Having Folded Optical Path Patents (Class 359/351)
  • Patent number: 6897434
    Abstract: A source and/or method of generating quantum-correlated and/or entangled photon pairs using parametric fluorescence in a fiber Sagnac loop. The photon pairs are generated in the 1550 nm fiber-optic communication band and detected by a detection system including InGaAs/InP avalanche photodiodes operating in a gated Geiger mode. A generation rate>103 pairs/s is observed, a rate limited only by available detection electronics. The nonclassical nature of the photon correlations in the pairs is demonstrated. This source, given its spectral properties and robustness, is well suited for use in fiber-optic quantum communication and cryptography networks. The detection system also provides high rate of photon counting with negligible after pulsing and associated high quantum efficiency and also low dark count rate.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: May 24, 2005
    Assignee: Northwestern University
    Inventors: Prem Kumar, Marco Florentino, Paul L. Voss, Jay E. Sharping
  • Patent number: 6894299
    Abstract: Apparatus and method for treating a product with ultraviolet light. The apparatus includes a chamber having an inlet and an outlet, and an interior space between the inlet and the outlet. An ultraviolet light permeable conveyor is configured to move the product through the interior space from the inlet to the outlet. The conveyor has a top surface which receives the product and an opposite bottom surface. A source of ultraviolet light is coupled to the chamber and is configured to direct ultraviolet light in at least first and second portions within the interior space toward the conveyor. A first reflector is positioned in the interior space and above the top surface of the conveyor such that the first portion of the ultraviolet light is redirected toward the product on the top surface.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 17, 2005
    Assignee: Nordson Corporation
    Inventors: Gregory W. Harrell, James M. Borsuk
  • Patent number: 6885503
    Abstract: A lithography apparatus having achromatic Fresnel objective (AFO) that combines a Fresnel zone plate and a refractive Fresnel lens. The zone plate provides high resolution for imaging and focusing, while the refractive lens takes advantage of the refraction index change properties of appropriate elements near absorption edges to recombine the electromagnetic radiation of different energies dispersed by the zone plate. This compound lens effectively solves the high chromatic aberration problem of zone plates. The lithography apparatus allows the use of short wavelength radiation in the 1-15 nm spectral range to print high resolution features as small as 20 nm.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: April 26, 2005
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Yuxin Wang, Kenneth W. Nill
  • Patent number: 6858853
    Abstract: There is provided an illumination system for microlithography with wavelengths?193 nm that includes a primary light source, a first optical component, a second optical component, an image plane, and an exit pupil. The first optical component transforms the primary light source into a plurality of secondary light sources that are imaged by the second optical component in the exit pupil. The first optical element and the second optical element are reflective. The first optical component includes a first optical element having a plurality of first raster elements that are imaged into the image plane, producing a plurality of images being superimposed, at least partially, on a field in the image plane. The first optical component includes a collector unit and a second optical element having a plurality of second raster elements.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 22, 2005
    Assignee: Carl Zeiss SMT AG
    Inventors: Martin Antoni, Wolfgang Singer, Johannes Wangler
  • Patent number: 6822788
    Abstract: An amorphous diamond coating applied onto mirrored optics in an infrared motion sensor to block specific wavelengths of energy from a “white light” source like a halogen lamp, without reducing the reflectivity of the mirror surface in the Mid-Infrared wavelengths. A specific thickness of diamond-like-coating is applied on top of the reflective metal surface of a mirrored part, thereby reducing the mirror's reflectivity at visible and near-Infrared wavelengths known to be problematic for IR motion sensors, such as those emitted from halogen lamps. The coating has no significant detrimental effect on mid-Infrared reflectivity, so the IR motion sensor's performance is otherwise unaffected.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: November 23, 2004
    Assignee: Honeywell International Inc.
    Inventor: Jeffrey L. Blitstein
  • Patent number: 6801358
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: October 5, 2004
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, J. Joseph Armstrong
  • Patent number: 6801357
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 5, 2004
    Assignee: KLA - Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6768567
    Abstract: A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: July 27, 2004
    Assignee: EUV LLC
    Inventor: Patrick P. Naulleau
  • Patent number: 6747607
    Abstract: Disclosed herein is an arrangement for shielding electronic sensors from undesired microwave or millimeter wave radiation. In this arrangement, reflective element is disposed in the sensor path to intercept incoming signals. The reflective element has a pluraity of adjacent parallel ridges therein having sloped faces angled for reflecting incoming desired infrared radiation onto the sensor. The width of the ridges are selected so that desired signals will be reflected by the sloped ridge faces but undesired microwave or millimeter radiation will be reflected by the overall major surface of the mirror. Accordingly, undesired microwave or millimeter radiation will be reflected away from the sensor by the overall front major surface thereby preventing the sensor from being damaged.
    Type: Grant
    Filed: February 12, 1988
    Date of Patent: June 8, 2004
    Assignee: The Directv Group, Inc.
    Inventors: Wilfried O. Eckhardt, Weldon S. Williamson
  • Patent number: 6661580
    Abstract: Techniques for increasing the percentage of light that is transmitted through optical inspection systems that operate in or near the ultraviolet and deep ultraviolet electromagnetic spectrums are described. Along with increasing the amount of light transmission, the techniques of the present invention also provide additional advantages such as reduction of ripple, increased ability to match inspection systems, and improving manufacturability. The techniques of the present invention involve using an auto-focus light source near the operational range of the inspection system and slightly raising the lower end of the operational range.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 9, 2003
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Richard William Solarz
  • Patent number: 6636349
    Abstract: An imaging optical system includes a polarization beam splitter, a quarter waveplate, a reflection mirror and polarization state changing unit. The beam from an object plane is projected by way of the polarization beam splitter and the quarter waveplate to reflection mirror. The projected beam is reflected by the reflection mirror and is projected through the quarter waveplate and by way of the polarization beam splitter to an image plane, and the polarization state changing unit is disposed between the polarization beam splitter and the image plane to change the state of polarization of the beam projected by way of the polarization beam splitter. The polarization state changing unit includes a half waveplate effective to transform the beam projected by way of the polarization beam splitter into a rectilinearly polarized beam, being polarized in a desired direction.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: October 21, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuhiro Takahashi, Masato Muraki
  • Patent number: 6614575
    Abstract: An optical structure includes a substrate having semiconductor material and a grating structure. The grating structure has the property of emitting at least one frequency band so that light having a frequency from that frequency band cannot propagate in the grating structure. The grating structure has a configuration of pores and a defective region. The pores are disposed outside the defective region in a periodic array, and the periodic array is disturbed in the defective region. A surface of the grating structure is provided with a conductive layer at least in the vicinity of the defective region. A method for producing the optical structure is also provided.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: September 2, 2003
    Assignee: Infineon Technologies AG
    Inventors: Ulrike Grüning, Volker Lehmann, Reinhard Stengl, Hermann Wendt, Hans Reisinger
  • Publication number: 20030156323
    Abstract: High speed, wide area microscopic scanning or laser positioning is accomplished with an inertia-less deflector (for example an acousto-optic or electro-optic deflector) combined with a high speed wide area microscopic scanning mechanism or laser positioner mechanism that has inertia, the motion of the inertia-less deflector specially controlled to enable a focused spot to stabilize, for example to stop and dwell or be quickly aimed. It leads to improved data acquisition from extremely small objects and higher speed operation. In the case of fluorescence reading of micro-array elements, dwelling of fluorophore-exciting radiation in a spot that is relatively large enables obtaining the most fluorescent photons per array element, per unit time, a winning criterion for reducing fluorophore saturation effects. The same inertia-less deflector performs stop and dwell scanning, edge detection and raster scans.
    Type: Application
    Filed: November 26, 2002
    Publication date: August 21, 2003
    Inventor: James W. Overbeck
  • Patent number: 6577443
    Abstract: A reduction objective, a projection exposure apparatus with a reduction objective, and a method of use thereof are disclosed. The reduction objective has a first set of multilayer mirrors in centered arrangement with respect to a first optical axis, a second set of multilayer mirrors in centered arrangement with respect to a second optical axis, and an additional mirror disposed at grazing incidence, such that said additional mirror defines an angle between the first optical axis and said second optical axis. The reduction objective has an imaging reduction scale of approximately 4× for use in soft X-ray, i.e.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 10, 2003
    Assignee: Carl-Zeiss Stiftung
    Inventors: Udo Dinger, Hans-Jürgen Mann
  • Patent number: 6568626
    Abstract: An Eyepiece-support arm assembly device on an aircraft. The device comprises flanges formed on the eyepiece-support arm and on a support attached to the aircraft, along with a retention belt (32) liable to be set to a locking status, wherein the arm is immobilised in relation to the support, a setting status, wherein the arm can be moved between a position for use and a retracted position, and a disassembly status allowing the assembly and disassembly of the eyepiece-support arm, without modifying the setting. The status is changed by operating levers (44, 46).
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: May 27, 2003
    Assignee: Aerospatiale Matra Missiles
    Inventor: Bernard Fontaine
  • Publication number: 20030076583
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 24, 2003
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Publication number: 20030043455
    Abstract: There is provided a collector for guiding light with a wavelength of ≦193 nm onto a plane. The collector includes a first mirror shell for receiving a first ring aperture section of the light and irradiating a first planar ring section of the plane with a first irradiance, and a second mirror shell for receiving a second ring aperture section of the light and irradiating a second planar ring section of the plane with a second irradiance. The first and second mirror shells are rotationally symmetrical and concentrically arranged around a common axis of rotation, the first and second ring aperture sections do not overlap with one another, the first planar ring section substantially abuts the second planar ring section, and the first irradiance is approximately equal to the second irradiance.
    Type: Application
    Filed: January 23, 2002
    Publication date: March 6, 2003
    Inventors: Wolfgang Singer, Johannes Wangler
  • Publication number: 20030042422
    Abstract: An apparatus for simulating a blackbody utilizes several plates to absorb and reflect electromagnetic radiation. Electromagnetic radiation entering the apparatus from a certain view is reflected from one plate to another, until the direction of travel of the electromagnetic radiation is reversed. Each time the electromagnetic radiation is reflected, the majority of the electromagnetic radiation is absorbed resulting in a negligible amount of incoming electromagnetic radiation escaping the apparatus.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventors: D. Allan Roberts, Doug Cohen, David S. Smith
  • Patent number: 6507024
    Abstract: An infra-red camera apparatus having a primary mirror assembly formed in a first molded plastic housing; and, a secondary mirror assembly formed in a second molded plastic housing and disposed in front of and in optical alignment with the primary mirror assembly for collecting an image. The first and second housings snap together for assembly of the camera. A focal plane array is disposed in optical alignment with the primary and secondary mirrors for receiving an image focused thereon by the secondary mirror. A substrate is added for supporting the focal plane array and system electronics, which are responsive to images formed on the focal plane array.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: January 14, 2003
    Assignee: Litton Systems, Inc.
    Inventor: Robert E. Stewart
  • Patent number: 6501598
    Abstract: A prism includes a prism base member having first and second faces intersecting with each other and including calcium fluoride, an antireflection film for oblique incidence formed on the first face of the prism base member, and an antireflection film for 0° incidence formed on the second face of the prism base member. Each of the antireflection film for oblique incidence and the antireflection film for 0° incidence includes a high-refractive-index layer with a relatively high refractive index, and a low-refractive-index layer with a relatively low refractive index. The high-refractive-index layer includes thorium fluoride and the low-refractive-index layer includes aluminum fluoride.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: December 31, 2002
    Assignee: Sumitomo Electric Industries, Tld.
    Inventor: Hiromi Iwamoto
  • Patent number: 6483638
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: November 19, 2002
    Assignee: KLA-Tencor Corporation
    Inventors: David R. Shafer, Yung-Ho Chuang, Bin-Ming B. Tsai
  • Patent number: 6469827
    Abstract: A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: October 22, 2002
    Assignee: EUV LLC
    Inventors: William C. Sweatt, Daniel A. Tichenor, Luis J. Bernardez
  • Patent number: 6414805
    Abstract: In a reflected-light type fluorescence microscope having a turret type filter cassette capable of switching a plurality of excitation filters, a plurality of barrier filters, and a plurality of dichromatic mirrors and selecting a desired set of excitation filter, barrier filter, and dichromatic mirror upon rotation of a turret to perform fluorescence observation of a specimen, the excitation filters, barrier filters, and dichromatic mirrors are directly mounted on the turret. The turret has a shape obtained by cutting the sharp portion of a polyhedral pyramid (for example, octahedral pyramid) having a rotation axis as its central axis along a plane perpendicular to the central axis. The eight equiangular conical surfaces make 45° with the illumination and observation optical axes. Through holes are formed in the 45° conical surfaces to assure an optical path.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: July 2, 2002
    Assignees: Chroma Technology Corp., Olympus Optical Co., Ltd.
    Inventors: Jay Arthur Reichman, Atsuhiro Tsuchiya
  • Patent number: 6392793
    Abstract: A system for imaging is disclosed herein. The system has a numerical aperture (NA) preferably greater than 0.9, but greater than 0.65, and uses unique illumination entrances to collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric group at any angle from 0 to 85 degrees from vertical. The high NA catadioptric system can also have a relayed pupil plane, used to select different imaging modes, providing simultaneous operation of different imaging modes, Fourier filtering, and other pupil shaping operations.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: May 21, 2002
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Patent number: 6339497
    Abstract: A panoramic periscope includes a central body (3, 3A) and a rotating head-piece (9) supported on the central body. Inside the central body, an optical path (21, 23, 101, 105, 109, 111, 113) for an optical beam (F,) coming from the head-piece (9) is provided. A viewing module (17) receives the optical beam, for observing the external scenery. A laser telemeter (19) is provided and, along the optical path, a separator element (10S) with an inner dichroic surface (105A) is passed through by the optical beam coming from the head-piece (9). The inner dichroic surface (105A) separates a laser beam coming from the head-piece (9) and deviating it towards a separate optical path (107) which conveys the laser beam towards the laser telemeter (19). The separator element (105) has an entry surface (105I) and an exit surface (105U) which are parallel with one another and passed through by the optical beam (FV), the surfaces being perpendicular to the optical beam (FV).
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: January 15, 2002
    Assignee: Finmeccanica S.p.A. Ramo di Azienda Alenia Difesa
    Inventors: Silvano Pieri, Mauro Magnani, Mario Cecchi
  • Publication number: 20010040722
    Abstract: A design for inspecting specimens, such as photomasks, for unwanted particles and features such as pattern defects is provided. The system provides no central obscuration, an external pupil for aperturing and Fourier filtering, and relatively relaxed manufacturing tolerances, and is suited for both broad-band bright-field and laser dark field imaging and inspection at wavelengths below 365 nm. In many instances, the lenses used may be fashioned or fabricated using a single material. Multiple embodiments of the objective lensing arrangement are disclosed, all including at least one small fold mirror and a Mangin mirror. The system is implemented off axis such that the returning second image is displaced laterally from the first image so that the lateral separation permits optical receipt and manipulation of each image separately.
    Type: Application
    Filed: July 7, 1999
    Publication date: November 15, 2001
    Inventors: DAVID R. SHAFER, YUNG-HO CHUANG, J. JOSEPH ARMSTRONG
  • Patent number: 6285497
    Abstract: Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: September 4, 2001
    Assignee: EUV LLC
    Inventors: William C. Sweatt, Avijit Ray-Chaudhuri
  • Patent number: 6274868
    Abstract: FLIR kits are provided comprising optical and related components which can be commonly used for both navigational and targeting scenarios. Such components include a common detector interface, imaging optics, scanner, interlacer, filter wheel, and thermal reference sources with integrated chopper/rotator assembly, all of which when assembled form a stand-alone imaging sensor when combined with a common associated electronics subassembly. The kits are integrated into standard navigational and targeting platforms of the type found on the AH-64 Apache and RAH-66 Comanche attack helicopters.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: August 14, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John M. Hall, Richard A. Wright
  • Patent number: 6225027
    Abstract: A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: May 1, 2001
    Assignee: EUV LLC
    Inventors: William C. Replogle, William C. Sweatt
  • Patent number: 6222187
    Abstract: A multiwavelength imaging and spectroscopic photoemission microscope system (100) which simultaneously provides images in a broad range of the electromagnetic spectrum, such as between 200 nm-1000 nm (optical or visible light) and 1000 nm-500 nm (infrared light). The multiwavelength imaging and spectroscopic photoemission microscope system comprises a microscope (102), a spectrometer (106), a beam splitter (108), a first spectrum focal plane array (110) including an appropriate photodiode (114A), a second spectrum focal plane array (120) including an appropriate photodiode (114B), and a cryogenic vessel (160) to maintain relevant portions of the system at a very low temperature. The invention may be used in failure analysis of integrated circuits and in semiconductor and low temperature physics.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: April 24, 2001
    Assignee: Institute of Microelectronics
    Inventor: Kandiah Shivanandan
  • Patent number: 6210865
    Abstract: Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: April 3, 2001
    Assignee: EUV LLC
    Inventors: William C. Sweatt, Donald W. Sweeney, David Shafer, James McGuire
  • Patent number: 6137626
    Abstract: An optical system having a polarization compensating optical system capable of compensating for retardation with high accuracy. The polarization compensating optical system includes a half-wave plate (22), a first optical system (23a) having at least one uncoated refracting surface (26, 27), and a second optical system (23b) having at least one coated refracting surface (24, 25). The total rotation of the polarization plane introduced in rays passing through the entire optical system is reduced to approximately zero by rotation of the polarization plane produced by the first optical system (23a), and the total retardation introduced in the rays is reduced to approximately zero by retardation produced by the second optical system (23b).
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: October 24, 2000
    Assignee: Olympus Optical Co., Ltd.
    Inventor: Hideyuki Takaoka
  • Patent number: 6118577
    Abstract: Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.
    Type: Grant
    Filed: August 6, 1998
    Date of Patent: September 12, 2000
    Assignee: Euv, L.L.C
    Inventors: William C. Sweatt, Avijit K. Ray-Chaudhurl
  • Patent number: 6064517
    Abstract: A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The catadioptric group includes a focusing mirror and a refractive lens/mirror element. The focusing optics group is proximate to an intermediate image, and corrects for aberrations from the catadioptric group, especially high order spherical aberration and coma. The tube lens group forms the magnified image. Different tube lens groups can be used to obtain different magnifications, such as a varifocal tube lens group to continuously change magnifications from 20 to 200.times.. Multiple imaging modes are possible by varying the illumination geometry and apertures at the pupil plane.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: May 16, 2000
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Chuang, David Shafer, Bin-Ming B. Tsai, J. Joseph Armstrong
  • Patent number: 6025957
    Abstract: A image intensifier binocular, so-called goggle, of the type having only one image intensifier tube (2) is working with an effective diameter of its entrance photocathode (3) below 15 mm and therefore an objective (1) having an accordingly shortened focal length. This combination will substantially increase the depth of field of the goggle and also enable a design of smaller weight.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: February 15, 2000
    Assignee: Simrad Optronics A/S
    Inventor: Sven-.ANG.ke Afsenius
  • Patent number: 6016220
    Abstract: A corrector mirror folds the optical path between the objective and relay portions of a three-mirror anastigmat. The corrector mirror is a non-powered mirror having a nominally flat but higher order aspheric surface. By placing the corrector mirror between the objective portion and an intermediate image formed by the objective portion, the field offset of the anastigmat can be significantly increased. A large field offset makes the off-axis anastigmat ideal for use with an on-axis dewar for infrared imaging applications.
    Type: Grant
    Filed: April 9, 1996
    Date of Patent: January 18, 2000
    Assignee: Raytheon Company
    Inventor: Lacy G. Cook
  • Patent number: 5999310
    Abstract: An ultra-broadband ultraviolet (UV) catadioptric imaging microscope system with wide-range zoom capability. The microscope system, which comprises a catadioptric lens group and a zooming tube lens group, has high optical resolution in the deep UV wavelengths, continuously adjustable magnification, and a high numerical aperture. The system integrates microscope modules such as objectives, tube lenses and zoom optics to reduce the number of components, and to simplify the system manufacturing process. The preferred embodiment offers excellent image quality across a very broad deep ultraviolet spectral range, combined with an all-refractive zooming tube lens. The zooming tube lens is modified to compensate for higher-order chromatic aberrations that would normally limit performance.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: December 7, 1999
    Inventors: David Ross Shafer, Yung-Ho Chuang, Bin-Ming Benjamin Tsai
  • Patent number: 5946132
    Abstract: A telescopic sight which can be used for either nighttime or daytime operation and is particularly adaptable for use on weapons ranging from rifles to anti-tank weapons.A first embodiment includes a single objective and two parallel light paths, one for day viewing and one for night viewing. The objective forms the beginning of the night path. Separating mirrors transmit light from the objective along the night path and reflects light from the objective to the day path. The night path includes an image intensifier assembly. A mirror at the end of the night path reflects the light from the image intensifier assembly to a beamsplitter/combiner on the day path. The beamsplitter/combiner transmits the light from the day path and reflects the light from the night path along the same path to an ocular assembly for viewing.A second embodiment of the telescopic sight is similar to the first embodiment but contains two objective lens assemblies for collecting light, one for the night path and one for the day path.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: August 31, 1999
    Assignee: ITT Corporation
    Inventor: Earle Norman Phillips
  • Patent number: 5943163
    Abstract: An optical and infrared periscope includes a housing having an elongated 35 degree prism mounted in its upper portion in a position to receive a light image and refract and reflect the image toward a lower portion of the housing. The prism has a first portion of an optical grade glass that transmits and reflects light in a visible range of the light spectrum and a second portion of an optical grade single crystal silicon that transmits and reflects light in a range of wavelengths of from about three microns to about five microns. An HgCdTe focal plane array is provided in the lower portion of the housing for receiving the image reflected by the second portion of the prism and producing output signals representing the reflected image. The lower portion of the housing also contains an electronics package for processing the output signals and displaying a visible image on a cathode ray tube, which may be viewed through an eyepiece.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: August 24, 1999
    Assignee: Selectron Management Corporation
    Inventor: Robert M. Tartaglia
  • Patent number: 5865829
    Abstract: A medical optical system includes an observation optical system for guiding light emitted from a light source to a predetermined part to be illuminated, and causing light reflected from the predetermined part to be incident on the observation optical system. The medical optical system further includes a light separator, a guide optical system, and a display unit. The light separator is disposed at an intermediate part of the observation optical system, for separating the reflected light into reflected light of a visible observation wavelength area to be passed therethrough and reflected light or fluorescent light of the other wavelength area to be extracted therefrom. The guide optical system guides the light separated and extracted by the light separator to an image pick-up device so that an image of the separated light is formed on the image pick-up device. And the display unit displays the separated light image picked up by the image pick-up device.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: February 2, 1999
    Assignee: Kabushiki Kaisha Topcon
    Inventor: Nobuaki Kitajima
  • Patent number: 5841574
    Abstract: A multi-spectral decentered catadioptric-type optical system suitable for use with long range oblique aerial reconnaissance camera systems, spectrum analyzers, astronomical imagers, remote sensing, and other applications is described. The optical system includes an aspheric primary mirror receiving incident radiation and defining a central aperture. An aspheric secondary mirror is provided for receiving the radiation from the primary mirror. The primary and secondary mirrors are positioned and constructed such that entrance aperture of the system is displaced or decentered relative to the optical axis of the system, so as to thereby increase the modulation transfer function of the optical system as compared to a centrally obscured system.The aspheric secondary mirror directs the incident radiation onto a means for splitting the radiation to a first optical path and a second optical path.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: November 24, 1998
    Assignee: Recon/Optical, Inc.
    Inventor: Gilbert W. Willey
  • Patent number: 5719700
    Abstract: A confocal microscope equipped with a light source, a rotary disk having holes, a highly sensitive image receiver or camera, an immersion lens, and a contact endpiece for contacting the skin and in which is engaged at least a lower part of the lens. The endpiece includes a central opening and abuts the skin about the central opening. The microscope allows for relative axial displacement of the contact endpiece relative to the lens.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: February 17, 1998
    Assignee: L'Oreal
    Inventors: Pierre Corcuff, Jean-Luc Leveque
  • Patent number: 5631770
    Abstract: A reflective scanning telescopic system comprises: a primary ellipsoidal mirror for collecting incoming light, a secondary hyperbolic mirror for reflecting the light collected by the primary mirror axially through the primary mirror, a tertiary ellipsoidal mirror, disposed behind the primary mirror for receiving the light from the secondary curved mirror, and a double bounce fold mirror for directing light reflected from the first fold mirror to the tertiary mirror and for reflecting light from the tertiary mirror past the first fold mirror to a light imaging system. Ideally, the telescopic system is mounted on a substantially rigid optical bench on a gimbal for supporting the optical bench and enabling the optical bench to scan in two dimensions by pivoting along roll and pitch axes.
    Type: Grant
    Filed: May 26, 1994
    Date of Patent: May 20, 1997
    Assignee: Hughes Danbury Optical Systems, Inc.
    Inventor: Paul J. Jarmuz
  • Patent number: 5513034
    Abstract: An optical arrangement includes an infrared imaging system operating in conjunction with a first beam having wavelengths less than 15 microns, and a coherent infrared source generating a second beam having wavelengths shorter than the first beam wavelengths. Also provided is an objective lens arrangement including an objective lens having an aperture formed in one side of the objective lens. A partially reflective member is located between the objective lens arrangement, and the imaging system and infrared source. A T.V. camera is provided for receiving an image through the objective lens aperture. The first beam is directed to the imaging system from a region being imaged, and the second beam is directed from the infrared source to the region being imaged. The respective beams are directed to the partially reflective member so as to cause the respective beams to pass through the objective lens along substantially the same optical path as each other.
    Type: Grant
    Filed: April 5, 1994
    Date of Patent: April 30, 1996
    Assignee: GEC Marconi Avionics (Holdings) Limited
    Inventors: Hillary G. Sillitto, Alison B. Lessels, Evan S. Cameron, Thomas B. Wilson
  • Patent number: 5497266
    Abstract: A day/night sight includes a visible-light first optical path and an invisible-light second optical path which are everywhere optically coaxial. The invisible-light second optical path leads to a detector or to an image intensifier tube for providing either an electrical signal or a visible image, respectively, in response to the invisible-light image. A third optical path for the visible image from the image intensifier tube is also everywhere optically coaxial with the first and second optical paths. A visible image produced from the electrical signal is introduced into the first optical path to thereafter be coaxial therewith. Consequently, a uniquely compact arrangement of the elements for the day/night sight is achieved.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: March 5, 1996
    Assignee: Litton Systems, Inc.
    Inventor: Larry D. Owen
  • Patent number: 5495363
    Abstract: In an infrared (IR) microscope for a Fourier transform (FT) infrared spectrometer with a Cassegrain mirror-lens with which an incident beam (15) can be focused via a convex mirror (16) and a concave mirror (17) onto a first point-shaped region (19) on the surface of a sample (20) under an angle of incidence .beta.<60.degree.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: February 27, 1996
    Assignee: Bruker Analytische Messtechnik GmbH
    Inventor: Jurgen Gast
  • Patent number: 5400169
    Abstract: A multi-spectral optical imaging system comprising first and second facing, reflective surfaces defining a single optical axis, the first reflective surface being integrally formed on a single piece of metallic material, the single piece of metallic material having a central aperture through which the optical axis extends and a plurality of elongate rib members integrally formed thereon which define therebetween a plurality of openings communicating with the central aperture; and the second reflective surface having a focus on the optical axis, whereby radiation impinging on the first reflective surface is reflected therefrom towards the second reflective surface and further reflected from the second reflective surface towards the focus; scanning element associated with the second reflective surface for causing the second reflective surface to undergo scanning motion; beamsplitting element receiving radiation reflected from the second reflective surface; and plural detectors, each operating at a different opt
    Type: Grant
    Filed: June 14, 1993
    Date of Patent: March 21, 1995
    Assignee: State of Israel-Ministry of Defense, Armament Development Authority, Rafael
    Inventor: Benjamin Eden
  • Patent number: 5363235
    Abstract: An optical system (10) includes a three mirror anastigmat telescope (12) and imager optics (14). The imager optics (14) provide narrow and wide field of view staring of the viewed scene. The optical system is positioned in a turret assembly (50) and folded to provide a sensor. The sensor includes an output laser beam generator (90). The telescope (12) is shared by the infrared system and the laser (90) to provide a simplistic and compact turret arrangement (50) which is well suited for aircraft targeting and designation purposes.
    Type: Grant
    Filed: February 10, 1993
    Date of Patent: November 8, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Pul C. Kiunke, Reynold S. Kebo, Chungte W. Chen
  • Patent number: 5355224
    Abstract: There is provided an improved optical viewing device (10) in which variable compass heading information (80) and stadiametric range measuring information (88), (106), (118) is superimposed upon the image of a scene viewed through a viewing optical system (13) within the device (10). A self-luminous display panel (36) displays the information in the form of graphical symbols and/or alphanumeric characters. A folding lens (38) reflects light from the display panel (36) to a correcting lens (40), which transmits the light to a reflecting means (41) or (52). The reflecting means (41) or (52) reflects the light to a mangin mirror (44) or (62), which reflects the light to a dichroic combiner (28) or (50). The dichroic combiner (28) or (50) transmits the light into the path of the viewing optical system (13) such that the information displayed on the display panel (36) is effectively superimposed upon the image of the scene viewed by the user.
    Type: Grant
    Filed: September 16, 1992
    Date of Patent: October 11, 1994
    Assignee: Varo Inc.
    Inventor: Robert E. Wallace
  • Patent number: 5325237
    Abstract: A pupil/image reversal prism (FIG. 2) forms a pupil at an image location. Such a prism has specific applicability in a DCR scheme for a thermal imaging system (FIG. 3a, 31 and 32) in which a passive DCR source is implemented by a pupil imager that forms a pupil onto the image of a thermal scene, thereby providing scene-average radiation to a thermal detector array. The pupil/image reversal prism including an input reflective surface (A), an output reflective surface (B) , a positive reflective surface (C) and an intermediate folding reflective surface (D). The reflective surfaces A and B use total internal reflection to provide both transmissive and reflective operation.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: June 28, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Stephen F. Sagan