solid state electro-optic modulators such as waveguide switch or phase or amplitude modulators.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: March 21, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Nobuyoshi Awaya, David R. Evans
  • Patent number: 7002732
    Abstract: The invention provides small-sized, power-saving and easily-producible magneto-optical devices. The magneto-optical device comprises a Faraday rotator having nearly parallel surfaces and a Z-direction magnetic easy axis; a total reflection film formed partly on one surface of the Faraday rotator; another total reflection film formed partly on the other surface thereof; a light input region through which light enters the Faraday rotator; a light output region through which the light having alternately reflected on the total reflection films goes out of the Faraday rotator; a permanent magnet that forms a predetermined magnetic domain structure in the Faraday rotator and applies a magnetic field component in the Z-direction to the Faraday rotator so that the magnetization direction could be the same both in the light input region and the light output region; and an electromagnet that varies the position at which the magnetic field component applied to the Faraday rotator is 0 (zero).
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: February 21, 2006
    Assignee: TDK Corporation
    Inventor: Shinji Iwatsuka
  • Patent number: 6952300
    Abstract: A magneto-optical isolator (20) for an optical circuit. The isolator includes a substrate, and an optical channel (350) disposed next to the substrate. The optical channel and substrate are configured to transmit optical radiation within the optical channel. The isolator further includes a photonic-crystal rotator (24) formed with the substrate and the optical channel. The rotator has at least one defect (52) and magnetic (M) and non-magnetic (N) materials.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: October 4, 2005
    Assignee: Board of Control of Michigan Technological University
    Inventor: Miguel Levy
  • Patent number: 6853473
    Abstract: The invention relates to an optical device for polarizing light by changing its Faraday rotation angle, such as optical attenuators, optical switches or polarization controllers; and its object is to provide such an optical device which can be driven even by small-sized and power-saving magnetic circuits and in which the insertion loss in the Faraday rotator may be reduced. The optical device comprises a Faraday rotator formed of a garnet single crystal, and a magnetic circuit applying an external magnetic field H that is smaller than the saturation magnetic field Hs of the Faraday rotator to the Faraday rotator.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: February 8, 2005
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Kenichi Tohchi, Kazuhito Yamasawa, Shinichiro Kakei
  • Patent number: 6816300
    Abstract: An optical device includes a Faraday rotator made of a bismuth substituted rare earth iron garnet single crystal (BIG) having a Faraday rotation of 45 degrees, and permanent magnets arranged beside the Faraday rotator to define two or more areas of a single domain structure in the Faraday rotator. Adjacent areas are magnetized in opposite directions to cause the polarization planes of light beams passing through the adjacent areas to rotate in opposite directions. The optical device satisfies the relation expressed by Hs/Br/DH>&Dgr;D/2>0 where Hs (Oe) is a saturation magnetic field of the BIG, DH (cm−1) is a rate of change in magnetic field in the proximity to a boundary between the adjacent areas, Br (Gauss) is a residual flux density of the permanent magnets, and &Dgr;D is a distance between the two light beams.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 9, 2004
    Assignee: Photocrystal Inc.
    Inventors: Kazushi Shirai, Tetsuya Iishi, Yohei Hanaki
  • Patent number: 6785037
    Abstract: A Faraday rotator of multilayer film type is provided in which satisfactory optical characteristics are obtained with a small number of layers. In the Faraday rotator, a first periodic dielectric multilayer film made of silicon dioxide SiO2 and tantalum pentaoxide Ta2O5 is formed on a substrate, then a magneto-optical thin film, and a second periodic dielectric multilayer film made of tantalum pentaoxide Ta2O5 and silicon dioxide SiO2 are formed sequentially. The first and second periodic dielectric multilayer films sandwich the magneto-optical thin film such that their respective higher refractive dielectric thin films are in contact with the magneto-optical thin film. The number of layers of the first periodic dielectric multilayer film is larger than that of the second periodic dielectric multilayer film.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: August 31, 2004
    Assignee: Minebea Co., Ltd.
    Inventors: Takeshi Matsushita, Mitsuteru Inoue, Hideki Kato, Akio Takayama
  • Patent number: 6775052
    Abstract: A hard magnetic Bi-substituted rare earth iron garnet material with excellent Faraday rotary moment, temperature property, wavelength property and insertion loss is provided. A Bi-substituted rare earth iron garnet material having a chemical composition of (Bi3−a−b−cGdaTbbYbc) Fe(5−w)MwO12 (where, M is at least one element selected from the group consisting of Ga, Al, Ge, Sc, In, Si and Ti, 0.5≦a+b+c≦2.5, 0.2≦w≦2.5) can be provided with hard magnetism and have excellent Faraday rotary moment, temperature property, wavelength property and insertion loss.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: August 10, 2004
    Assignee: TDK Corporation
    Inventors: Tamotsu Sugawara, Atsushi Ohido, Kazuhito Yamasawa
  • Patent number: 6770223
    Abstract: Faraday rotator garnet thick films have improved specific Faraday rotations without requiring a bias magnet. Films of nominal composition BiX(EuZHo1-Z)3-XFe5-YGaYO12 are grown lattice matched to available {Gd2.68Ca0.32}[Ga1.04Mg0.32Zr0.64](Ga3)O12 substrates. The film is prepared with Z ≦0.45, which allows higher concentrations of Bi to be included in the film than prior compositions. The increased amount of Bi results in a higher specific Faraday rotations for the film. For devices such as non-reciprocal optoelectronic devices that require 45-degree rotators, the increased specific Faraday rotation results in the use of thinner films of reduced path length as well as increased crystal growth yields.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: August 3, 2004
    Assignee: Integrated Photonics, Inc.
    Inventors: Robert R. Abbott, Vincent J. Fratello, Steve J. Licht, Irina Mnushkina
  • Patent number: 6673146
    Abstract: A method of manufacturing is used to manufacture a magnet-free Faraday rotator having a square hysteresis loop, the Faraday rotator being formed of a bismuth-substituted rare earth iron garnet single crystal that has a compensation temperature in the range of 10 to 40° C. and is grown on a non-magnetic garnet substrate by a liquid phase epitaxy. The method comprising the steps of placing the bismuth-substituted rare earth iron garnet single crystal film in an environment of a temperature at least 20° C. away from the compensation temperature; and applying an external magnetic field higher than 1000 Oe to the bismuth-substituted rare earth iron garnet single crystal film so that the bismuth-substituted rare earth iron garnet single crystal film is magnetized to have a square hysteresis loop.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: January 6, 2004
    Assignee: Photocrystal, Inc.
    Inventors: Kazushi Shirai, Norio Takeda
  • Patent number: 6661935
    Abstract: An optical signal processing apparatus includes a YIG monocrystal serving as a magnetic body. A microstrip is provided on one main face of the YIG monocrystal, and microwaves are input to the microstrip. In order to input a laser beam into the YIG monocrystal, a semiconductor laser, a first lens, and a polarizer are disposed on the outside of one side surface of the YIG monocrystal with respect to the widthwise direction thereof. In order to detect a laser signal output from the YIG monocrystal, a analyzer, a second lens, and a photo detector are disposed on the outside of the other side surface of the YIG monocrystal with respect to the widthwise direction thereof.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: December 9, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Makoto Tsutsumi
  • Patent number: 6661560
    Abstract: A magneto-optic modulator modulates signals from a superconducting circuit such as a single-flux-quantum (SFQ) logic system onto a carrier wave light beam. The modulator is formed by depositing a magneto-optic material such as EuSe onto a superconducting ground plane such as that of the circuit. A microwave microstrip line is formed on the magneto-optic material and carries a signal from the circuit. The signal induces an H field in the magneto-optic material which causes the magneto-optic material to modulate the light.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: December 9, 2003
    Assignee: University of Rochester
    Inventor: Roman Sobolewski
  • Patent number: 6646777
    Abstract: An optical isolator includes a first magnetic polar source having a first magnet axis, a second magnetic polar source having a second magnet axis parallel to the first magnet axis, and an optical element between the first and second magnetic polar sources, and having a length along the first magnet axis that is less than a length of the first magnetic polar source along the first magnet axis. The optical element has a central axis that is tilted with respect to the second magnet axis.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: November 11, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Wenhong Qin, Robert K. Wolf
  • Patent number: 6646783
    Abstract: A light modulation device comprises: a magnetic garnet single crystal having a main surface and an easy magnetization axis in parallel with the main surface; an optical source arranged such that light emitted from the optical source is introduced into the magnetic garnet single crystal and propagates in the magnetic garnet single crystal along a first direction on the main surface; and one or a pair of transducers provided on the main surface of the magnetic garnet single crystal for applying a microwave signal in a region of the magnetic garnet single crystal where the light from the optical source propagates, to modulate the light.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: November 11, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinichiro Chiku, Takashi Fujii
  • Publication number: 20030170564
    Abstract: An optical recording medium for recording and reproducing information utilizing the change of a physical property of a recording layer caused by the irradiation with light, which comprises a substrate, characterized in that the substrate comprises a hydrogenated styrene polymer having a content of nucleus-hydrogenated styrene units of 80 wt % or more, has a glass transition temperature of 110° C. or higher, has a light transmittance of 88% or more at 400 nm, and exhibits an absolute value of retardation of 30 nm or less at 0° and 30° from the normal direction of the plane thereof. The optical recording medium suitable for use in the high density optical recording capable of responding to a greater number of openings and the use of a light having a shorter wave length in an optical head.
    Type: Application
    Filed: October 28, 2002
    Publication date: September 11, 2003
    Inventors: Nobuaki Kido, Shunichi Matsumura, Kaoru Iwata, Hideaki Nitta, Kazutomi Suzuki, Takashi Tomie, Kiyonari Hashidzume, Masaki Takeuchi, Kazuteru Kohno
  • Publication number: 20030137718
    Abstract: The invention relates to an optical device for polarizing light by changing its Faraday rotation angle, such as optical attenuators, optical switches or polarization controllers; and its object is to provide such an optical device which can be driven even by small-sized and power-saving magnetic circuits and in which the insertion loss in the Faraday rotator may be reduced. The optical device comprises a Faraday rotator formed of a garnet single crystal, and a magnetic circuit applying an external magnetic field H that is smaller than the saturation magnetic field Hs of the Faraday rotator to the Faraday rotator.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 24, 2003
    Applicant: TDK CORPORATION
    Inventors: Atsushi Ohido, Kenichi Tohchi, Kazuhito Yamasawa, Shinichiro Kakei
  • Patent number: 6594068
    Abstract: In all-optical networks, high speed optical switching and routing becomes one of the most important issues for interconnecting the transport network layers. This invention describes novel polarization-independent high speed optical switches using a digital Faraday rotator, which can also be used for various other optical switching devices. The basic digital Faraday rotator device is composed of (a) a semi-hard or hard iron garnet based magneto-optic crystal having bi-stable magnetization states at zero external magnetic field. (b) a wire winding around the crystal for changing the magnetization states by pulsed current having both fast rise time and short duration. (c) a circuit generating the required current pulses with both polarities.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: July 15, 2003
    Inventor: Zhifeng Sui
  • Patent number: 6590694
    Abstract: A Faraday rotator is provided which obtains excellent optical characteristics with a small number of layers. In the Faraday rotator, a metal reflective film is formed on a substrate, then a first periodic dielectric multilayer film made of silicon dioxide SiO2 and tantalum pentaoxide Ta2O5, a magneto-optical thin film, and a second periodic dielectric multilayer film made of tantalum pentaoxide Ta2O5 and silicon dioxide SiO2 are formed sequentially. The number of layers of the first periodic dielectric multilayer film is larger than that of the second periodic dielectric multilayer film. Incident light from a polarizer passes through the periodic dielectric multilayer films, is reflected at the metal reflective film, returns through the periodic dielectric multilayer films, and passes through an analyzer to exit out.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: July 8, 2003
    Assignee: Minebea Co., Ltd.
    Inventors: Takeshi Matsushita, Mitsuteru Inoue, Hideki Kato, Akio Takayama
  • Patent number: 6577430
    Abstract: The present invention provides improved optical switches in which no mechanical movement is required to direct optical pathways between plural fiber ports and light transmission is bi-directional. Advantageously, the inventive switches permit bi-directional light transmission. The inventive switches also incorporate light bending devices to allow two fibers to be coupled to the light beams using a single lens for compactness. In the inventive switch, an optical signal is spatially split into two polarized beams by a birefringent element, which passes through a polarization rotation device that comprises waveplates, walk-off elements, and an electrically controllable polarization rotator, and recombine into an output fiber, achieving polarization independent operation. The switches of the present invention rely on electro-magnetically or electro-optically switching the beam polarizations from one state to another to rapidly direct the light path.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: June 10, 2003
    Inventors: Guanghai Jin, Lei Zhang, Jing Zhao
  • Patent number: 6515789
    Abstract: The present invention is directed to an optical assembly with a substrate. A non-latching optical component is attached to the substrate and includes a non-latching garnet and a permanent magnet in magnetic communication with the garnet. Also, a latching optical component is attached to the substrate and includes a latching garnet. A magnetic shield is between the non-latching optical component and the latching optical component.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: February 4, 2003
    Assignee: Corvis Corporation
    Inventor: Peter J. Morgan
  • Patent number: 6462857
    Abstract: An optical modulator includes a magnetic ferrite single crystal, an optical source, a photoreceptor system and an analyzer. The magnetic ferrite single crystal has a transducer mounted and arranged to receive a microwave. The microwave is modulated by a signal having a frequency lower than the microwave. Light emitted from the optical source is introduced to the magnetic garnet single crystal and modulated by the microwave applied to the transducer. The photoreceptor system receives the modulated light that is emitted from the magnetic ferrite single crystal. The analyzer is provided between the magnetic ferrite single crystal and the photoreceptor system, and the analyzer is arranged such that a rotation angle of the analyzer about an optical axis thereof is shifted by an angle in the range of about 40 degrees to about 50 degrees from an extinct position at which an amount of direct-current light transmitted through analyzer is minimized.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: October 8, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinichiro Chiku, Takashi Fujii
  • Patent number: 6417952
    Abstract: There is provided a Faraday rotation angle varying device in which external magnetic fields are applied from at least two directions to a garnet single crystal having a Faraday effect and a synthesized magnetic field is varied so that Faraday rotation angle of light which transmits through the garnet single crystal is controlled. The device has a base film of garnet single crystal having a rotation angle varied in accordance with variation of a synthesized magnetic field, and a compensating film of a garnet single crystal having a constant Faraday rotation angle. The base film has a wavelength coefficient sign and the compensating film has a wavelength coefficient sign which is different from that of the base film, so that a wavelength variation component of the Faraday rotation angle of the base film is reduced by the compensating film. For example, a fixed magnetic field parallel to a light direction is applied by permanent magnets and a variable magnetic field is applied by an electromagnet.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: July 9, 2002
    Assignee: FDK Corporation
    Inventors: Hirotaka Kawai, Hiromitsu Umezawa
  • Publication number: 20020071177
    Abstract: The present invention discloses a single lens instantaneous 3D image taking device for the application in digital image taking. The digital image taking device contains a lens, an aperture disk and a single sensor installed and aligned in a straight line. The aperture disk has three off-optical-axis apertures with different angular coordinates that are installed with red, blue, and green filters, respectively, for light to pass through. When light passes through the lens and the three apertures on the aperture disk, it will be projected onto the sensor, giving image and color information from three different perspectives. Finally, through color separation and image correlation, a precise 3D range image and color information can be obtained.
    Type: Application
    Filed: February 20, 2001
    Publication date: June 13, 2002
    Inventor: Ching-Long Huang
  • Patent number: 6392784
    Abstract: An object of the invention is to provide a small size Faraday rotator which is easy to produce and enables reliable reduction of temperature dependence of the Faraday rotation angle, by defining the crystal orientation and arrangement order of each Faraday element when three or more Faraday elements are used. For this purpose, a Faraday rotator of the present invention comprises: a Faraday element section being composed of a plurality of Faraday elements, a permanent magnet for applying a magnetic field to each Faraday element in a parallel direction to an optical axis direction, and an electromagnet for applying a variable magnetic field in a perpendicular direction to the optical axis direction, wherein each Faraday element is arranged such that the crystal orientation of each is perpendicular to a light beam direction, and crystal orientations of adjacent Faraday elements are opposed to each other.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: May 21, 2002
    Assignee: Fujitsu Limited
    Inventors: Seiichi Ikeda, Nobuhiro Fukushima, Hirohiko Sonada
  • Patent number: 6351331
    Abstract: A Faraday rotator whose Faraday's rotational angle has low temperature-dependency; a method for efficiently preparing the same; a magneto-optical element which makes use of the Faraday rotator and whose characteristic properties are not susceptive to temperature changes; and an optical isolator, which can be provided at a low price. A Faraday rotator consists of a garnet crystal represented by the following compositional formula and having a lattice constant of 12.470 ±0.013 Å: (Tb1−(a+b+c)LnaBibM1c)3(Fe1−dM2d)5O12 in the formula, Ln is an element selected from the group consisting of rare earth elements other than Tb; M1 represents an element selected from the group consisting of Ca, Mg and Sr; M2 is an element selected from the group consisting of Al, Ti, Si and Ge; and a to d are numerals satisfying the following relations: 0≦a≦0.5, 0<b≦0.2, 0≦c≦0.02 and 0≦d≦0.1.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: February 26, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Satoru Fukuda, Masayuki Tanno, Toshiaki Watanabe, Toshihiko Ryuo
  • Patent number: 6345142
    Abstract: An optical attenuation device to attenuate the intensity of incident light, comprising an optical attenuation unit including at least two different type magneto-optical optical attenuation elements coupled in a cascade together.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: February 5, 2002
    Assignee: Fujitsu Limited
    Inventors: Hiroaki Nakazato, Masashige Kawarai
  • Publication number: 20020003651
    Abstract: In all-optical networks, high speed optical switching and routing becomes one of the most important issues for interconnecting the transport network layers. This invention describes novel polarization-independent high speed optical switches using a digital Faraday rotator, which can also be used for various other optical switching devices. The basic digital Faraday rotator device is composed of (a) a semi-hard or hard iron garnet based magneto-optic crystal having bi-stable magnetization states at zero external magnetic field. (b) a wire winding around the crystal for changing the magnetization states by pulsed current having both fast rise time and short duration. (c) a circuit generating the required current pulses with both polarities.
    Type: Application
    Filed: February 14, 2001
    Publication date: January 10, 2002
    Inventor: Zhifeng Sui
  • Patent number: 6333809
    Abstract: A magneto-optical device using a rare earth iron garnet material, wherein the rare earth garnet material is expressed in the following formula: (BixGdyRzY3−x−y−z)(Fe5−wGaw)O12, wherein x is defined in a range of 0.84≦x≦1.10, y is defined in the range of 0.73≦y≦1.22, z is defined in the range of 0.02≦z≦0.03, and w is defined in the range of 0.27≦w≦0.32, and wherein R is at least one element selected from rare earth elements.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: December 25, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Nobuki Itoh, Yukiko Yoshikawa, Satoshi Ishizuka, Hisashi Minemoto, Daisuke Ishiko
  • Patent number: 6333806
    Abstract: An apparatus which attenuates a light signal polarized in a first direction. The apparatus includes a polarization rotation unit and an output unit. The polarization rotation unit rotates the polarization of the light signal to produce a polarization rotated light signal having a polarization component in the first direction and a polarization component in a second direction which is substantially 90 degrees with respect to the first direction. The output unit passes, as an output signal, the polarization component in the second direction of the polarization rotated light signal and blocks the polarization component in the first direction. The polarization rotation unit includes an electromagnet and a permanent magnet which apply magnetic fields in specific directions with respect to the light path. Various yoke constructions are provided for the electromagnet and the permanent magnet.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: December 25, 2001
    Assignee: Fujitsu Limited
    Inventors: Hiroshi Onaka, Nobuhiro Fukushima