With Cooled Electrodes Or Target Patents (Class 376/115)
  • Patent number: 11678430
    Abstract: Embodiments that are directed to a target for producing a high epithermal neutron yield for boron-neutron capture therapy (BNCT) treatments are disclosed. The target includes a thin flat film of solid lithium mounted onto a heat-removal support structure that is cooled with a liquid coolant and configured to maintain the turbulent flow regime for a liquid coolant and distribute the flow of coolant directed at the center of the support structure toward a periphery of the support structure via a plurality of channels formed in the support structure. The support structure includes a nozzle located at its center to direct coolant flow outwardly from the center to avoid stagnant water flow at the center of the support structure. Systems, device, and methods utilizing the approaches are also described.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: June 13, 2023
    Assignee: TAE TECHNOLOGIES, INC.
    Inventors: Frank Jauregui, Michael Meekins, Swati Bhanderi, Anatoly B. Muchnikov
  • Patent number: 11049628
    Abstract: A target unit for producing Cu67 radioisotope is described herein, and comprises a cage body releasably coupled to a screw-on cap; and a ceramic capsule containing a solid Zn68 target ingot and having one open end and one closed end and defining an interior chamber for the target ingot. The ceramic capsule is releasably contained between the cage body and the screw-on cap with a lid disposed on the open end of the capsule and a washer positioned between the lid and the screw-on cap. The screw-on cap and the washer provide a water-tight seal between the lid and the capsule. The interior of the capsule is in intimate physical contact with the target ingot; and the Zn68 of the target ingot is free of traces of residual oxygen that interfere with contact of the Zn68 to the capsule.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: June 29, 2021
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: David A. Ehst, James L. Willit
  • Patent number: 8867686
    Abstract: Disclosed herein is a high current solid target for radioisotope production at a cyclotron using a metal foam, and more specifically, a high current solid target for isotope production, which attaches a metal foam to the rear surface of the solid target plate. A high current solid target for isotope production including a metal foam according to the present invention may exhibit excellent cooling performances to increase the amount of proton beam current irradiated on the solid target compared to conventional planar-type solid targets. Because the irradiation of the increased proton beam current may increase the amount of an isotope produced per unit time and even an irradiation of proton beam in a short time may allow for production of a desired amount of an isotope, the solid target may be usefully used for production of medical cyclotron nuclides.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: October 21, 2014
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Min Goo Hur, Seung Dae Yang, Sang Wook Kim, In Jong Kim, Sang Mu Choi
  • Publication number: 20130294557
    Abstract: A pulsed neutron generator includes neutron tube and a high voltage power supply. High voltage power supply includes a bulkhead and plurality of electronic components electrically connected between the bulkhead and the target of the neutron tube. A heat pipe is provided in thermal contact with the target and has a housing portion with an exterior surface supporting the plurality of electronic components of the high voltage power supply. Heat pipe includes wick and heat transfer fluid disposed within the housing portion. The wick for recirculates the heat transfer fluid within the housing portion in order to transfer heat away from the target preferably to the bulkhead for dissipation the system housing. Both the wick and heat transfer fluid are preferably realized from materials that have low electrical conductivity. The heat pipe can also be part of other-type particle accelerators, such as x-ray sources and gamma-ray sources.
    Type: Application
    Filed: November 9, 2011
    Publication date: November 7, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Patent number: 6680993
    Abstract: A method of producing an isotope comprising directing electrons at a converting material coated with a coating material, the coating material having an atomic number of n, whereby interaction of the electrons with the converting material produces photons, and whereby the photons produced interact with the coating material to produce an isotope having an atomic number of n−1. In preferred embodiments, the converting material is Tungsten, the coating material having an atomic number of n is Radium-226, and the isotope having an atomic number of n−1 is Radium-225.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: January 20, 2004
    Inventors: Stanley Satz, Scott Schenter
  • Patent number: 5949835
    Abstract: A steady-state source of neutrons is produced within an electrically grounded and temperature controlled chamber confining tritium or deuterium plasma at a predetermined density to effect implantation of ions in the surface of a palladium target rod coated with diffusion barrier material and immersed in such plasma. The rod is enriched with a high concentration of deuterium atoms after a prolonged plasma ion implantation. Collision of the deuterium atoms in the target by impinging ions of the plasma initiates fusion reactions causing emission of neutrons during negative voltage pulses applied to the rod through a high power modulator. The neutrons are so generated at a relatively high dose rate under optimized process conditions.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: September 7, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Han S. Uhm, Woodrow W. Lee
  • Patent number: 5729580
    Abstract: A novel hydrogen ion array acceleration generator and method are presented wherein there is provided along a transversely extending diffusion/emission grid surface and within an evacuated contained environment, an array of hydrogen ions at the interstitial sites of the grid surface; such being electrically accelerated along a longitudinal direction substantially normal to said surface toward a transversely extending lattice surface of a heavy metal of atomic radius between about 1.23 and 1.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: March 17, 1998
    Inventor: Gregory L. Millspaugh
  • Patent number: 5586153
    Abstract: A process for producing radionuclides using a porous carbon target. The process includes the steps of inserting a porous carbon target with tailored solid and void dimensions in the path of a bombarding beam; introducing fluid into the porous carbon target; bombarding the porous carbon target to produce at least one type of radionuclide; collecting the fluid and separating the resulting radionuclides.
    Type: Grant
    Filed: August 14, 1995
    Date of Patent: December 17, 1996
    Assignee: CTI, Inc.
    Inventor: C. William Alvord
  • Patent number: 5135704
    Abstract: A high energy, charged particle accelerator, and radiation sources utilizing such accelerator are provided. More particularly, a high yield neutron generator and apparatus for the use of such generator are provided. The generator utilizes an ion source, a target adapted to generate neutrons when bombarded by high energy ions and an accelerator tube between the source and target. A multistage cascade rectifier is paraxial with the accelerator tube and has a voltage gradient which substantially matches that of the accelerator tube. The cascade rectifier preferably surrounds the accelerator tube and has equipotential metal plates on each side of each stage, the potential gradients between each pair of plates being substantially uniform and being substantially equal to the voltage gradient in the adjacent section of the accelerator tube. Generator elements may be enclosed in a pressure vessel and a moderator may be provided in the vessel, near the target to thermalize neutrons emitted from the target.
    Type: Grant
    Filed: March 2, 1990
    Date of Patent: August 4, 1992
    Assignee: Science Research Laboratory, Inc.
    Inventors: Ruth Shefer, Robert E. Klinkowstein