Coil Patents (Class 373/152)
  • Patent number: 11272584
    Abstract: An electric induction furnace for melting and holding a reactive metal or alloy is provided with an upper furnace vessel, an induction coil positioned below the upper furnace vessel, and a melt-containing vessel positioned inside the induction coil with a gap between the outside surface of the melt-containing vessel and the inside surface of the induction coil that can be used to circulate a cooling fluid for cooling the wall of the melt-containing vessel to inhibit leakage of the reactive metal or alloy melt from the vessel. The melt-containing vessel can be integrated with a cooling system for cooling the melt-containing vessel. The melt-containing vessel, induction coil and cooling system can be provided as modular components to facilitate servicing of the melt-containing vessel, the induction coil and the cooling system.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 8, 2022
    Assignee: INDUCTOTHERM CORP.
    Inventors: Satyen N. Prabhu, Joseph T. Belsh, Peter Aruanno
  • Patent number: 9544949
    Abstract: Vessels used for melting material to be injection molded to form a part are described. One vessel has a body formed from a plurality of elongate segments configured to be electrically isolated from each other and with a melting portion for melting meltable material therein. Material can be provided between adjacent segments. An induction coil can be used to melt the material in the body. Other vessels have a body with an embedded induction coil therein. The embedded coil can be configured to surround the melting portion, or can be positioned below and/or adjacent the melting portion, so that meltable material is melted. The vessels can be used to melt amorphous alloys, for example.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: January 10, 2017
    Assignee: Apple Inc.
    Inventors: Quoc Tran Pham, Michael Deming, Theodore A. Waniuk, Sean Timothy O'Keeffe, Joseph Stevick
  • Patent number: 9025637
    Abstract: An electromagnetic induction melting furnace to control an average nominal diameter of the TiC cluster of the Al—Ti—C alloy includes a main body containing the melted alloy; and a multi-layer coil disposed on the main body, wherein a frequency of the alternative current of each coil of the multi-layer coil is different, and the alloy is heated by inducing a magnetic field generated by the alternative currents. The selection of the frequency and the changeable magnetic field may reduce the cohesion force between the TiC grains of the Al—Ti—C alloy to control the average nominal diameter of the TiC cluster.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 5, 2015
    Assignee: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
    Inventors: Xuemin Chen, Qingdong Ye, Jianguo Li, Chaowen Liu, Yueming Yu
  • Patent number: 9025636
    Abstract: An electromagnetic induction melting furnace to control an average nominal diameter of the TiB2 cluster of the Al—Ti—B alloy includes a main body containing the melted alloy; and a multi-layer coil disposed on the main body, wherein a frequency of the alternative current of each coil of the multi-layer coil is different, and the alloy is heated by inducing a magnetic field generated by the alternative currents. The selection of the frequency and the changeable magnetic field may reduce the cohesion force between the TiB2 grains of the Al—Ti—B alloy to control the average nominal diameter of the TiB2 cluster.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 5, 2015
    Assignee: Shenzhen Sunxing Light Alloys Materials Co., Ltd.
    Inventors: Xuemin Chen, Qingdong Ye, Jianguo Li, Chaowen Liu, Yueming Yu
  • Patent number: 8968470
    Abstract: Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo Yun Jang, Young Soo Ahn, Joon Soo Kim, Sang Hyun Park, Dong Kook Kim, Gwon Jong Yu
  • Publication number: 20140254621
    Abstract: Apparatus and method are provided for electric induction heating and/or stirring of a molten electrically conductive composition in a containment vessel with the apparatus being removably insertable in the molten composition. An induction coil embedded in refractory or a coating is submerged in the composition and used to heat and/or stir the molten composition either externally or internally to the refractory or coating.
    Type: Application
    Filed: May 25, 2014
    Publication date: September 11, 2014
    Applicant: Inductotherm Corp.
    Inventors: Jean LOVENS, Michel FONTAINE, Bernard M. RAFFNER
  • Patent number: 8735783
    Abstract: Apparatus and method are provided for electric induction heating and/or stirring of a molten electrically conductive composition in a containment vessel with the apparatus being removably insertable in the molten composition. An induction coil embedded in refractory or a coating is submerged in the composition and used to heat and/or stir the molten composition either externally or internally to the refractory or coating.
    Type: Grant
    Filed: June 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Inductotherm Corp.
    Inventors: Jean Lovens, Michel Fontaine, Bernard M. Raffner
  • Patent number: 8543178
    Abstract: An induction heating apparatus that can operate at current frequencies of greater than 60 Hz and at least 1 kW. The induction heating apparatus includes a high frequency power supply, a superconductive induction coil, and a fluid cooling system. A fluid cooling system is designed to cause a cooling fluid to flow at least partially about and/or through the superconductive induction coil.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 24, 2013
    Assignee: Ajax Tocco Magnethermic Corporation
    Inventors: Theodore E. Burke, Frank Li
  • Patent number: 8509282
    Abstract: An improved melting furnace including a crucible and a plurality of parallel conductors of identical height surrounding the crucible having at least one descending portion (9) and one ascending portion (10). The benefit from this arrangement is that the conductors all have a portion located at each heating height which guarantees density uniformity of the currents flowing in the conductors even if the load of the crucible has superimposed regions for which the electrical resistivity is different.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 13, 2013
    Assignees: Commissariat a l'Energie Atomique, Areva NC
    Inventor: Christian Ladirat
  • Patent number: 8466395
    Abstract: An apparatus and process are provided for induction heating of a workpiece. The workpiece is moved through an inductor to inductively heat treat the workpiece with electric power of varying frequency and duty cycle or amplitude control to control the magnitude of electric power as the frequency changes. Alternatively the workpiece may be stationary and the inductor can be moved along the workpiece, or combined and coordinated movement of both the workpiece and inductor can be used.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: June 18, 2013
    Assignee: Inductotherm Corp.
    Inventors: Kuno Weiss, Oleg S. Fishman
  • Publication number: 20130044785
    Abstract: A dry-break electrical disconnect is provided between an induction melting furnace and a component of the electric induction melting assembly in which the furnace is removably installed for melting in a vacuum or otherwise controlled environmental chamber. Electric power connections are made to the induction melting furnace in a sealed interior volume of the assembly component that can be pressurized and of a different environment than that in the controlled environmental chamber. The assembly component may be a tilting cradle installed in the controlled environment chamber.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 21, 2013
    Inventors: Gerrard HOLMS, Mark WILLMERTON, John D. NELSON
  • Publication number: 20100238967
    Abstract: An induction heated furnace assembly for producing a directionally solidified casting includes a susceptor that tailors strength of the magnetic field within the chamber to provide a desired grain structure in a completed cast part. The susceptor proportionally blocks portions of the magnetic field to provide different levels of magnetic stirring within the molten material at different locations within the furnace assembly stirring induced by the magnetic field is controlled and varied throughout the furnace assembly to create the desired grain structures in the completed cast article.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 23, 2010
    Inventors: Steven J. Bullied, John Joseph Marcin, Lea Kennard Castle
  • Patent number: 7789660
    Abstract: A pusher furnace includes furnace sections having respective susceptors, a slide rail extending through the furnace sections for sliding pusher plates thereon and an alignment assembly for aligning the susceptors and slide rails of adjacent furnace sections. A support structure spaces the susceptors from insulation therebelow to protect the insulation from degradation from contact with the susceptors. The susceptors are slidably mounted on the support structure to accommodate thermal expansion and shrinkage of the susceptor. The upstream end of the slide rails have beveled upper edges to help prevent the pusher plates from catching thereon. The upstream ends are also laterally tapered to reduce the degree of force encountered should a pusher plate catch thereon. Adjacent insulation members have expansion joints filled with a refractory felt. The susceptors slidably and sealingly engage exhaust ports to allow for thermal expansion and shrinkage of the susceptor without damaging the exhaust port.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: September 7, 2010
    Assignee: Ajax Tocco Magnethermic Corporation
    Inventors: Anthony M. Tenzek, David A. Lazor
  • Publication number: 20100080259
    Abstract: An openable induction coil is provided. An electromagnetically shielded inductor assembly can be formed from the openable induction coil and an electromagnetically shielded enclosure into which the coil can be inserted. The induction coil can be pivoted open while in the shielding enclosure without complete disassembly of the enclosure. In some examples of the invention, a dynamic “curtain” of a gas is injected through spaces between opening portions of the coil and adjacent sections of the shielding enclosure, and into the interior of the induction furnace formed by the openable induction coil when it is in the closed position.
    Type: Application
    Filed: September 27, 2009
    Publication date: April 1, 2010
    Inventor: Jean Lovens
  • Patent number: 7675959
    Abstract: Thus, as shown by an exact electrodynamic computation of EMBF and the estimations described above of the velocity of turbulent flows arising due to their effect, application of amplitude- and frequency-modulated helically traveling (rotating and axially traveling) electromagnetic fields in metallurgical and chemical technologies and foundry can considerably increase the hydraulic efficiency of MHD facilities, intensify the processes of heat and mass transfer in technological plants, significantly increase their productivity, considerably decrease energy consumption for the production of metals, alloys, cast articles, and chemical products, and improve their quality.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 9, 2010
    Assignee: Energetics Technologies, LLC
    Inventors: Irving I. Dardik, Arkady K. Kapusta, Boris M. Mikhailovich, Ephim G. Golbraikh, Shaul L. Lesin, Herman D. Branover
  • Patent number: 7606286
    Abstract: A coreless induction furnace includes a crucible for holding a material to be heated. An induction coil is wound about the crucible. A frame supporting the crucible and the induction coil is wound about the crucible. An induction coil loading arrangement includes at least one clamping assembly for providing a leveraged axial force to an upper side of the induction coil.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: October 20, 2009
    Assignee: Ajax Tocco Magnethermic Corporation
    Inventor: James Evans Elliott
  • Patent number: 7466740
    Abstract: An induction furnace includes a pair of induction coils with a pair of faraday rings disposed between the induction coils to substantially prevent mutual inductance between the first and second induction coils. The induction coils preferably have a different size circumference and may be coplanar. The prevention of mutual inductance provided by the faraday rings is particularly useful for a pusher furnace in which adjacent furnace sections are heated to different and rather specific temperatures.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: December 16, 2008
    Assignee: AJAX Tocco Magnethermic Corporation
    Inventor: David A. Lazor
  • Publication number: 20080225924
    Abstract: The inductor of a melting furnace also comprising a crucible, consists of parallel but oblique conductors and forming a wave around the crucible, with at least one descending portion (9) and one ascending portion (10). The benefit from this arrangement is that the conductors are at an identical average height and all comprise a portion located at each heating height, which guarantees density uniformity of the currents flowing in the conductors even if the load of the crucible has superimposed regions for which the electrical resistivity is different.
    Type: Application
    Filed: September 14, 2006
    Publication date: September 18, 2008
    Inventor: Christian Ladirat
  • Patent number: 7335864
    Abstract: Heating element assemblies, heating furnaces incorporating heating element assemblies, methods to form heating element assemblies, methods to form heating furnaces and methods to reduce a magnetic field in a bifilar coil are disclosed. The heating element assembly includes two components, each component formed from heating element wire. The two components are spatially positioned and electrically arranged, relative to each other, so that an electrical current applied to the heating element assembly simultaneously travels through the two components in opposite directions.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: February 26, 2008
    Assignee: MRL Industries, Inc.
    Inventors: Kevin B. Peck, Noel H. Johnson, Jim Sanches, Pontus K. H. Nilsson
  • Patent number: 6999496
    Abstract: An induction heating and melting system uses a crucible formed from a material that has a high electrical resistivity or high magnetic permeability, and one or more inductor coils formed from a wound cable consisting of multiple individually insulated copper conductors to form an induction furnace that, along with its associated power supply, provides a compact design. The system components are air-cooled; no water-cooling is required. The crucible may alternatively be shaped as a tunnel or enclosed furnace.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: February 14, 2006
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, Bernard M. Raffner
  • Patent number: 6690710
    Abstract: An induction heating and melting system uses a crucible formed from a material that has a high electrical resistivity or high magnetic permeability, and one or more inductor coils formed from a wound cable consisting of multiple individually insulated copper conductors to form an induction furnace that, along with its associated power supply, provides a compact design. The system components are air-cooled; no water-cooling is required. The crucible may alternatively be shaped as a tunnel or enclosed furnace.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: February 10, 2004
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, John H. Mortimer, Joseph T. Belsh, Aurelian Mavrodin, Richard A. Ranlof
  • Publication number: 20040017838
    Abstract: An induction melting furnace comprises a melt chamber for heating a melt either directly by magnetic induction, or indirectly by magnetic induction heating of the melt chamber, or a combination of the two, and a meter chamber connected to the melt chamber for providing a metered discharge of the melt from the furnace. A gas can be injected into the furnace to provide a blanket over the surface of the melt in the melt chamber and a pressurized flush of the metered discharge of the melt from the meter chamber.
    Type: Application
    Filed: July 21, 2003
    Publication date: January 29, 2004
    Inventors: Oleg S. Fishman, Hans G. Heine, Joseph T. Belsh
  • Patent number: 6618426
    Abstract: An installation for processing by induction a metallic material is disclosed. The installation includes a first winding including, in series, at least one first coil of at least one turn and at least one second coil of at least one turn, wound in opposite directions around a container, the first winding having two end terminals connected to an A.C. supply source and across at first capacitor, and at least one second winding including, in series, at least one first coil of at least one turn and at least one second coil of at least one turn, wound in opposite directions around the container by being imbricated in the first winding, wherein the ends of the second winding being connected across a second capacitor (C′).
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: September 9, 2003
    Assignee: Centre National de la Recherche Scientifique
    Inventor: Roland Ernst
  • Patent number: 6393044
    Abstract: An induction melting system uses a crucible formed from a material that has a high electrical resistivity or high magnetic permeability and one or more inductor coils formed from a wound cable consisting of multiple individually insulated copper conductors to form an induction furnace that, along with its associated power supply, provides a compact design. The system components are air-cooled; no water-cooling is required. The induction melting system is particularly useful for separating metal from scrap, casting molds directly from the induction furnace, and providing a continuous supply of molten metal.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: May 21, 2002
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, John H. Mortimer, Joseph T. Belsh, Richard A. Ranlof, Aurelian Mavrodin
  • Patent number: 5987054
    Abstract: An induction coil for inductively heating electrically conductive materials includes a plurality of individual coil turns, each turn lying in a plane substantially perpendicular to a longitudinal axis of the coil and comprising an electrical conductor formed into an annulus. The conductor has first and second terminals for connecting the turn to an electrical circuit. The first and second terminals are adjacent each other at a preselected circumferential position on the annulus and are physically and electrically isolated from each other. The first terminal of one turn is located adjacent and electrically connected to the second terminal of an adjacent turn. The first terminal of a selected one of the plurality of turns forms a first coil terminal and the second terminal of a different selected one of the plurality of turns forms a second coil terminal.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: November 16, 1999
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, John H. Mortimer, Vitaly A. Peysakhovich, Satyen N. Prabhu, Laurence A. Krupnick
  • Patent number: 5901170
    Abstract: An induction furnace apparatus and method for reducing the magnetic field produced by the operation of the furnace. The induction furnace including a refractory vessel, an induction coil, and an outer shell having a layer of metallic and magnetically permeable material. The metallic and magnetically permeable material comprising a plurality of elements having a shape and size that is chosen to maximize the packing density of elements throughout the layer. The outer shell further including a top, base, and sidewall arranged about the refractory vessel such that the metallic and magnetically permeable material is formed between the refractory vessel and the outer shell. The invention provides a method for casting metallic and magnetically permeable material with or without a non-conductive matrix. The castings can be formed into inserts or incorporated into the top, base, and side wall of the outer shell.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: May 4, 1999
    Assignee: Inductotherm Corp.
    Inventors: Vitaly A. Peysakhovich, Benno J. Box, John H. Mortimer
  • Patent number: 5787110
    Abstract: A galvanizing apparatus comprising a vessel for containing a melt of molten metal. The vessel includes at least one conical projection in its side walls around which an induction heating coil is wound to generate a uniform and continuous stirring pattern of molten metal that penetrates deeply into the pot. In a second embodiment, the galvanizing vessel has no projections from its side walls, but comprises instead one or more flat inductors disposed on the exterior wall of the vessel. The flat inductor is surrounded by magnetic return shunts for directing the magnetic force field created by the inductor.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: July 28, 1998
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, John H. Mortimer, Vitaly A. Peysakhovich
  • Patent number: 5781581
    Abstract: An induction heating apparatus having a refractory vessel for holding a quantity of material to be heated by the apparatus. The vessel being surrounded by, but does not touch, an induction coil having a plurality of helical turns. The turns of the induction coil have a surface on which is disposed a layer of high temperature superconducting material.
    Type: Grant
    Filed: April 8, 1996
    Date of Patent: July 14, 1998
    Assignee: Inductotherm Industries, Inc.
    Inventors: Oleg Fishman, Robert C. Turner
  • Patent number: 5588019
    Abstract: An improved induction melting coil apparatus encapsulated with homogeneous inserts for controlling the direction of inductor flux density is disclosed. The inserts are relatively thick and rigid members which provide a low reluctance path within which the magnetic field travels while inhibiting inductive coupling of the magnetic field with surrounding auxiliary components. The inserts can be easily formed or machined into any desired shape for effectively encapsulating virtually any type of coreless induction melting coil.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: December 24, 1996
    Assignee: Fluxtrol Manufacturing, Inc.
    Inventors: Robert S. Ruffini, Robert J. Madeira, Robert T. Ruffini
  • Patent number: 5485483
    Abstract: A device achieves thermal protection and cooling of the poles of an electromagnetic inductor, in particular for an induction furnace. The furnace comprises a plurality of tubes, arranged side by side and substantially coplanar, through which a coolant fluid flows. The connection of the tubes to the inlet and outlet pipes for the coolant fluid is made by a combination of socket and O-rings designed to ensure both electrical discontinuity and leaktightness between each tube and the pipes.
    Type: Grant
    Filed: June 23, 1993
    Date of Patent: January 16, 1996
    Assignee: Celes
    Inventors: Claude Couffet, Jean Hellegouarc'h, Gerard Prost, Jean C. Uring
  • Patent number: 5430758
    Abstract: An induction crucible furnace has a furnace axis and a furnace coil generating magnetic flux. A magnetic yoke for the furnace includes a barlike lamination packet for guiding the magnetic flux. The lamination packet has a middle region and two lateral regions being adjacent the middle region and having borders facing away from the middle region. The lamination packet has a number of individual single laminations having edges and being electrically insulated from one another. The lamination packet has a main surface facing the furnace coil with a shape being sectioned into three parts for positioning the middle region relatively close to the furnace coil and defining a distance between the edges of the individual laminations and the furnace coil being increased in the two lateral regions toward the borders. Two peripheral regions face toward the furnace coil and have acute-angled, lamination-free sectors being parallel to the furnace axis.
    Type: Grant
    Filed: March 30, 1993
    Date of Patent: July 4, 1995
    Assignee: ABB Patent GmbH
    Inventor: Horst Gillhaus
  • Patent number: 5418811
    Abstract: An improved induction melting coil apparatus encapsulated with homogeneous inserts for controlling the direction of inductor flux density is disclosed. The inserts are relatively thick and rigid members which provide a low reluctance path within which the magnetic field travels while inhibiting inductive coupling of the magnetic field with surrounding auxiliary components. The inserts can be easily formed or machined into any desired shape for effectively encapsulating virtually any type of coreless induction melting coil.
    Type: Grant
    Filed: April 8, 1992
    Date of Patent: May 23, 1995
    Assignee: Fluxtrol Manufacturing, Inc.
    Inventors: Robert S. Ruffini, Robert J. Madeira, Robert T. Ruffini
  • Patent number: 5272720
    Abstract: Induction heating vessels and methods are disclosed. One embodiment of an induction heating vessel is a bottom pouring vessel with a crucible for containing a molten metal to be heated and having an outlet in the bottom. A metallic shell with integral current limiters surrounds the crucible. A stopper is provided for selectably controlling the flow of molten metal through the outlet. A method of preheating an induction heating vessel comprises placing a susceptor inside the vessel prior to charging the vessel with material to be heated and inductively heating the susceptor by an induction coil.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: December 21, 1993
    Assignee: Inductotherm Corp.
    Inventors: Nicolas P. Cignetti, Richard U. Swaney, John H. Mortimer
  • Patent number: 5257281
    Abstract: An induction melting vessel comprising a refractory crucible having an opened top end and closed bottom end, with a substantially continuous side wall. A substantially continuous metallic shell surrounds and generally conforms to the side wall and extends for at least a majority of the height of the side wall from the bottom end to the top end. The shell has a bottom end corresponding to the bottom end of the crucible and a top end corresponding to the top end of the crucible. A portion the shell adjacent the top end thereof and a portion of the shell adjacent the bottom end thereof have discrete physically integral but electrically isolated regions therein for limiting the flow of electric current in the shell. In one embodiment of the invention, the regions are defined by a plurality of slits through the shell and extending from the top and bottom ends thereof toward the respective opposite ends. The slits have a length not exceeding have the distance to the respective opposite end.
    Type: Grant
    Filed: January 31, 1990
    Date of Patent: October 26, 1993
    Assignee: Inductotherm Corp.
    Inventors: Nicolas P. Cignetti, Richard U. Swaney, John H. Mortimer
  • Patent number: 5249198
    Abstract: In an induction furnace including a crucible having a crucible center axis and a coil member wound around the crucible, the coil member has a coil center axis oblique to the crucible center axis at an acute angle between 3.degree. and 10.degree.. The coil member is consequently wound around the crucible so that each winding of the coil member is inclined to the crucible center axis at an angle except 90.degree. and has a highest position and a lowest position on a crucible side wall of the crucible. An inlet port and an outlet port of the crucible are located at positions adjacent to the highest and the lowest positions of the windings, respectively.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: September 28, 1993
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Toshio Matsuoka
  • Patent number: 5247539
    Abstract: A magnetic yoke for an induction crucible furnace includes a rod-shaped core stack being suitable for carrying magnetic flux generated by a furnace coil of the induction crucible furnace. The core stack is enclosed on three principal surfaces thereof not facing the furnace coil by a flexurally and torsionally rigid support body having a C or U-shaped cross section. The support body is preferably formed of a material with good electrical conductivity and has longitudinal channels suitable for carrying a coolant. Preferably, an extruded profiled part formed of an aluminum alloy is used.
    Type: Grant
    Filed: May 11, 1992
    Date of Patent: September 21, 1993
    Assignee: ABB Patent GmbH
    Inventor: Horst Gillhaus
  • Patent number: 5197081
    Abstract: An apparatus for directing electromagnetic flux near an induction coil comprises a loop-shaped member adapted to conduct electromagnetic flux, defining an axis parallel to the central axis of the induction coil and extending substantially the length of the coil. The loop-shaped member acts as a return circuit for minimizing a stray magnetic field external to the coil.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: March 23, 1993
    Assignee: Inductotherm Corp.
    Inventor: Oleg Fishman
  • Patent number: 5134629
    Abstract: A high frequency core and coil electric metal melting furnace is shown. This furnace has a lined channel in its inductor for carrying the molten metal. The invention provides an improved inductor for a core and coil furnace that is not subject to leakage of the molten metal from the channel into the rammed refractory support bed for the channel which leakage otherwise shortens the lift of the furnace. Also a method of lining the channel in the inductor for carrying the molten metal which forms the core is disclosed.
    Type: Grant
    Filed: February 8, 1990
    Date of Patent: July 28, 1992
    Assignee: Norton Company
    Inventor: Gerard M. Cullan
  • Patent number: 5125004
    Abstract: A power activated assembly is disclosed that provides rapid and simultaneous disconnection and reconnection of water cooled power connectors to and from an induction furnace of a melting assembly which is tiltable about the axis of its trunnion. The power activated assembly carries extensions that have respective female connectors on the end and which have flexible conductors connected for supplying electrical power and cooling water to the induction furnace. The housing is positioned concentric with the trunnion so as to allow its female connectors to mate with corresponding male connectors of the assembly when the housing is axially moved toward and along the trunnion axis in response to motion control means such as a power activated device. The male connectors are distributed on the assembly about and inside the circumference of the trunnion.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: June 23, 1992
    Assignee: Consarc Composition
    Inventors: Raymond J. Roberts, Robert L. Danley, Jr.
  • Patent number: 5090022
    Abstract: A coreless induction furnace comprising a crucible for holding a quantity of metal to be heated by the furnace. The crucible has an open top, side walls and a closed bottom. An induction coil is operatively associated with the crucible for generating a time-varying magnetic induction field. Coupling structure extending above the top of the crucible is provided to couple at least a portion of the induction field to the center portion of the top surface of the metal to be heated.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: February 18, 1992
    Assignee: Inductotherm Corp.
    Inventor: John H. Mortimer
  • Patent number: 4969158
    Abstract: An inductive heating unit for a magnetically permeable ladle containing molten steel has a cylindrical permeable wall for receiving the ladle and on which is wound an induction coil with an outer cylindrical permeable wall surrounding and enclosing the coil. The coil is wound from a conductor formed by a plurality of superposed flat metal strips which are insulated from each other. The outer wall is formed with a vertical channel in which a power lead for the coil is positioned.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: November 6, 1990
    Assignee: ASEA Brown Boveri
    Inventors: Hans-Gunnar Larson, Gote Tallback, Bjorn Widell
  • Patent number: 4745620
    Abstract: Apparatus and method for providing a constant level of molten metal to a mold in gas permeable shell mold casting. The apparatus includes a furnace for melting and Holding metal to be cast. Structure is provided for locating a mold to be filled in casting relationship with the molten metal in the furnace and for causing molten metal to be drawn from the furnace into the mold. Structure responsive to the sensor is provided for tilting the furnace relative to the mold causing the level of the molten metal to remain constant relative to the mold as the mold is being filled.
    Type: Grant
    Filed: November 18, 1986
    Date of Patent: May 17, 1988
    Assignee: Inductotherm Corporation
    Inventor: John H. Mortimer
  • Patent number: 4633481
    Abstract: A vessel for inductively heating molten material such as glass is provided with a ceramic refractory lining bound by the electrical coil. The coil may comprise a single turn sheath. In preferred embodiments the lining comprises an inner layer of melt-compatible refractory and an outer layer of thermal insulation.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: December 30, 1986
    Assignee: PPG Industries, Inc.
    Inventor: Ronald L. Schwenninger
  • Patent number: 4622679
    Abstract: In a vacuum induction furnace provided with an induction coil, surrounding a furnace crucible, the coil includes a plurality of intermediate layers inserted between the individual windings, and spacer elements also inserted between the individual windings, next to the intermediate layers and at the side of the coil facing the crucible. The spacer elements are formed of insulating material.
    Type: Grant
    Filed: February 6, 1985
    Date of Patent: November 11, 1986
    Assignee: Otto Junker GmbH
    Inventor: Lorenz Voss
  • Patent number: 4610017
    Abstract: Process for the production of ceramic materials by high frequency induction melting.The powder containing the various components of the material to be prepared is introduced in a continuous manner into an aperiodic high frequency electric furnace, whose single flat coil serves both as the induction system and the cold crucible, the molten material also being continuously removed from the furnace in a chute passing through the coil.
    Type: Grant
    Filed: February 14, 1984
    Date of Patent: September 2, 1986
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Rene Perrier de la Bathie, Jacques Terrier
  • Patent number: 4503304
    Abstract: An inductive heating device for uniformly heating a workpiece at rest has a plurality of heating coil units disposed so as to surround the workpiece. The heating coil units are connected in parallel to a power source, and a transformer is used to vary the voltage across the terminals of the outermost units to increase the current flowing through these outermost units. The device, therefore, has a very short insufficient heating temperature zone attributable to an end magnetic flux effect.
    Type: Grant
    Filed: April 5, 1982
    Date of Patent: March 5, 1985
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Toyo Tanso Co., Ltd.
    Inventors: Toru Hoshikawa, Yoshihiko Osaki