Plural Plane Coil Patents (Class 360/123.38)
  • Patent number: 11393787
    Abstract: An inductor conductor design which minimizes the impact of skin effect in the conductors at high frequencies in integrated circuits and the method of manufacture thereof is described herein.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: July 19, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, William D. French, Ann Gabrys
  • Patent number: 7633711
    Abstract: A magnetic write head for perpendicular magnetic recording that has a helical coil design that reduces manufacturing complexity and increases cycle time for manufacture. The write head includes a write pole and a helical write coil having upper coil portions that pass above the write pole and lower coil portions that pass below the write pole. The upper and lower coil portions are connected with another by connection studs. Whereas the upper and lower coil portions are constructed of a non-magnetic, electrically conductive material such as Cu, the connection studs are constructed of a magnetic, electrically conductive material such as NiFe. By constructing the connection studs of a magnetic material, they can be constructed in the same manufacturing steps used to manufacture various magnetic structures of the write head, such as a magnetic shaping layer and/or the back gap.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: December 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Edward Hin Pong Lee, Jennifer Ai-Ming Loo
  • Patent number: 7518824
    Abstract: A magnetic head includes an encasing layer made of a nonmagnetic material and having a groove that opens in the top surface; a nonmagnetic metal layer made of a nonmagnetic metal material, disposed on the top surface of the encasing layer, and having a penetrating opening that is contiguous to the groove; and a pole layer made of a magnetic metal material and encased in the groove of the encasing layer and in the opening of the nonmagnetic metal layer. The pole layer has an end face located in a medium facing surface, the end face having a first portion and a second portion that is located farther from a substrate than the first portion and connected to the first portion. The first portion has a width that decreases as the distance from the substrate decreases. The second portion has a uniform width that defines the track width. In the medium facing surface, the nonmagnetic metal layer exists on both sides of the second portion, the sides being opposed to each other in the direction of track width.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: April 14, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Hironori Araki, Takehiro Horinaka, Shigeki Tanemura
  • Patent number: 7428776
    Abstract: A method of manufacturing a thin-film coil in which a first coil and a second coil each having a desired number of winding are electrically connected in series and the second coil is formed between winding portions of the first coil on substantially the same plane, comprising: forming the first coil having a predetermined number of windings via a first insulating film; forming a second insulating film on a surface of the first coil and between the winding portions of the first coil; forming an underlying conductive film on the second insulating film, and treating the underlying conductive film so as to leave only the bottom portions of the underlying conducting film between the winding portions of the first coil; and growing deposition originating from a remaing portion of the underlying conductive film on the bottom portions of the underlying conducting film between the winding portions of the first coil so as to form the second coil.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: September 30, 2008
    Assignee: Sony Corporation
    Inventor: Teruo Inaguma
  • Patent number: 7394619
    Abstract: An inductive write head has its write poles and write gap oriented to generate magnetic fields in the cross-track direction on a magnetic recording disk in a disk drive. The disk has the magnetizations in the concentric data tracks oriented in the cross-track direction with the concentric data tracks magnetically separated from each other by guard bands. The write head may have an erase pole and an erase gap to generate magnetic fields in an along-the-track direction on the sides of the data tracks, with the along-the-track magnetizations serving as the guard bands.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: July 1, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Vladimir Nikitin