Polarization Patents (Class 372/27)
  • Patent number: 11950854
    Abstract: Certain implementations of the disclosed technology may include active marker devices, retrofits, systems, and methods for determining the position of interventional devices under MRI. A marker device is provided that utilizes an optical fiber, an acousto-optical sensor region that includes an electro-mechanical conversion assembly, and one or more antenna(e) The one or more antennae are configured to receive MRI radio-frequency (RF) electromagnetic energy and produce a corresponding electrical signal corresponding to the position. The acousto-optical sensor region may include a resonator and may be modulated by acoustic waves generated responsive to the electrical signal received from the one or more antennae The acousto-optical sensor region may be interrogated by light via the optical fiber to determine the position of the device for providing an active marker in the MRI image.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 9, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Fahrettin Levent Degertekin, Ozgur Kocaturk, Yusuf S. Yaras
  • Patent number: 11888293
    Abstract: In some implementations, an emitter array may include a substrate, an epitaxial structure on the substrate, a plurality of bottom-emitting emitters defined in the epitaxial structure, a first electrical contact positioned at a top side of the epitaxial structure, a second electrical contact positioned at the top side of the epitaxial structure, and a metal layer disposed on a bottom side of the substrate. The metal layer may be electrically connected to the second electrical contact. The metal layer may include one or more openings for light emission of the plurality of bottom-emitting emitters.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 30, 2024
    Assignee: Lumentum Operations LLC
    Inventors: Ajit Vijay Barve, Eric R. Hegblom
  • Patent number: 11828647
    Abstract: A pulse analysis system or method includes a frequency filter that receives an ultrafast pulse under test and disperses the pulse under test over a frequency range. The frequency filter separates the pulse under test into component frequency slices and provides the frequency slices to a detector coupled to a digitizer, which processes the digitized signal and collects a sonogram characteristic of the pulse under test. The frequency slices are arranged to overlap. Ptychography is performed on the sonogram to obtain characteristics of the pulse under test.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: November 28, 2023
    Assignee: MESA PHOTONICS, LLC
    Inventor: Daniel J Kane
  • Patent number: 11764537
    Abstract: A laser system and method generate milliwatt-power pump light by a fiber-coupled laser diode with a single-mode integrated fiber housed in a pump enclosure. The milliwatt-power pump light is conveyed from the single-mode integrated fiber out of the first enclosure into one end of a single-mode fiber cable that is external to the pump enclosure. The milliwatt-power pump light is conveyed from an opposite end of the external single-mode fiber cable into one end of a single-mode resident fiber disposed internally within a laser-head enclosure. A crystal housed in the laser-head enclosure is pumped with the milliwatt-power pump light that exits into free space from an opposite end of the single-mode resident fiber onto a face of the crystal, to produce stable milliwatt-power single-mode laser light having a frequency stability of less than 3 MHz per minute. The stable milliwatt-power single-mode laser light is emitted from the laser-head enclosure.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: September 19, 2023
    Inventor: Shailendhar Saraf
  • Patent number: 11715931
    Abstract: An optical device has a gallium and nitrogen containing substrate including a surface region and a strain control region, the strain control region being configured to maintain a quantum well region within a predetermined strain state. The device also has a plurality of quantum well regions overlying the strain control region.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: August 1, 2023
    Assignee: KYOCERA SLD Laser, Inc.
    Inventors: James W. Raring, Christiane Poblenz Elsass
  • Patent number: 11679556
    Abstract: Additive manufacturing devices and methods for the same are provided. The additive manufacturing device may include a stage configured to support a substrate, a printhead disposed above the stage, and a targeted heating system disposed proximal the printhead. The printhead may be configured to heat a build material to a molten build material and deposit the molten build material on the substrate in the form of droplets to fabricate the article. The targeted heating system may be configured to control a temperature or temperature gradient of the droplets deposited on the substrate, an area proximal the substrate, or combinations thereof.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: June 20, 2023
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick Y. Maeda, Joanne L. Lee
  • Patent number: 11586093
    Abstract: A method of, and module for, converting position or momentum correlation of correlated photon pairs to a polarization entangled photon pair, and a source for polarization entangled photon pairs. The method comprises a conversion step of separating the correlated photon pairs into first and second groups based on their generated position at the crystal (position correlation) or their direction about the propagation axis (momentum correlation) and rotating a polarization of the first correlated photon pair group such that the polarization of the first correlated pair group is at 90 degrees relative to the polarization of the second correlated photon pair group; and a combining step of combining the first and second correlated photon pairs such that at least respective portions of respective spatial distributions of the first and second photon pair groups overlap with negligible wavelength dependent phase difference.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: February 21, 2023
    Assignee: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Chithrabhanu Perumangatt, Lohrmann Alexander, Alexander Ling
  • Patent number: 11576571
    Abstract: Systems and methods are provided for measuring the mechanical properties of ocular tissue, such as the lens or corneal tissue, for diagnosis as well as treatment monitoring purposes. A laser locking feedback system is provided to achieve frequency accuracy and sensitivity that facilitates operations and diagnosis with great sensitivity and accuracy. Differential comparisons between eye tissue regions of a patient, either on the same eye or a fellow eye, can further facilitate early diagnosis and monitoring.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: February 14, 2023
    Assignee: The General Hospital Corporation
    Inventors: Seok-Hyun Yun, Amira Eltony
  • Patent number: 11581879
    Abstract: The disclosure relates in some aspects to providing miniature power-efficient agile photonic generators of microwave waveforms. Illustrative examples use chip lasers integrated in close thermal proximity with one another to provide a miniature microwave arbitrary waveform generator (AWG). Due to the small size of the lasers and the close integration, common ambient fluctuations from the environment or other sources can be efficiently reduced, yielding improved spectral purity of generated radio-frequency (RF) signals. Tight physical integration also permits a small device footprint with minimal acceleration sensitivity. The lasers may be locked to cavities or other resonators to allow efficient decoupling of the frequency and amplitude modulation of the lasers to provide flexibility to the waveform generator. Exemplary devices described herein can produce frequency chirped signals for radar applications. The frequency chirp may be linear and/or nonlinear. Tuning methods are also described herein.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: February 14, 2023
    Assignee: OEwaves, Inc.
    Inventors: Andrey B Matsko, Anatoliy A Savchenkov
  • Patent number: 11557876
    Abstract: A semiconductor laser is provided with: an active layer that excites a transverse electric (TE) mode and a transverse magnetic (TM) mode of light and constitutes at least a part of a resonator guiding the TE mode and the TM mode of light; and a diffraction grating as a frequency difference setting structure that sets the difference in oscillation frequency between the TE mode and the TM mode of light higher than a relaxation-oscillation frequency.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: January 17, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Nikolaos-Panteleimon Diamantopoulos, Takaaki Kakitsuka, Shinji Matsuo
  • Patent number: 11456570
    Abstract: A method and a system for measurement of high laser field intensity, the method comprising tight focusing a non-Gaussian azimuthally polarized laser mode beam to a focusing spot, measuring a spectral line shape of a selected ionization state induced by a longitudinal oscillating magnetic field created by the tight focusing in the focusing spot; and determining the laser intensity from the spectral line shape.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: September 27, 2022
    Inventor: Jean-Claude Kieffer
  • Patent number: 11422028
    Abstract: A method and system for determining a photon statistics of a light source using an unbalanced beam-splitter is disclosed. The method includes collecting data for photon counts for a first output path and a second output path by a first detector and a second detector, respectively, for a first time period, a first power level, and a first characteristic and collecting data for photon counts for the first output path and the second output path by the first detector and the second detector, respectively, for a second time period, a second power level, and a second characteristic; and processing outputs of the first and the second detector to determine the photon statistics.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 23, 2022
    Inventors: Hamed Pourbeyram, Arash Mafi
  • Patent number: 11385521
    Abstract: A wavelength conversion apparatus using a nonlinear optical medium having a periodically poled structure is operated at an optimal temperature in a stable manner. The wavelength conversion apparatus includes a wavelength converter using a nonlinear optical medium and a controller for controlling temperature of the wavelength converter. The wavelength conversion apparatus further includes a first optical branch coupler for branching part of output light from the wavelength converter, and first and second wavelength separation filters for separating and outputting, from part of the output light, each of two light components generated by parametric fluorescence in the wavelength converter. The controller controls the temperature of the wavelength converter on the basis of difference in light intensity of the two light components.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 12, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takeshi Umeki, Takushi Kazama, Koji Embutsu, Takahiro Kashiwazaki, Osamu Tadanaga, Ryoichi Kasahara
  • Patent number: 11362481
    Abstract: A pulse analysis system or method includes a frequency filter that receives an ultrafast pulse under test and disperses the pulse under test over a frequency range. The frequency filter separates the pulse under test into component frequency slices and provides the frequency slices to a detector coupled to a digitizer, which processes the digitized signal and collects a sonogram characteristic of the pulse under test. The frequency slices are arranged to overlap. Ptychography is performed on the sonogram to obtain characteristics of the pulse under test.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: MESA PHOTONICS, LLC
    Inventor: Daniel J Kane
  • Patent number: 11353771
    Abstract: An optical frequency conversion method, apparatus, and device are provided. Micro-nano fibers and guiding fibers are cascaded, to change an optical frequency conversion manner from using a long micro-nano fiber as a frequency conversion medium to cascading a first quantity of shorter micro-nano fibers and a second quantity of guiding fibers to perform optical frequency conversion. A length of each micro-nano fiber is not greater than a coherence length of a fundamental-frequency pump light signal and a frequency-tripled light signal. The frequency-tripled light generated by cascaded micro-nano fibers is coherently superposed. A phase difference between frequency-tripled light components is controlled by adjusting incident power of the fundamental-frequency pump light, to achieve constructive interference, thereby significantly enhancing the frequency-tripled light signal and effectively improving the optical frequency conversion efficiency.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: June 7, 2022
    Assignee: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Xiujuan Jiang, Zhennan Chen
  • Patent number: 11337293
    Abstract: An extreme ultraviolet light generation system includes: a chamber; a target generation unit; a laser system configured to output a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that fluence of the first pre-pulse laser beam is 1.5 J/cm2 to 16 J/cm2 inclusive at a position where a target is irradiated with the first pre-pulse laser beam; and a control unit configured to control the laser system so that a first delay time from a timing of irradiation of the target with the first pre-pulse laser beam to a timing of irradiation with the second pre-pulse laser beam and a second delay time from the timing of irradiation of the target with the second pre-pulse laser beam to a timing of irradiation with the main pulse laser beam have a following relation: the first delay time<the second delay time.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: May 17, 2022
    Assignee: Gigaphoton Inc.
    Inventors: Takanari Kobayashi, Hirokazu Hosoda
  • Patent number: 11243352
    Abstract: A photonic integrated circuit comprises an input interface adapted for receiving an optical input signal and splitting it into two distinct polarization modes and furthermore adapted for rotating the polarization of one of the modes for providing the splitted signals in a common polarization mode. The PIC also comprises a combiner adapted for combining the first mode signal and the second mode signal into a combined signal and a decohering means adapted for transforming at least one of the first mode signal and the second mode signal such that the first mode signal and the second mode signal are received by the combiner in a mutually incoherent state. A processing component for receiving and processing said combined signal is also comprised.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: February 8, 2022
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Dries Van Thourhout, Andrea Trita
  • Patent number: 11079432
    Abstract: A semiconductor or integrated circuit block including a sense node and a converter circuit, in which the sense node develops a low frequency electrical parameter that is constant or varies at a frequency below a predetermined frequency level, and in which the converter circuit converts the low frequency electrical parameter into an alternating electrical parameter having a frequency at or above the predetermined frequency level sufficient to modulate a laser beam focused within a laser probe area of the converter circuit. The converter may include a ring oscillator, a switch circuit controlled by a clock enable signal, a capacitor having a charge rate based on the low frequency electrical parameter, etc. The laser probe area has a frequency level based on a level of the low frequency electrical parameter to modulate the reflected laser beam for measurement of the electrical parameter by a laser voltage probe test system.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 3, 2021
    Assignee: NXP B.V.
    Inventors: Pieter Gustaaf Nierop, Gerben Boon, Harry Bernardus Antonius Kerver
  • Patent number: 10839237
    Abstract: A disclosed illumination apparatus includes first and second light sources that generate light for an illumination area to be illuminated; a first substrate on which the first and second light sources are mounted; and a second substrate that is disposed in an illumination direction of the light of the first and second light sources with respect to the first substrate, the second substrate having first and second diffraction grating elements formed integrally therewith, the first diffraction grating element being provided for the first light source, and the second diffraction grating element being provided for the second light source.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 17, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Satoshi Maeda, Yukihiro Abiko, Soichi Hama, Satoshi Semba, Hajime Nada
  • Patent number: 10797464
    Abstract: The present invention relates to a wavelength locking structure for a tunable laser and a wavelength locking method for a tunable laser. According to the present invention, since it is possible to use only one element for measuring the intensity of light, the number of parts is reduced in comparison to methods of the related art, so it is possible to perform wavelength locking economically with a down-sized structure.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 6, 2020
    Assignee: CHEM OPTICS INC.
    Inventors: Young Ouk Noh, Woo jin Lee, Yoon Koo Kwon, Jun Kyu Seo
  • Patent number: 10591672
    Abstract: A photonic integrated circuit comprises an input interface adapted for receiving an optical input signal and splitting it into two distinct polarization modes and furthermore adapted for rotating the polarization of one of the modes for providing the splitted signals in a common polarization mode,. The PIC also comprises a combiner adapted for combining the first mode signal and the second mode signal into a combined signal and a decohering means adapted for transforming at least one of the first mode signal and the second mode signal such that the first mode signal and the second mode signal are received by the combiner in a mutually incoherent state. A processing component for receiving and processing said combined signal is also comprised.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: March 17, 2020
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Dries Van Thourhout, Andrea Trita
  • Patent number: 10582601
    Abstract: An extreme ultraviolet light generating apparatus includes a target supply unit configured to output a target toward a predetermined region, a laser system configured to output a first laser beam with which the target is irradiated, a second laser beam with which the target is irradiated after being irradiated with the first laser beam, and a third laser beam with which the target is irradiated after being irradiated with the second laser beam, and an optical system configured to cause an irradiation beam diameter of the second laser beam at the target to be larger than an irradiation beam diameter of the third laser beam at the target.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 3, 2020
    Assignee: Gigaphoton Inc.
    Inventor: Tatsuya Yanagida
  • Patent number: 10396900
    Abstract: A method of controlling a transmission signal, includes transmitting a training signal including four polarization states having a given relation; and performing rotation control and transmission power level control of a polarization component of a data signal, based on a rotation control matrix for a polarization state and an inverse-operation control matrix for a power level imbalance, which are estimated from Stokes parameters related to input power level present on a Poincare sphere acquired from the training signal and Stokes parameters related to output power level present on the Poincare sphere.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 27, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Guoxiu Huang, Setsuo Yoshida, Takeshi Hoshida, Hisao Nakashima, Shoichiro Oda
  • Patent number: 10348055
    Abstract: A laser apparatus is provided, comprising a semiconductor substrate, an active layer disposed on the semiconductor substrate, a folded waveguide disposed on the active layer and forming a resonant structure, the folded waveguide comprising at least two substantially straight waveguide portions coupled by a connecting waveguide structure, with the folded waveguide having a first end and a second end located at one or more edges of the semiconductor substrate, wherein at least one of the ends includes a mirror, and an electrode coupled to the folded waveguide and configured to create photons in the folded waveguide when receiving electrical power. The waveguide emits laser light comprising the photons, with the laser light emitted at an edge of the semiconductor substrate.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: July 9, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventor: Ning Cheng
  • Patent number: 10194515
    Abstract: A beam delivery system may include: beam adjusters configured to adjust a divergence angle of a pulse laser beam; a beam sampler configured to separate a part of the pulse laser beam outputted from a first beam adjuster provided at the most downstream among the beam adjusters to acquire a sample beam; a beam monitor configured to receive the sample beam and output a monitored diameter; and a beam delivery controller configured to control the beam adjusters based on the monitored diameter. The beam delivery controller may adjust each of beam adjusters other than the first beam adjuster selected one after another from the most upstream so that the monitored diameter at the beam monitor becomes a predetermined value specific to the beam adjuster, and adjust the first beam adjuster so that the pulse laser beam becomes focused at a position downstream of a target position.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 29, 2019
    Assignee: Gigaphoton Inc.
    Inventors: Yoshifumi Ueno, Takashi Suganuma, Yoshiaki Kurosawa
  • Patent number: 10153849
    Abstract: The invention provides a free space optical (FSO) communications terminal for a first telecommunications card or a backplane. The FSO terminal comprises a plurality of transmission interfaces. The FSO terminal further comprises a light signal generating unit adapted to generate a plurality of light signals. Each of the plurality of light signals carries the same information as the other one or more of the plurality of light signals and is arranged for transmission through a respective one of the plurality of transmission interfaces. Each of the plurality of light signals is at a different orthogonal mode from the other one or more of the plurality of light signals. The invention further provides a free space optical (FSO) communications terminal for a second telecommunications card or a backplane. The FSO terminal comprises a plurality of receive interfaces. Each of the plurality of receive interfaces adapted to receive a light signal carrying information.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: December 11, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Antonio D'Errico, Antonella Bogoni, Fabio Cavaliere, Luca Giorgi
  • Patent number: 10114270
    Abstract: An optical logic device includes a distributed feedback laser configured to generate a first signal corresponding to distributed feedback laser output signal, the first signal being at a first wavelength. The device further includes a bandpass filter having a center frequency corresponding to the first wavelength. Additionally, the device can include an optical circulator having a first port coupled to a logic device input signal, a second port coupled to the first signal, and a third port coupled to the bandpass filter, wherein when the logic device input signal has a power above a predetermined threshold and there is a wavelength difference between the first wavelength and an input wavelength of the logic device input signal, a suppression of the first signal occurs.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 30, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Khurram Karim Qureshi
  • Patent number: 9995868
    Abstract: The present invention discloses a light guide plate, a backlight module and a display device, so as to solve the technical problem of color shift generated in prior art display panel due to the change of angle of view. The light guide plate comprises a bottom surface, a light exiting surface opposite to the bottom surface, and a quantum dot layer provided on the light exiting surface and comprising a quantum dot array, wherein the light exiting surface has a non-planar structure. Embodiments of the present invention provide following advantageous effects: the quantum dots on the surface of the light guide plate are configured to have a non-planar structure, such that the light transmitted through the spacing between quantum dots and having the same spectrum as the quantum dots is smoothly changed, thereby reducing the affection of color shift of the display device due to the change of angle of view.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: June 12, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Kim-Hee Cheol, Song-Young Suk, Yoo-Seong Yeol, Choi-Seung Jin
  • Patent number: 9778541
    Abstract: Provided are an acousto-optic element, an acousto-optic element array, and a display apparatus including the acousto-optic element array. The acousto-optic element includes: an acousto-optic modulator which includes an acousto-optic layer formed of an acousto-optic material; a light supplier which supplies light to the acousto-optic modulator in a first direction; a first sound-wave modulator which applies first elastic waves to the acousto-optic modulator in a second direction; and a second sound-wave modulator which applies second elastic waves to the acousto-optic modulator in a third direction. The light supplied from the light supplier to the acousto-optic modulator is deflected by diffraction caused by the first elastic waves applied from the first sound-wave modulator and diffraction caused by the second elastic waves applied from the second sound-wave modulator, and is output from the acousto-optic modulator through a front side of the acousto-optic modulator.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: October 3, 2017
    Assignees: SAMSUNG ELECTRONICS CO., LTD., AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Seung-hoon Han, Won-taek Seo, Hae-kwan Oh, Hong-seok Lee, Eun-hyoung Cho, Kee-keun Lee
  • Patent number: 9645500
    Abstract: A radiation source includes a nozzle configured to direct a stream of fuel droplets along a droplet path towards a plasma formation location, and is configured to receive a gaussian radiation beam having gaussian intensity distribution, having a predetermined wavelength and propagating along a predetermined trajectory, and further configured to focus the radiation beam on a fuel droplet at the plasma formation location. The radiation source includes a phase plate structure including one or more phase plates. The phase plate structure has a first zone and a second zone. The zones are arranged such that radiation having the predetermined wavelength passing through the first zone and radiation having the predetermined wavelength passing through the second zone propagate along respective optical paths having different optical path lengths. A difference between the optical path lengths is an odd number of times half the predetermined wavelength.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: May 9, 2017
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Oscar Franciscus Jozephus Noordman, Markus Franciscus Antonius Eurlings
  • Patent number: 9572218
    Abstract: A light source system that generates stable optical power over time and temperature in which a feedback control circuit is operative to receive a temperature signal and a sample signal and in response thereto generate a control signal to a driver circuit to maintain a power level of the light output substantially constant over an operative temperature range defined by Tmin and Tmax.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 14, 2017
    Assignee: USL Technologies, LLC
    Inventor: John P. Downing
  • Patent number: 9570888
    Abstract: An optical device has a gallium and nitrogen containing substrate including a surface region and a strain control region, the strain control region being configured to maintain a quantum well region within a predetermined strain state. The device also has a plurality of quantum well regions overlying the strain control region.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: February 14, 2017
    Assignee: SORAA LASER DIODE, INC.
    Inventors: James W. Raring, Christiane Poblenz Elsass
  • Patent number: 9407062
    Abstract: A wavelength tracking Fabry-Perot Laser Diode (F-P LD), and an optical transmitter including the same are disclosed, the wavelength keepable F-P LD including a gain section configured to provide and modulate a gain using an injected first current; and a phase shift/modulation section configured to vary wavelength relative to oscillation mode of light advanced from the gain section by injected second current or voltage and to modulate phases.
    Type: Grant
    Filed: December 15, 2012
    Date of Patent: August 2, 2016
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Joon-Young Kim, Sang-Rok Mun, Sang-Hwa Yoo, Byungil Seo, Myeonggyun Kye, Jian Chang
  • Patent number: 9379522
    Abstract: An optical device has a gallium and nitrogen containing substrate including a surface region and a strain control region, the strain control region being configured to maintain a quantum well region within a predetermined strain state. The device also has a plurality of quantum well regions overlying the strain control region.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: June 28, 2016
    Assignee: SORAA LASER DIODE, INC.
    Inventors: James W. Raring, Christiane Poblenz Elsass
  • Patent number: 9107279
    Abstract: Techniques for generating EUV light include directing a first pulse of radiation toward a target material droplet to form a modified droplet, the first pulse of radiation having an energy sufficient to alter a shape of the target material droplet; directing a second pulse of radiation toward the modified droplet to form an absorption material, the second pulse of radiation having an energy sufficient to change a property of the modified droplet, the property being related to absorption of radiation; and directing an amplified light beam toward the absorption material, the amplified light beam having an energy sufficient to convert at least a portion of the absorption material into extreme ultraviolet (EUV) light.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: August 11, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Robert J. Rafac, Yezheng Tao
  • Patent number: 9036248
    Abstract: A terahertz light generation device 1 comprises a resonator structure 12 for intensifying incident light and outputting the intensified light and laser oscillation units 10, 11 for feeding the incident light into the resonator structure 12. The incident light comprises first and second incident light components having polarization states different from each other and frequencies different from each other. The laser oscillation units 10, 11 feed the resonator structure 12 with the first and second incident light components at an angle inclined from a principal surface in the resonator structure 12. The resonator structure 12 outputs light having a frequency corresponding to the difference between the respective frequencies of the first and second incident light components.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 19, 2015
    Assignees: Osaka Prefecture University Public Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Hajime Ishiahara, Atsuyuki Oyamada, Satoshi Kuzuhara, Hisanobu Kitaguchi, Keiji Ebata
  • Publication number: 20150102864
    Abstract: A light emitting device includes a first semiconductor multilayer film mirror of a first conductivity type, a second semiconductor multilayer film mirror of a second conductivity type that is different from the first conductivity type, an active layer formed between the first semiconductor multilayer film mirror and the second semiconductor multilayer film mirror, a third semiconductor multilayer film mirror of a semi-insulating type formed between the first semiconductor multilayer film mirror and the active layer, and a contact layer of the first conductivity type formed between the third semiconductor multilayer film mirror and the active layer, and the third semiconductor multilayer film mirror is formed of a material having a bandgap energy higher than an energy of light generated in the active layer.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Inventor: Tetsuo NISHIDA
  • Patent number: 8976823
    Abstract: In at least one embodiment a laser system includes a fiber laser source, a polarization controller and a wavelength converter. The relative power distribution between a pump wavelength and a signal wavelength is controllable using the polarization controller. An optional phase compensator is used to control polarization state of the output laser beam. In various embodiments the relative power distribution among multiple wavelengths may be controlled over a range of at least about 100:1.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 10, 2015
    Assignee: IMRA America, Inc.
    Inventors: Jingzhou Xu, Gyu Cho
  • Patent number: 8964802
    Abstract: A ring laser-resonator generating plane-polarized fundamental-frequency radiation includes an optically nonlinear crystal configured for type-II second-harmonic generation of fundamental-frequency radiation. The resonator is configured such that fundamental-frequency radiation circulating either clockwise or counter-clockwise therein makes two passes through the optically nonlinear crystal per round-trip in the resonator in opposite directions, with polarization planes perpendicular to each other. This arrangement forces unidirectional circulation of radiation in the resonator during which second-harmonic radiation is not generated by the crystal.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 24, 2015
    Assignee: Coherent, Inc.
    Inventor: Andrea Caprara
  • Patent number: 8937977
    Abstract: A laser anti-reflection device includes a polarizing beam splitter, a ?/4 wave plate and an absorber disposed in an outgoing light path of a laser emitting linearly polarized light with a wavelength of ?. The linearly polarized light from the laser passes through the polarizing beam splitter and the ?/4 wave plate in turn to become a circularly polarized light beam. Part of the circularly polarized light beam is then reflected by a workpiece to be processed along the original light path and passes the ?/4 wave plate to become a linearly polarized light beam with a polarization direction vertical to that of the outgoing linearly polarized light beam. The vertical polarized beam passes the polarizing beam splitter, deviates from the light path of the outgoing linearly polarized light beam and reaches the absorber. The laser anti-reflection device prevents reflected light from damaging the laser from high power lasers.
    Type: Grant
    Filed: November 26, 2011
    Date of Patent: January 20, 2015
    Assignee: Beijing Luhe Feihong Laser S&T Co., Ltd.
    Inventors: Zhiyong Wang, Wenbin Qin, Yinhua Cao, Jingjing Dai, Tingwu Ge
  • Publication number: 20150010029
    Abstract: A laser pulse shaping method is configured for microscopically viewing and modifying an object. A temporal modulation and a two-dimensional spatial modulation of laser pulses are carried out. At least the phase of the laser pulses is modulated dependent on the location, and the modulated laser pulses are directed at the object.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 8, 2015
    Applicant: FREIE UNIVERSITAET BERLIN
    Inventors: Albrecht Lindinger, Karsten Heyne
  • Patent number: 8923352
    Abstract: One embodiment is directed towards a stabilized laser including a laser to produce light at a frequency and a resonator coupled to the laser such that the light from the laser circulates therethrough. The laser also includes Pound-Drever-Hall (PDH) feedback electronics configured to adjust the frequency of the light from the laser to reduce phase noise in response to light sensed at the reflection port of the resonator and transmission port feedback electronics configured to adjust the frequency of the light from the laser toward resonance of the resonator at the transmission port in response to the light sensed at the transmission port of the resonator, wherein the transmission port feedback electronics adjust the frequency at a rate at least ten times slower than the PDH feedback electronics.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Honeywell International Inc.
    Inventors: Lee K. Strandjord, Tiequn Qiu, Glen A. Sanders
  • Patent number: 8923351
    Abstract: In the field of the production of very high frequencies, for example from 1 gigahertz to several terahertz, by beating the frequencies of two laser beams together, a device includes a resonant optical cavity having very stable dimensions receiving the beams, with for each beam, an interrogation device of the resonant cavity supplying an electrical signal representing the difference in frequency between the light frequency of the beam and a resonance frequency of the resonant cavity. The frequency of each beam is servo controlled to minimize the frequency difference observed. The laser beams are produced by a dual-frequency laser producing two beams of different frequencies and orthogonal polarizations. A polarization separator is used for separate servo control of the beams according to polarization, and a polarizer is placed behind a main output of the resonant cavity producing an electromagnetic beam mixing the two polarizations and amplitude-modulated at the beat frequency.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: December 30, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: François Bondu, Marc Brunel, Mehdi Alouini, Marc Vallet, Goulc'hen Loas, Marco Romanelli
  • Publication number: 20140362881
    Abstract: A laser beam combining device includes three lasers, a polarizer, and a mode converter. The second laser device, the mode converter, and the third laser device are located on a first straight line in that order. The polarizer intersects with the first straight line at an imaginary joint point. An included angle between the first straight line and the polarizer is about 45 degrees. The polarizer and the mode converter are positioned between the second laser device and the third laser device. The polarizer is adjacent to the second laser device. The mode converter is adjacent to the third laser device. The first laser device faces the polarizer and is located on a second straight line perpendicular to the first straight line and passing through the joint point. The three laser devices emit TE mode red, green and blue laser beams, respectively.
    Type: Application
    Filed: October 30, 2013
    Publication date: December 11, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: PO-CHOU CHEN
  • Patent number: 8891562
    Abstract: Described herein is a laser (1) having a cavity for supporting oscillation of an electromagnetic signal to provide lasing action. A gain element (5) provides a source of stimulated emission for amplifying the oscillating signal. The laser also includes a wavelength selective element (7), which includes a reflecting element and a polarization modifying element. The reflecting element selectively defines a predetermined wavelength and the polarization modifying element selectively modifies the polarization of the signal component at the predetermined wavelength so as to provide high selectivity. The wavelength selective element (7) rotates the signal polarization at the predetermined wavelength into an orthogonal state. A polarization filter (9) filters out the signal components having wavelengths not corresponding to the predetermined wavelength and a polarization rotation element (11) again rotates the polarization of the signal into an orthogonal state.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: November 18, 2014
    Assignee: Finisar Corporation
    Inventors: Steven James Frisken, Daniel Royston Neill
  • Patent number: 8855152
    Abstract: A polarization modulation device for wideband laser comprises a first polarization maintaining optical fiber, a second polarization maintaining optical fiber, and a non-polarization maintaining optical fiber. The non-polarization maintaining optical fiber includes a first polarization controller coupled with the first polarization maintaining optical fiber, and a second polarization controller coupled with the second polarization maintaining optical fiber.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: October 7, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yao Wun Jhang, Chien Ming Huang, Hsin Chia Su, Shih Ting Lin, Hong Xi Tsau
  • Patent number: 8798105
    Abstract: A compact, lightweight, laser target designator uses a TIR bounce geometry to place an end-pumped gain element functionally in the center of the resonator path, thereby allowing the resonator path to be terminated by a pair of crossed Porro prisms, so that the designator produces a high quality beam that is insensitive to alignment and temperature, and is low in manufacturing cost. Some embodiments fold the Porro legs of the resonator path back toward the gain element for compactness. Embodiments use a single gain element as both an oscillator gain element with TIR and as an output amplifier gain element without TIR. Various embodiments use block optical elements in a planar layout on a standard support medium such as aluminum to facilitate automated manufacturing.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 5, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John C. McCarthy, Katherine J. Snell, Christopher A. Miller
  • Publication number: 20140205293
    Abstract: The embodiments of the present invention disclose an External Cavity Laser (ECL), relate to the field of Wave Division Multiplexing-Passive Optical Network (WDM-PON) technology, and effectively solve a problem of unstable output optical power of the ECL caused by polarization dependence. The ECL includes a gain medium, a filter, and a Faraday Rotator Mirror (FRM). The gain medium, the filter and the FRM constitute an oscillation cavity, and light emitted by the gain medium oscillates back and forth in the oscillation cavity.
    Type: Application
    Filed: June 10, 2013
    Publication date: July 24, 2014
    Inventors: Huafeng LIN, Zhiguang XU, Guikai PENG
  • Publication number: 20140198814
    Abstract: The present invention discloses a wavelength modulation heterodyne light source, which comprises: a modulation unit, a wavelength modulated light source and a birefringent crystal. The modulation unit produces a triangular or sine wave modulating signal, and transmits the modulating signal to the wavelength modulated light source to generate a wavelength modulated light signal, then the modulated light signal is refracted by the birefringent crystal with two different optical paths caused by the two different refractivity of the crystal to generate a heterodyne light. With the application of the present invention, the heterodyne light source can be made to a relatively small size and save much cost compared with known heterodyne light sources at present.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 17, 2014
    Applicant: National Central University
    Inventors: Ju-Yi LEE, Yu-Che CHUNG
  • Patent number: 8768110
    Abstract: Various exemplary embodiments relate to an optical isolator in an integrated optical circuit including: a first optical modulator configured to provide a first periodic phase modulation on an input optical signal; a second optical modulator configured to provide a second periodic phase modulation on the modulated optical signal; and an optical waveguide having a length L connecting the first optical modulator to the second optical modulator; wherein the phase difference between the first and second periodic phase modulation is ?/2, and wherein the length L of the optical waveguide causes a phase delay of ?/2 on an optical signal traversing the optical waveguide.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 1, 2014
    Assignee: Alcatel Lucent
    Inventor: Christopher R. Doerr