In Transistor Inverter Systems Patents (Class 363/131)
  • Publication number: 20150062991
    Abstract: A power converter includes at least one leg including a first string that includes controllable semiconductor switches, a first connecting node, and a second connecting node and that is operatively coupled across a first bus and a second bus. A second string is operatively coupled to the first string via the first connecting node and the second connecting node. The second string includes a plurality of switching modules wherein each of the plurality of switching modules includes a plurality of fully controllable semiconductor switches and at least one energy storage device. The power converter includes a system controller to control activation of the controllable semiconductor switches and switching modules such that a controlled electrical variable is maintained at a first predetermined reference voltage value and the average internal stored energy of the energy storage devices is maintained at a second predetermined reference value.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: Di Zhang, Luis Jose Garces, Andrew Allen Rockhill, Rixin Lai
  • Patent number: 8971081
    Abstract: The high voltage inverter device receives, as an input voltage, a DC voltage or a voltage within Safety Extra Low Voltage composed of a DC component with a pulsating flow superposed thereon. The input voltage is switched by a switching element to pass an exciting current to excitation windings on a primary side of a plurality of separate transformers having same characteristics to simultaneously excite the excitation windings. Output windings of the plurality of transformers are connected in parallel or in series with one another, and time axes of waveforms of output voltages of the output windings are synchronized. Thereby, a high-power high voltage is outputted continuously, stably, and safely from both ends of the output windings connected in parallel or in series.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Ricoh Company, Ltd.
    Inventor: Hisahiro Kamata
  • Patent number: 8971057
    Abstract: The invention provides a bidirectional converter that operates under an AC generation mode or a charge mode. The bidirectional converter may be a single component or circuit, which may include a DC-DC conversion stage using a unique “Smith 2 Stage conversion” technique and a DC-AC conversion stage or AC-DC conversion stage using a switchable filter depending on the mode. During the charge mode, the converter may be able to control the voltage and current of the DC output using a software algorithm, to match the battery being charged, or the DC receiver. This may enable the converter to control the nature of the DC output so it can be adapted to any energy storage technology. The controllable output voltage and synchronizable frequency may allow the converter to be used in series combinations to achieve a variety of high voltage outputs from simpler building blocks.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: March 3, 2015
    Assignee: Stem, Inc
    Inventor: Lynn B. Smith
  • Patent number: 8970063
    Abstract: An arrangement which includes two or more energy storage units for electrical energy connected in series, and two or more balancing resistor units. Each balancing resistor unit is connected in parallel with one of the energy storage units. The arrangement also includes means for determining a voltage over all of the series-connected energy storage units and means for determining the energy storage unit voltages between poles of the energy storage units. One or more of the balancing resistor units include a base resistor unit and a control resistor unit connected in series and a switching device connected in parallel with the control resistor units.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: March 3, 2015
    Assignee: ABB Oy
    Inventor: Ora Veli-Matti Leppänen
  • Patent number: 8971082
    Abstract: A power conditioning unit for delivering power from a power source to a mains utility supply, the power conditioning unit comprising a plurality of input terminals for connecting to the power source, a plurality of output terminals for connecting to the mains utility supply, a voltage increasing converter connected to the input terminals, a voltage reducing converter connected to the voltage increasing converter and a dc-to-ac converter connected to the voltage reducing converter and to the output terminals.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Enecsys Limited
    Inventor: Cuauhtemoc Rodriquez
  • Publication number: 20150055384
    Abstract: A single-phase DC-AC converter generates an AC voltage with five levels at the output converter side by using four controlled power switches. The converter has a relationship between the number of levels per number of switches (nL/nS) of five to four. The converter reduces the number of semiconductor devices required to generate a high number of levels at the output converter side, requires only one DC source to generate an AC output, and operates with high efficiency.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Inventors: Euzeli dos Santos, Lucas Hartmann
  • Patent number: 8964435
    Abstract: A power conversion system for providing power to an electrical grid is described. The power conversion system includes a power converter coupled to a photovoltaic (PV) array and configured to control a PV array voltage. The power conversion system also includes a system controller communicatively coupled to the power converter and configured to select from a first reduced power operating point and a second reduced power operating point when a power available from the PV array is greater than a rated output power of the power conversion system.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, David Smith, Anthony William Galbraith
  • Publication number: 20150049531
    Abstract: A driving device includes a driving circuit and a control circuit. The driving circuit has an input terminal and an output terminal and applies a driving voltage to a switching element through the output terminal. The control circuit outputs two types of control signals to the input terminal of the driving circuit. The driving circuit has a circuit group including multiple unit circuits which are turned ON by the same control signal. Each unit circuit includes one voltage source one switch controlled to be turned ON and OFF by the control signals, and one resistor connected in series to the switch between the voltage source and the output terminal. Each voltage source outputs a different voltage, and each resistor has a different resistance. One end of each switch of all the unit circuits is connected to the output terminal.
    Type: Application
    Filed: April 10, 2013
    Publication date: February 19, 2015
    Inventor: Akitomo Yamanaka
  • Patent number: 8958221
    Abstract: A grid tied inverter connectable to an electricity grid having a DC to DC current fed push-pull inverter to generate a current waveform from a DC voltage source. The push-pull inverter includes a transformer having a first side winding connectable to a battery and a second side winding connectable to the grid. The first end of the second side winding is connected between two diodes connected in series between a positive and negative output rail and being oriented in the same direction. The second end of the second side winding is connected between two capacitors connected in series between the positive and negative output rail. A further winding is connected at one end between the two capacitors and at its other end between another two diodes connected in series between the positive and negative output rail.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 17, 2015
    Assignee: Sony Corporation
    Inventor: Joseph John Nathaniel Adam
  • Publication number: 20150043253
    Abstract: A power conversion device 300 includes: an AC/DC converter section 10 which has an initial charging circuit 36 that initially charges a smoothing capacitor 22 provided at an output portion, and converts alternating current power into direct current power; a DC/DC converter section 11 which performs voltage conversion of direct current power supplied from the smoothing capacitor 22; and a control unit 5 which controls output of the AC/DC converter section 10 and output supplied from the DC/DC converter section 11. The control unit 5 performs a predetermined charging from the initial charging circuit 36 to the smoothing capacitor 22 at start-up of the AC/DC converter section 10, and starts the operation of the DC/DC converter section 11 after completion of charging, whereby the circuit can be protected from an inrush current at start-up.
    Type: Application
    Filed: July 4, 2012
    Publication date: February 12, 2015
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Kazutoshi Awane
  • Publication number: 20150043262
    Abstract: A reactor 1 according to the present invention includes a coil 2 and a magnetic core 3 where the coil 2 is disposed. In the reactor 1, a core part 4A (4B) including a stacked columnar body having a plurality of core pieces 31m and a plurality of gap members 31g stacked and coating resin 5A (5B) in which a peripheral surface coating portion 51oA (51oB) for coating an outer peripheral surface of the stacked columnar body to integrally hold the core piece 31m and the gap member 31g and an end surface coating portion 51eA for coating one end surface of the stacked columnar body are molded integrally is used for a part of the magnetic core 3, that is, an inner core 31. A manufacturing error of the core piece 31m or the gap member 31g is absorbed by the end surface coating portion 51eA. Consequently, the core part 4A (4B) can be molded with high accuracy and an outer core 32 can be assembled properly. Thus, the reactor 1 has high assembling workability.
    Type: Application
    Filed: November 5, 2012
    Publication date: February 12, 2015
    Inventors: Atsushi Ito, Shinichiro Yamamoto, Junji Ido
  • Publication number: 20150043261
    Abstract: The hollow tubular capacitor includes one side electrode connecting portion having an inner peripheral tubular portion and one side surface portion, the other side electrode connecting portion having an outer peripheral tubular portion and the other side surface portion and an electrostatic capacitance portion having one side electrode plate, the other side electrode plate and a dielectric body, wherein the electrostatic capacitance portion is accommodated in an annular space formed at the inner peripheral tubular portion, the one side surface portion, the outer peripheral tubular portion and the other side surface portion in a high density to reduce inside inductance component. The inverter device is formed such that the hollow tubular capacitor and an annular inverter circuit portion having three-phase upper and lower arms are integrally arranged coaxially on the central axis line.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventor: Naoki Koshi
  • Patent number: 8953340
    Abstract: An ICPT system has a single phase power supply which energises a conductive path (13) and has an inverter (5) to provide an alternating current at an operating frequency greater than the single phase utility supply frequency in the conductive path. The inverter modulates the amplitude of the alternating current with respect to the utility supply frequency such that the amplitude of the alternating current varies. The pick-up has an energy storage element (26) to provide a continuous supply of power to a load (27) irrespective of the varying amplitude of the alternating current in the conductive path.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 10, 2015
    Assignee: Auckland Uniservices Limited
    Inventor: John Talbot Boys
  • Publication number: 20150036402
    Abstract: A power system includes a power semiconductor devices; a control circuit outputting first firing signals each being for a corresponding power semiconductor device, and outputting first activation response signals each being associated with a corresponding power semiconductor device. A first interface circuit cooperates with the control circuit to input a first serial signal and output the first firing signals, and to input the first activation response signals and output a second serial signal. A second interface circuit cooperates with a controller to input the second serial signal, to output to the controller second activation response signals corresponding to the first activation response signals, to input from the controller second firing signals corresponding to the first firing signals, and to output the first serial signal. The controller controls the power semiconductor devices with the second firing signals, and monitors the power semiconductor devices with the second activation response signals.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Applicant: EATON CORPORATION
    Inventors: GREG JOHN VENHAUS, KENNETH WILLIAM BALOGH
  • Patent number: 8947898
    Abstract: A power conversion circuit converting DC electric power into AC electric power and sending the AC power to an inductive load, includes a first switching device connected to the DC power supply; a second switching device connected to the DC power supply; a first inductor provided between the first switching device and the inductive load; a second inductor provided between the second switching device and the inductive load; and a clamping diode connected between a first connection point between the first switching device and the first inductor, and a second connection point between the second switching device and the second inductor. When the first and second switching devices are turned off, a current flows through the second diode, clamping diode, first inductor and inductive load to completely flow out a current in the first inductor, and then a current flows through the second diode, second inductor and inductive load.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 3, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Shun-ichi Nakamura
  • Patent number: 8942019
    Abstract: A multilevel inverter circuit includes an inverter control circuit that controls switching of main and neutral switches. The inverter control circuit receives current vector information indicating flow direction of an AC current output of the multilevel inverter circuit. The inverter control circuit eliminates dead time between switching of a neutral switch and a main switch depending on whether the AC current output is flowing towards a load or away from the load. Among other advantages, elimination of dead time improves the total harmonic distortion of the sinusoidal AC voltage output of the multilevel inverter circuit.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 27, 2015
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Sampat Shekhawat, Myoungho Lee, Yongtaek Lee, Jacobo Aguillon-Garcia, Bongjoo Choi
  • Publication number: 20150023082
    Abstract: In a semiconductor device such as a three-phase one-chip gate driver IC, HVNMOSs configuring two set and reset level shift circuits are disposed on non-opposed surfaces, and it is thereby possible to reduce the amount of electrons flowing into drains of HVNMOSs of another phase due to a negative voltage surge. Also, distances from an opposed surface on the opposite side to the respective drains of the HVNMOSs configuring the two set and reset level shift circuits are made equal to or more than 150 ?m, and it is thereby possible to prevent a malfunction of a high side driver circuit of another phase to which no negative surge is applied.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Masaharu YAMAJI, Hideaki KATAKURA
  • Publication number: 20150023080
    Abstract: Methods and apparatus are provided that can be used to control a set of power switches operating as a power converter.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 22, 2015
    Applicant: American Power Conversion Corporation
    Inventor: Patrick Chambon
  • Publication number: 20150023081
    Abstract: A power semiconductor module capable of reducing variation of inductance between upper/lower arms and reducing variation of current caused by the variation of inductance. The power semiconductor module includes circuit blocks (upper/lower arms) each of which is configured by connecting self-arc-extinguishing type semiconductor elements in series; a positive electrode terminal, a negative electrode terminal, and an AC terminal that are connected to each of the circuit blocks; and wiring patterns that connect the self-arc-extinguishing type semiconductor elements of the circuit blocks to the positive electrode terminal, the negative electrode terminal, and the AC terminal, wherein the circuit block is plural in number; the positive electrode terminal, the negative electrode terminal, and the AC terminal are each disposed to be plural in number corresponding to the circuit blocks; and the positive electrode terminals and the negative electrode terminals are closely disposed.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 22, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoshiko Obiraki, Yasushi Nakayama, Yuji Miyazaki, Hiroshi Nakatake
  • Patent number: 8937822
    Abstract: A 1, 2 or 3-phase DC to AC converter system for reducing the cost of solar energy installations achieves cost reduction by eliminating low-frequency power transformers. One DC input polarity is selectively switched to an output terminal when the instantaneous AC output from a second output terminal is desired to be of the opposite polarity, while the other DC input polarity is used to form an approximation to a segment of a sine wave of the desired polarity at the second output terminal. A common-mode AC signal is thereby created on the balanced DC input lines at a frequency which is a multiple of 1, 2 or 3 times the AC output frequency and which is useful for detecting ground faults in the DC circuit.
    Type: Grant
    Filed: May 8, 2011
    Date of Patent: January 20, 2015
    Inventor: Paul Wilkinson Dent
  • Patent number: 8934276
    Abstract: A method for balancing a voltage of an inverter determines an expected voltage of a capacitor based on a voltage of the capacitor at a start of a switching cycle and determines a duty cycle minimizing a value of an objective function representing a difference between the expected voltage of the capacitor and a desired voltage of the capacitor. A switching sequence controlling the inverter is selected based on the duty cycle.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 13, 2015
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Koon Hoo Teo, Yi Deng
  • Patent number: 8934275
    Abstract: The invention relates to converters for converting a DC input voltage a DC or an AC output voltage. The converters have a parasitic inductance. The converters comprise at least one switching element connected to an input terminal for providing a first voltage at an output terminal. In order to allow temporarily storing, in a capacitor, energy induced by the parasitic inductance when switching OFF the switching element, a first series circuit of a diode and a capacitor is provided in the converter, wherein the diode is coupled to the one input terminal. An active circuit coupled in parallel with the diode enables controlling the release of temporarily stored energy from the capacitor of the first series circuit.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: January 13, 2015
    Assignee: Vincotech GmbH
    Inventors: Ernö Temesi, Michael Frisch
  • Patent number: 8929113
    Abstract: A capacitor discharger applied to a power conversion system including a DC voltage source, a power conversion circuit having a pair of input terminals via which the DC voltage source is electrically connected to the power conversion circuit, and a capacitor electrically connected between the pair of input terminals of the power conversion circuit. The capacitor discharger includes a first series connection of resistive elements and a second series connection of resistive elements. In the capacitor discharger, a parallel connection of the first and second series connections of resistive elements is electrically connected between the pair of input terminals of the power conversion circuit. This can ensure a discharge path for discharging the capacitor even in the presence of an abnormality in a portion of the parallel connection of the first and second series connections of resistive elements.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: January 6, 2015
    Assignee: Denso Corporation
    Inventors: Kazunori Watanabe, Tsuneo Maebara
  • Patent number: 8929112
    Abstract: An inverter circuit contains a first and second DC sources for providing a DC voltage, a common boost converter for boosting the DC voltage, an intermediate circuit capacitor connected between the outputs of the common boost converter, and an inverter for converting the DC voltage provided by the capacitor into an AC voltage. The common boost converter contains a series circuit having a first inductance and a first rectifier element and is connected between an output of the first DC source and one side of the intermediate circuit capacitor as well as a series circuit which includes a second inductance and a second rectifier element and is connected between an output of the second DC source and another side of the intermediate circuit capacitor. The common boost converter further contains a common switching element formed by at least two circuit-breakers which are connected between the first and second DC sources.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: January 6, 2015
    Assignee: Platinum GmbH
    Inventor: Christoph Schill
  • Patent number: 8929111
    Abstract: A multi-level converter includes a plurality of alternating current (AC) terminals connected to an AC source or load, at least three direct current (DC) terminals connected to a multi-level DC source or load, and a plurality of solid-state switches that are selectively turned On and Off to connect each of the plurality of AC terminals to one of the DC terminals. A controller provides PWM control signals to the solid-state switches. The controller utilizes space vector modulation to organize the various switching state configurations, and increments the switching states during a first half of the switching period and decrements the switching states during a second half of the switching period to center-align the PWM signals provided about the center of the switching period. The switching states utilized during the switching period dictate the PWM control signals provided to the plurality of switches employed in the three-level converter.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 6, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Adam Michael White
  • Publication number: 20150002068
    Abstract: Systems for controlled resonance in electrical power devices are described. A programmed signal processor generates output control signals from input electrical signals based on resonant control parameters for a target power device. Analog electrical control systems for controlled resonance, power devices incorporating controlled resonance, and opto-programmed controllers for use in controlled resonance applications are described, with example embodiments for electro-mechanical systems with resonant constructive power drive action for electric motors.
    Type: Application
    Filed: January 4, 2013
    Publication date: January 1, 2015
    Inventors: Ormonde G. Durham, Edward E. Lakata
  • Patent number: 8922258
    Abstract: A switching element driver IC has one or more photocouplers, a driver circuit, a detection circuit and a setting circuit. The photocoupler receives setting data transmitted from a microcomputer, and transmits the received setting data to the setting circuit, wherein an input side as a high voltage side is electrically insulated from an output side as a low voltage side in the photocoupler. The setting circuit transmits the setting data to the driver circuit and the detection circuit. The driver circuit and the detection circuit operate on the basis of the received setting data. The setting data can be provided to the driver circuit and the detection circuit through the photocoupler and the setting circuit. This structure makes it possible to suppress increasing the number of terminals at the high voltage side of the switching element driver IC, and decrease the entire size of the switching element driver IC.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Denso Corporation
    Inventors: Masatoshi Taguchi, Tsuneo Maebara
  • Patent number: 8922050
    Abstract: A method for controlling a power supply device for at least one electrical machine, having at least one storage device for electric energy (battery) and an inverter equipped with at least one reactor, the inverter having dual functions, being provided for charging (charge operation) the storage device from an in particular stationary power supply system, and for supplying the electrical machine with an alternating current in driving operation. A setpoint charge power is specified for the charge operation, and the reactor current is set accordingly by the inverter. Furthermore, a power supply device is also described.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 30, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Jochen Fassnacht
  • Patent number: 8923016
    Abstract: A solar module has a solar cell which generates a DC voltage. The module has a converter for converting a DC voltage fed into its input. The module contains a semiconductor switch and a controller which drives a switching input of the semiconductor switch. The controller drives the semiconductor switch variably so that the semiconductor switch switches more slowly during the transition operation than during normal operation, thereby reducing a dynamic overvoltage on the switch such that the voltage present on the switch does not exceed the blocking voltage of the switch.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 30, 2014
    Inventors: Rainer Weiss, Peter Beckedahl, Ingo Staudt
  • Patent number: 8923023
    Abstract: Converter control system coupled between a wind turbine generator and the electric power distribution grid, comprising at least two converter modules connected in parallel which are enabled/disabled by out-of-phase pulse-width modulation (PWM) patterns. The control device guarantees dynamic switching of the converter modules irrespective of the enabling or disabling of at least one converter module, constantly delivering electric power to the distribution grid.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 30, 2014
    Assignee: Gamesa Innovation & Technology, S.L.
    Inventors: Rosa Laforga Gallo, Ramon Santamaria Isla, Marta Soto Asperribay
  • Publication number: 20140376293
    Abstract: The invention is a bipolar solar photovoltaic to three-phase AC power converter with a novel non-isolated power conversion topology which allows multiple power converter outputs to be directly paralleled without the need for synchronized switching or galvanic isolation. The invention directly supports a new approach to solar photovoltaic system design wherein a large number of distributed lower power converters are used in lieu of one large central inverter.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Applicant: RENEWABLE POWER CONVERSION, INC.
    Inventor: Richard Travis West
  • Publication number: 20140376294
    Abstract: A single-phase inverter and a three-phase inverter are disclosed. The single-phase inverter includes a first and a second inverting topology unit, a first and a second direct-current voltage boost circuit, and four diodes. The first inverting topology unit is connected between a positive output end and a negative output end of the direct-current power supply; the second inverting topology unit is connected between a cathode of a diode and an anode of another diode; and a middle point of the first inverting topology unit is connected to a middle point of the second inverting topology unit and serves as an alternating-current output end of the single-phase inverter. The first and the second inverting topology unit work in a parallel structure to reduce a conduction loss of a switching transistor when the direct-current power supply outputs a high voltage.
    Type: Application
    Filed: July 25, 2014
    Publication date: December 25, 2014
    Inventor: Yanshen Hu
  • Publication number: 20140375131
    Abstract: The systems, methods, and devices of the various embodiments provide single phase inverters that may be cooperatively controlled to provide one, two, or three phase unipolar electricity. In an embodiment, a solar panel may be connected to a DC to DC converter and a unipolar power converter. In an embodiment, the unipolar power converter output may be a single phase signal approximating a desired voltage waveform and frequency, offset from the ground electrical potential such that the voltage output signal may be always positive, thus “unipolar”. In an embodiment, the unipolar power output of each string of solar panels may be connected to a dedicated, predetermined phase of a load, such as a three phase grid system. In an embodiment, the DC output of a DC to DC converter may be connected in parallel with other DC to DC converters and other unipolar converters.
    Type: Application
    Filed: November 20, 2012
    Publication date: December 25, 2014
    Inventors: Sorin Spanoche, Mika Nuotio, David Stewart
  • Publication number: 20140369102
    Abstract: A system for converting a first voltage into a second voltage, comprising: input terminals and output terminals; switching members disposed between the terminals, which can convert voltage; and a device for controlling the switching members, said device comprising a cell for controlling a switching member and a member for managing and supplying the control cell, said member being connected to the control cell by a link allowing the simultaneous transmission of a control signal and electrical energy. The member comprises means for generating a pulse comprising at least two different control intervals. During the second control interval, the pulse has a substantially constant value different from a reference value corresponding to the absence of control commands, the value of the pulse different from one control interval to the other and, during the first control interval, the pulse has a value strictly greater than the value during the second control interval.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 18, 2014
    Inventor: Alfred Permuy
  • Patent number: 8913410
    Abstract: A converter device for an uninterruptible power supply, the device having first and second main switching units connected to first and second voltage lines of a first type and each equipped with a first main switch; a main switching point connected to a voltage line of a second type and connected to the first and second main switching units; and a third main switch common to the first and second main switching units, and connected between the main switching point and a third voltage line of the first type; first, second and third capacitors connected between the main switching point and each of the first, second and third voltage lines of the first type; a first auxiliary switching unit connected by individual auxiliary switches between the first and second voltage lines of the first type, and a first auxiliary switching point; a second auxiliary switching unit connected between the first, second and third voltage lines of the first type, and a second auxiliary switching point; and a transformer having windin
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: December 16, 2014
    Assignee: MGE UPS
    Inventor: Corentin Rizet
  • Publication number: 20140362626
    Abstract: A multilevel inverter device comprises: a series circuit of a first switching element 21 and a second switching element 22 connected between a terminal at a high voltage side and a terminal at a low voltage side of a DC electric power supply 2; a series circuit of two capacitors 11 and 12, which is connected in parallel with the first switching element 21 and the second switching element 22, to generate an intermediate voltage of the DC electric power supply 2; and a single bidirectional switching element 100 connected between a connection point P1 of the two capacitors 11 and 12 and a connection point P2 of the first switching element 21 and the second switching element 22; and wherein the bidirectional switching element 100 has a horizontal transistor structure using GaN/AlGaN.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 11, 2014
    Applicant: PANASONIC CORPORATION
    Inventor: Kazunori Kidera
  • Patent number: 8908398
    Abstract: A method for operating a converter circuit is provided. The converter circuit includes a converter unit and a transformer. The transformer includes at least one winding set with a primary winding and a secondary winding. The converter unit is connected, on the AC voltage side, to the primary winding of the respective winding set. In order to compensate for undesirable saturation of the transformer, the converter unit is used to deliberately apply a DC voltage to the primary winding of the respective winding set of the transformer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: December 9, 2014
    Assignee: ABB Technology AG
    Inventors: Beat Buchmann, Beat Ronner
  • Patent number: 8908405
    Abstract: An inverter may include an inversion unit for converting a direct current bus voltage into an alternating current voltage, a first snubber unit, and a second snubber unit. The inversion unit may include a first external switch, a first internal switch, a second internal switch, and a second external switch which are connected in series in order between a direct current bus positive voltage terminal and a direct current bus negative voltage terminal. The first snubber unit may be connected between the direct current bus negative voltage terminal and the first internal switch for suppressing voltage stress of the first internal switch. The second snubber unit may be connected between the direct current bus positive voltage terminal and the second internal switch for suppressing voltage stress of the second internal switch.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: December 9, 2014
    Assignee: Liebert Corporation
    Inventor: Jianning Yang
  • Patent number: 8908404
    Abstract: In a light power generation system, a control device, a control method, and a program, efficient power can be supplied. The maximum power detection unit operates a MOSFET in a power converter circuit and open-circuits both ends of a solar cell panel in the maximum power detection mode. After that, the maximum power detection unit short-circuits both ends of the solar cell panel, detects a maximum power by monitoring the output power of the solar cell panel during a period from the open state to the short-circuited state, and defines the voltage of the solar cell panel as an optimal voltage when detecting the maximum power. In a tracking operation mode, the control unit performs PWM control with respect to the MOSFET by defining the optimal voltage to be a reference signal. Operations are repeated between the maximum power detection mode and the tracking operation mode.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: December 9, 2014
    Assignee: School Judicial Person Ikutokugakuen
    Inventor: Kazutaka Itako
  • Publication number: 20140355321
    Abstract: This power converter (1) is provided with: unit cells (11-M) having a semiconductor switch, a DC capacitor (C) and a charge/discharge current I/O terminal; a first arm (12-P) and a second arm (12-N) comprising multiple unit cells (11-M) connected to each other in cascade; an arm connecting unit (13) which has a first terminal to which the first arm (12-P) is connected, a second terminal to which the second arm (12-N) is connected, and a third terminal to which a DC power source is connected; and a transformer (14) which has an AC I/O terminal on the primary side and an intermediate terminal on the secondary side winding, and in which the terminal of the first arm (12-P) and the terminal of the second arm (12-N) are connected to the two end terminals on the secondary winding, and the DC power source (Vdc) is connected to the intermediate terminal.
    Type: Application
    Filed: November 15, 2012
    Publication date: December 4, 2014
    Inventors: Horofumi Akagi, Makoto Hagiwara
  • Publication number: 20140355322
    Abstract: A stacked switched capacitor (SSC) energy buffer circuit includes a switching network and a plurality of energy storage capacitors. The switching network need operate at only a relatively low switching frequency and can take advantage of soft charging of the energy storage capacitors to reduce loss. Thus, efficiency of the SSC energy buffer circuit can be extremely high compared with the efficiency of other energy buffer circuits. Since circuits utilizing the SSC energy buffer architecture need not utilize electrolytic capacitors, circuits utilizing the SSC energy buffer architecture overcome limitations of energy buffers utilizing electrolytic capacitors. Circuits utilizing the SSC energy buffer architecture (without electrolytic capacitors) can achieve an effective energy density characteristic comparable to energy buffers utilizing electrolytic capacitors.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 4, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: David J. Perreault, Khurram K. Afridi, Minjie Chen, Steven B. Leeb, Arthur Hsu Chen Chang
  • Patent number: 8901411
    Abstract: A photovoltaic (PV) control system generates a power output rate control signal based on a monitored rate of change of collective power output generated via a plurality of PV subsystems and a desired collective output power change rate for the plurality of PV subsystems and communicates the power output rate control signal to the plurality of PV subsystems to control a rate of change of one or more operating parameters of individual PV subsystems in order to control a rate of change of collective output power of the plurality of solar PV subsystems.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Yan Liu, Luis Jose Garces, Sumit Bose
  • Patent number: 8901466
    Abstract: The invention may enable provision of a method for facilitating operation of an induction heating device, and a pot detection method for an induction heating device and to an induction heating device. The induction heating device is characterized by determining a low point of a resonant cycle on a linking node of a parallel resonant circuit and a switching element, determining a low point voltage at the low point of the resonant cycle and switching on the switching element at the low point of the resonant cycle for a cycle duration that is determined depending on the low point voltage in such a manner that a low point voltage does not exceed a predetermined maximum value in the following resonant cycles.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 2, 2014
    Assignee: E.G.O. Elektro-Geraetebau GmbH
    Inventors: Wilfried Schilling, Ralf Dorwarth, Martin Volk, Tobias Schönherr
  • Publication number: 20140347905
    Abstract: A power supply circuit for a gate driving circuit for driving semiconductor switching devices of a power converter that is configured to perform a DC to AC conversion. The power supply circuit includes a DC power supply including a plurality of serially-connected single DC power supplies, a flying capacitor type power conversion circuit including a plurality of flying capacitors connected in parallel to a plurality of the semiconductor switching devices, and a plurality of serially-connected circuits each having an insulating device, a middle part of the series-connected circuits being connected to a middle potential point of the flying capacitors, and to a fixed potential point of the DC power supply.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 27, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Satoki TAKIZAWA
  • Patent number: 8896260
    Abstract: A power supply unit for a press machine having a converter (converter circuit) connected to a commercial AC power supply, and an inverter (inverter circuit) connected to a press motor, includes an electrical energy bank, an inrush prevention circuit, an inrush prevention instruction signal generation section, and a contactor switch section, wherein contactors of the inrush prevention circuit are switched from on ON state to an OFF state and inrush prevention resistors of the inrush prevention circuit are connected to AC phase current paths on condition that the inrush prevention instruction signal generation section has generated and output an inrush prevention instruction signal (Sres) during press operation.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 25, 2014
    Assignee: Aida Engineering, Ltd.
    Inventor: Kazuhiro Kuboe
  • Patent number: 8897045
    Abstract: An apparatus for controlling a converter has an ignition unit connected to power semiconductors in the converter and provides control signals for actuating the semiconductors. The apparatus has a control unit whose input is connected to measuring sensors providing actual values and whose output side is connected to the ignition unit. The control unit provides a reference variable for the ignition unit based on setpoint values and the actual values and the ignition unit actuates the power semiconductors such that the actual value corresponds to at least one of the setpoint values. A pilot unit has an output connected to the ignition unit and measures for calculating a step change reference variable for the ignition unit on the basis of at least one of the setpoint values. The ignition unit actuates the power semiconductors based on the step change reference variable.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 25, 2014
    Assignee: Siemens Aktiengesellsschaft
    Inventor: Jürgen Rittiger
  • Publication number: 20140334202
    Abstract: A system, method, and apparatus is disclosed for interfacing and transferring power unidirectionally or bidirectionally between a direct current (DC) line and a single or multiphase alternating-current (AC) line for only half of any given phase and only a single phase at a time when polarity is matched between the DC and the AC system. A circuit with simplified, robust, and reduced-cost components perform the power conditioning and the synchronization as a system that simulates a half-wave rectifier/inverter.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventor: D Kevin Cameron
  • Publication number: 20140334212
    Abstract: A semiconductor device of this invention (an IGBT with a built-in diode) includes: an n?-type drift layer 1; a p-type channel region 2 that is arranged in contact with the surface side of this n?-type drift layer 1; a gate electrode 5 that is provided in a trench T provided so as to penetrate this p-type channel region 2 and reach to the n?-type drift layer 1 through a gate insulating film 3; an n-type source region 4 that is provided so as to contact the trench T on the surface side of the p-type channel region 2; a high-concentration n-type region 6 that is arranged in contact with the back side of the n?-type drift layer 1; and a high-concentration p-type region 7 that is arranged in contact with the back side of this high-concentration n-type region 6; in which a junction of the high-concentration n-type region 6 and the high-concentration p-type region 7 is a tunnel junction. According to this semiconductor device, it is possible to form the IGBT and the diode on a single chip.
    Type: Application
    Filed: December 15, 2011
    Publication date: November 13, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Takayuki Hashimoto, Mutsuhiro Mori
  • Publication number: 20140334211
    Abstract: A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 13, 2014
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: UTSAV SOMANI, AHMADREZA AMIRAHMADI, CHARLES JOURDAN, ISSA BATARSEH
  • Patent number: 8885374
    Abstract: A multilevel converter includes at least one phase. Each phase of the multilevel converter includes a direct current (DC) link, a first circuit, a second circuit, and a phase capacitor. The DC link includes a first capacitor, a second capacitor, and a third capacitor situated between the first and second capacitors. The first circuit is electrically coupled to two terminals of the first capacitor. The second circuit is electrically coupled to two terminals of the second capacitor. The phase capacitor is electrically coupled between the first circuit and the second circuit.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventors: Di Zhang, Luis José Garcés Rivera