Pellet Guidance Systems (e.g., Pellet Injection Means) Patents (Class 376/101)
  • Patent number: 10660192
    Abstract: Embodiments of a laser system having an extremely large number of small pulsed lasers for irradiating small targets in inertial confinement fusion experiments, high energy density physics experiments, and inertial fusion power plants is more flexible than existing laser systems. Embodiments facilitate finer control of critical features of laser pulses for inertial fusion, as well as significant reduction in development costs and expansion of the community involved in the research relative to existing laser systems. Embodiments produce smooth intensity profiles at the target, large bandwidth that is over two orders of magnitude greater than existing laser systems, and fine control over laser wavelengths, focal properties, temporal pulse shape, and illumination geometry. Properties of each of the small pulsed lasers are individually selectable.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 19, 2020
    Inventors: E. Michael Campbell, David Eimerl, William F. Krupke
  • Publication number: 20150043700
    Abstract: A permeable barrel for accelerating a projectile is provided. The barrel includes a plurality of holes through which gas can be injected to generate a gas cushion for the projectile. The gas cushion prevents any contact between the projectile and the barrel walls. Also the gas cushion helps to keep the projectile centered in the barrel throughout its travel.
    Type: Application
    Filed: July 17, 2013
    Publication date: February 12, 2015
    Inventors: Paul Rosso, Richard C. Montesanti
  • Publication number: 20140233687
    Abstract: In space, a linear accelerator firing charged pellets can be situated at a large distance from a target at which the pellets are aimed. The accelerator can fire a graduated-speed train of pellets over a period of seconds or longer which arrive at the target simultaneously, and impart a large pulse of energy. An accelerator of modest power can thus provide a pulse in the megajoule range, sufficient to ignite fusion. It is necessary to provide course corrections to the pellets, to bring them together with very high precision as they approach the target. An ideal siting is to place the accelerator at the Earth-Moon L1 or L2 Lagrange point, and the fusion target at a point on the surface of the Moon where the pellets will strike at grazing incidence, i.e. on a great circle intersecting the lunar poles.
    Type: Application
    Filed: July 4, 2012
    Publication date: August 21, 2014
    Inventor: Colin Jack
  • Publication number: 20130114772
    Abstract: System and methods for launching a projectile are provided. The launching apparatus may include a flexible beam and drivers attached to the ends of the beam. The drivers may drive the ends of the beam to induce a steady large amplitude vibration in the beam. The induced vibration causes the beam to oscillate between two catenary-like configurations. A projectile may be loaded on the midpoint region of the beam when the midpoint region of the beam reaches a peak displacement with a near zero velocity and acceleration. The projectile may then be pushed and accelerated by the beam vibration and launched from the beam when the midpoint region reaches a peak velocity and midpoint acceleration reaches zero.
    Type: Application
    Filed: September 24, 2012
    Publication date: May 9, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Paul Rosso
  • Publication number: 20090028282
    Abstract: A system for fueling a plasma includes a gyrotron for radiating microwave energy into a waveguide. Also included is a module having a deuterium-tritium (DT) fuel pellet, a diamond, quartz or sapphire window, and a pusher medium located between the pellet and window that is made of frozen deuterium (D2) and metallic particles. With the module in the waveguide, the gyrotron is activated. Radiation from the gyrotron is then directed into the waveguide and through the window to cause the inducement of current in the metal particles, causing the particles to become hot. The absorbed microwave energy is then transferred to the pusher medium by conduction resulting in a gaseous expansion of the pusher medium. This ejects the pellet from the waveguide and into the plasma.
    Type: Application
    Filed: May 12, 2008
    Publication date: January 29, 2009
    Inventor: Paul B. Parks
  • Patent number: 5487094
    Abstract: A pellet carrier disc is movably held between two cooling blocks. The disc is vertically moved, setting its through hole into axial alignment with a first hole of the block. Deuterium gas is supplied into the through hole through the hole, and cooled and solidified, forming a deuterium cylinder. Then, the disc is moved, axially aligning the hole with a second hole of the block. A shaft is thrust into a first end of the deuterium cylinder through the hole, thereby forming a hole in the end of the cylinder. Next, the disc is moved, axially aligning the hole with a third hole of the block. Tritium gas is introduced into the hole of the cylinder through the hole, and cooled and solidified, forming a tritium core. Further, the disc is moved, axially aligning the hole with a fourth hole of the block. A shaft is moved through the hole, causing the second end portion of the deuterium cylinder to project from the hole. The second end portion of the cylinder is cut off.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: January 23, 1996
    Assignee: The Director-General of the National Institute for Fusion Science
    Inventor: Shigeru Sudo
  • Patent number: 5406594
    Abstract: The described injection system includes: a pneumatic system operating with hydrogen or helium and formed of one or more two-stage or multi-stage propulsion systems provided with special control or cutoff valves, the relative feeding circuits, and one or more decompression chambers, a cryogenic device formed of a Dewar flask containing liquid helium, a circuit for transferring and recovering the cooling fluid, and one or more conventional (in situ) or alternative cryostats provided each with one or more launching barrels in which the cryogenic pellets are solidified; a vacuum system comprising electrovalves, electropneumatic valves, rotating and turbomolecular pumps, and an equipment set for the automatic remote control of the whole system and for collecting and supplying diagnostic data to the central processing unit.
    Type: Grant
    Filed: July 17, 1991
    Date of Patent: April 11, 1995
    Assignee: Ente Per Le Nuove Technologie, L'Energia E L'Ambiente (ENEA)
    Inventors: Antonio Frattolillo, Silvio Migliori, Francesco Scaramuzzi, Pietro Cardoni, Lorenzo Martinis, Luciano Mori, Adolfo Reggiori, Giambattista Daminelli
  • Patent number: 5122506
    Abstract: A process for moving a magnetized object at a velocity in excess of 10 kilometers per second is provided. In this process, a symmetrical chamber which contains alternating portions of superconductive material and electromagnetic coils is provided. A magnetized object is disposed within the chamber and caused to levitate there because of the Meissner effect. The magnetized object is accelerated within the chamber by supplying asynchronous direct current pulses to the coils within the chamber.
    Type: Grant
    Filed: May 11, 1990
    Date of Patent: June 16, 1992
    Assignee: Howard J. Greenwald
    Inventor: Xingwu Wang
  • Patent number: 4904441
    Abstract: A pellet injector for injecting pellets of condensed gas, such as hydrogen, tritium or deuterium, into a reactor comprises an arrangement of pipe guns in a cylindrical arrangement. Each pipe gun which may be made from stainless steel, has a freezing section and three axially spaced metal rings of a heat conductive metal arranged in good thermal contact with the outer surface of the pipe gun at the freezing section thereof. Each of the rings is thermally connected to a cryostat, for example by means of a copper wire. The center ring is cooled to a temperature below the condensing temperature of the gas so as to condense the gas in the freezing section of the pipe gun to form a pellet therein, and the temperature of the adjacent outer rings are maintained at temperatures exceeding the temperature of the center ring so as to obtain a pellet of a desired size. The pellets formed in the pipe guns may be expelled therefrom by a pressurized gas force pulse and injected into a reactor.
    Type: Grant
    Filed: September 22, 1988
    Date of Patent: February 27, 1990
    Assignee: Forskningscenter Riso
    Inventors: Hans Sorensen, Bjarne Saas, Knud V. Weisberg
  • Patent number: 4735762
    Abstract: A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.
    Type: Grant
    Filed: February 20, 1987
    Date of Patent: April 5, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: George P. Lasche
  • Patent number: 4569819
    Abstract: A spherical underground cavity is filled with saturated steam or a mixture of saturated steam and coal dust in which a nuclear device is detonated to provide the source of energy. The energy thus released heats the saturated steam to produce superheated steam used to generate power. If coal dust is mixed with the saturated steam in the correct ratio, the rise in temperature caused by the nuclear explosion initiates a chemical reaction between the steam and the coal to produce carbon monoxide and hydrogen. The mixture of carbon monoxide and hydrogen can be used as fuel in an external power plant. The carbon monoxide and the hydrogen gases can also be separated for use as fuels or for industrial applications. The wall of the spherical underground cavity is isolated from the shock wave created by the nuclear explosion in the ambient saturated steam by a segmented steel shell. Each segments is supported by a shock absorbing mechanism attached to the rocks in which the cavity is embedded.
    Type: Grant
    Filed: March 6, 1984
    Date of Patent: February 11, 1986
    Inventor: Constant V. David