Nuclear Transmutation (e.g., By Means Of Particle Or Wave Energy) Patents (Class 376/156)
  • Patent number: 8288736
    Abstract: The present invention is related to an irradiation cell for producing a radioisotope of interest through the irradiation of a target material by a particle beam, comprising a metallic insert forming a cavity designed to house the target material and to be closed by an irradiation window, wherein said metallic insert comprises at least two separate metallic parts of different materials, being composed of at least a first part comprising said cavity.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 16, 2012
    Assignee: Ion Beam Applications SA
    Inventors: Jean-Claude Amelia, Michel Ghyoot
  • Patent number: 8290110
    Abstract: The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti—Sb, Al—Sb, Cu—Sb, or Ni—Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: October 16, 2012
    Inventors: Boris L. Zhuikov, Nicolai A. Konyakhin, Vladimir M. Kokhanyuk, Suresh C. Srivastava
  • Patent number: 8279993
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 2, 2012
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou, William A. Barletta
  • Patent number: 8270554
    Abstract: Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: September 18, 2012
    Assignee: The United States of America, as represented by the United States Department of Energy
    Inventors: David H. Meikrantz, John R. Snyder
  • Patent number: 8249211
    Abstract: Provided is a modified target assembly in which the target fluid is moved within the target assembly in a manner that increases the effective density of the target fluid within the beam path, thereby increasing beam yield utilizing forced convection. The target may also include optional structures, such as nozzles, diverters and deflectors for guiding and/or accelerating the flow of the target fluid. The target assembly directs the target fluid along an inner sleeve in a direction opposite the direction of the beam current to produce a counter current flow and may also direct the flow of the target fluid away from the inner surface of the inner sleeve and toward a central region in the target cavity. This countercurrent flow suppresses natural convection that tends to reduce the density of the target fluid in the beam path and tends to increase the heat transfer from the target.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 21, 2012
    Assignee: Advanced Applied Physics Solutions, Inc.
    Inventor: Kenneth Robert Buckley
  • Patent number: 8194813
    Abstract: A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: June 5, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Manoj K. Prasad, Neal J. Snyderman, Mark S. Rowland
  • Patent number: 8194814
    Abstract: A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 5, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Neal J. Snyderman
  • Patent number: 8180013
    Abstract: A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: May 15, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Manoj K. Prasad, Neal J. Snyderman, Mark S. Rowland
  • Publication number: 20120106691
    Abstract: A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: James J. Toth, Chuck Z. Soderquist, Lawrence R. Greenwood, Shas V. Mattigod, Glen E. Fryxell, Matthew J. O'Hara
  • Patent number: 8170172
    Abstract: A system and method are provided for reclaiming an enriched radioisotope starting material (14) from a target body (12). The system and method enable reclaiming the starting material in a relatively short time (e.g., several hours) after the target body's bombardment with energetic particles, greatly simplifying the target body's chemical processing, as well as reducing the cost of such processing (e.g., reducing the need for costly long-term storage). Specifically, a chemical protective layer (16) is disposed between a radioisotope starting material (14) and a base material (18) of the target body (12). After the target body is irradiated with a suitable source (e.g., particle accelerator), then the irradiated radioisotope starting material and be removed without removing the base material due to the protection provided by the chemical protective layer.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: May 1, 2012
    Assignee: Mallinckrodt LLC
    Inventor: William Claude Uhland
  • Patent number: 8155258
    Abstract: A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: April 10, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mark S. Rowland, Neal J. Snyderman
  • Patent number: 8090072
    Abstract: A material is exposed to a neutron flux by distributing it in a neutron-diffusing medium surrounding a neutron source. The diffusing medium is transparent to neutrons and so arranged that neutron scattering substantially enhances the neutron flux to which the material is exposed. Such enhanced neutron exposure may be used to produce useful radio-isotopes, in particular for medical applications, from the transmutation of readily-available isotopes included in the exposed material. It may also be used to efficiently transmute long-lived radioactive wastes, such as those recovered from spent nuclear fuel. The use of heavy elements, such as lead and/or bismuth, as the diffusing medium is particularly of interest, since it results in a slowly decreasing scan through the neutron energy spectrum, thereby permitting very efficient resonant neutron capture in the exposed material.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 3, 2012
    Assignee: European Organization for Nuclear Research
    Inventor: Carlo Rubbia
  • Patent number: 8073095
    Abstract: An F-18 production target system having an internal support produces F-18 by means of a nuclear reaction of protons and H218O, and reduces the deformation of thin sheets to thus increase the durability of the thin sheets. The F-18 production target system includes a frame, which has the shape of a cylinder the central portion of which is bored, holds H218O in the central portion, and includes through-holes bored from the central portion to the outer circumference thereof, thin sheets, which are installed on opposite sides of the frame so as to seal the central portion, and a support, which is installed in the central portion so as to prevent the thin sheets from being deformed.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 6, 2011
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Min Goo Hur, Seung Dae Yang, Sang Wook Kim
  • Publication number: 20110286564
    Abstract: A redundant, low cost accelerator driven system for power generation or waste treatment. The system generates fission from fertile nuclear materials and includes multiple charged particle sources, nested redundancy of low energy accelerator sections for reliability, and multiple subcritical reactors. Merging and splitting devices based on radiofrequency transverse kickers enable the nested redundancy. A control system provides RF buckets with identifiers, enabling the control of charged particles on an RF bucket basis through the accelerator, for the delivery to a desired subcritical reactor of a desired number of RF buckets of such predetermined characteristics to generate a desired reactor power. Consequently, the power level of each reactor may be controlled independently even though a large part of the high power accelerator system is used to feed multiple reactors simultaneously.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Inventor: ROLLAND P. JOHNSON
  • Patent number: 8050377
    Abstract: Example embodiments and methods are directed to irradiation target retention devices that may be inserted into conventional nuclear fuel rods and assemblies. Example embodiment devices may hold several irradiation targets for irradiation during operation of a nuclear core containing the assemblies and fuel rods having example embodiment irradiation target retention devices. Irradiation targets may substantially convert to useful radioisotopes upon exposure to neutron flux in the operating nuclear core and be removed and harvested from fuel rods after operation.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 1, 2011
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: William Earl Russell, II, David Grey-Smith, Michael S. DeFilippis
  • Patent number: 8031825
    Abstract: Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: October 4, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Douglas W. Akers
  • Patent number: 7965806
    Abstract: The present invention provides a system and method for a system for accommodating a solid target in an accelerator. The system and method includes a target changer having at least one port for accommodating the solid target, an insert for receiving the solid target in the target changer, a piston for providing a vacuum and a cooling system for the solid target, a cylinder for displacing the piston in one of three positions; and a bracket for securing the insert, piston and cylinder to the target changer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 21, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Andrew C. Williamson
  • Patent number: 7957501
    Abstract: The present invention provides a system and method for a system for accommodating a solid target in an accelerator. The system and method includes a target changer having at least one port for accommodating the solid target, an insert for receiving the solid target in the target changer, a piston for providing a vacuum and a cooling system for the solid target, a cylinder for displacing the piston in one of three positions; and a bracket for securing the insert, piston and cylinder to the target changer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 7, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Andrew C. Williamson
  • Patent number: 7940881
    Abstract: The present invention is related to a device and a method for producing a radioisotope of interest from a target fluid irradiated with a beam of accelerated charged particles, the device includes in a circulation circuit (17): an irradiation cell (1) having a metallic insert (2) able to form a cavity (8) designed to house the target fluid and closed by an irradiation window (7), the cavity (8) including at least one inlet (4) and at least one outlet (5); a pump (16) for circulating the target fluid inside the circulation circuit (17); an external heat exchanger (15); the pump (16) and the external heat exchanger (15) forming external cooling means of the target fluid; the device means for pressurizing (14) of the circulation circuit (17) and the external cooling means of the target fluid are arranged in such a way that the target fluid remains inside the cavity (8) essentially in the liquid state during the irradiation.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: May 10, 2011
    Assignee: Ion Beam Applications S.A.
    Inventors: Yves Jongen, Jozef Comor
  • Publication number: 20110080986
    Abstract: At least one very long lived isotope, such as I-129, and a moderator, such as MgH2, is ground, homogeneously mixed and contained in a target assembly which can be at least one target assembly capable of being accessed and vented. The homogeneous mixture is a target which is irradiated, preferrably by a fast reactor flux, thereby transmuting the at least one isotope to a stable or short lived isotope. Resulting gasses, short lived and stable isotopes have medical and industrial uses and value. The transmuted short lived or stable isotopes do not require long term storage.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventors: ROBERT E. SCHENTER, Michael K. Korenko
  • Patent number: 7852975
    Abstract: A method for producing 229Th includes the steps of providing 226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form 229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1×1013 n s?1·cm?2. 228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form 229Th. Using 230Th as a target material, 229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: December 14, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Saed Mirzadeh, Marc Alan Garland
  • Patent number: 7835480
    Abstract: The present invention provides a system and method for a system for accommodating a solid target in an accelerator. The system and method includes a target changer having at least one port for accommodating the solid target, an insert for receiving the solid target in the target changer, a piston for providing a vacuum and a cooling system for the solid target, a cylinder for displacing the piston in one of three positions; and a bracket for securing the insert, piston and cylinder to the target changer.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 16, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Andrew C. Williamson
  • Patent number: 7796720
    Abstract: A material is exposed to a neutron flux by distributing it in a neutron-diffusing medium surrounding a neutron source. The diffusing medium is transparent to neutrons and so arranged that neutron scattering substantially enhances the neutron flux to which the material is exposed. Such enhanced neutron exposure may be used to produce useful radio-isotopes, in particular for medical applications, from the transmutation of readily-available isotopes included in the exposed material. It may also be used to efficiently transmute long-lived radioactive wastes, such as those recovered from spent nuclear fuel. The use of heavy elements, such as lead and/or bismuth, as the diffusing medium is particularly of interest, since it results in a slowly decreasing scan through the neutron energy spectrum, thereby permitting very efficient resonant neutron captures in the exposed material.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: September 14, 2010
    Assignee: European Organization for Nuclear Research
    Inventor: Carlo Rubbia
  • Patent number: 7756237
    Abstract: A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: July 13, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Manoj K. Prasad, Neal J. Snyderman, Mark S. Rowland
  • Publication number: 20100172458
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Application
    Filed: August 14, 2009
    Publication date: July 8, 2010
    Applicant: REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ka-Ngo Leung, Tak-Pui Lou, William A. Barletta
  • Patent number: 7718962
    Abstract: The present invention is directed to a defect imaging device that has an energy beam that is directed at a device under test. The energy beam creates positrons deep within the material of the device under test. When the positrons combine with electrons in the material they produce a pair of annihilation photons. The annihilation photons are detected. The Doppler broadening of the annihilation photons is used to determine if a defect is present in the material. Three dimensional images of the device under test are created by directing the energy beam at different portions of the device under test.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: May 18, 2010
    Assignee: Idaho State University and the Board of Educa
    Inventors: Alan W. Hunt, J. Frank Harmon, Douglas P. Wells
  • Patent number: 7709819
    Abstract: A long-term antimatter storage device that may be energized by a low power magnetron and can function autonomously for hundreds of hours on the energy provided by batteries. An evacuated, cryogenic container is arranged with a source of positrons and a source of electrons positioned in capture relation to one another within the container so as to allow for the formation of a plurality of positronium atoms. A microwave resonator is located within the container forming a circularly polarized standing wave within which the plurality of positronium atoms rotate. Radioactive sources for small stores and low energy positron accelerators for large stores are used to efficiently fill the device with positronium in seconds to minutes. The device may also be arranged to provide for the extraction of positrons. A method for storing antimatter is also provided.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: May 4, 2010
    Assignee: Positronics Research LLC
    Inventor: Gerald A. Smith
  • Patent number: 7668681
    Abstract: An integrated chemical, biological, metals, radiation, nuclear, explosives sensor system I-CBMRNE deployed on a common platform supports chemical, biological, metals, radiation, nuclear, explosives (CBMRNE) surveillance systems. The common platform provides a database for collected sensor and video data, spectral analysis for sensor data, pattern recognition systems, data analysis and communications. An I-CBMRNE sensor system provides modular sensor interfaces to enable integration of any commercial off the shelf or proprietary sensor, and provides for ease of integration for new sensor technologies as they emerge. An I-CBMRNE sensor system provides critical functions for sensor support enabling accurate calibrated data to be presented for analysis.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: February 23, 2010
    Assignee: Innovative American Technology, Inc.
    Inventor: David L. Frank
  • Patent number: 7659520
    Abstract: A microwave or terahertz and neutron radiation type detector, which uses an orbitron as a radiation source. The detector may have a polarity switching apparatus to enable the orbitron to selectively change from between short wave to neutron emission functions. A highly compact and lightweight identifier of explosives and other chemicals, which may be so small and light as to be hand held, and which is effective at stand-off distances, is thereby provided.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: February 9, 2010
    Assignee: NextGen, Inc.
    Inventor: Esmaeil Farshi
  • Publication number: 20090274257
    Abstract: Subatomic particles enter an atom at room temperature when the atom is held in a sufficiently strong magnetic field involving exposure to low frequency electromagnetic energy. The result is the release of particles, the generation of new bodies, including isotopes, and/or the release of energy.
    Type: Application
    Filed: January 28, 2009
    Publication date: November 5, 2009
    Inventor: A. Christian Tahan
  • Patent number: 7596197
    Abstract: A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360° and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 29, 2009
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Tak Pui Lou, William A. Barletta
  • Patent number: 7583775
    Abstract: A concentrated irradiation type radiotherapy apparatus comprises a radiation source, a multi-channeled radiation detector, a rotating mechanism, an image reconstruction unit, a multi-leaf collimator disposed between the radiation source and the subject to trim the radioactive rays in arbitrary shapes and including a plurality of first leaves and a plurality of second leaves each disposed to be individually movable forwards/backwards and each having a strip shape and in which types of the first leaves are different from those of the second leaves.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: September 1, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Ozaki
  • Publication number: 20090196390
    Abstract: The invention provides methods for the production of radioisotopes or for the treatment of nuclear waste. In methods of the invention, a solution of heavy water and target material including fissile material present in subcritical amounts is provided in a shielded irradiation vessel. Bremsstrahlung photons are introduced into the solution, and have an energy sufficient to generate photoneutrons by interacting with the nucleus of the deuterons present in the heavy water and the resulting photoneutrons in turn cause fission of the fissile material. The bremmssrrahlung photons can be generated with an electron beam and an x-ray converter. Devices of the invention can be small and generate radioisotopes on site, such as at medical facilities and industrial facilities. Solution can be recycled for continued use after recovery of products.
    Type: Application
    Filed: February 3, 2009
    Publication date: August 6, 2009
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: John M. Gahl, Michael A. Flagg
  • Publication number: 20090147906
    Abstract: There is disclosed a method of generating energetic particles, which comprises contacting nanotubes with a source of hydrogen isotopes, such as D2O, and applying activation energy to the nanotubes. In one embodiment, the hydrogen isotopes comprises protium, deuterium, tritium, and combinations thereof. There is also disclosed a method of transmuting matter that is based on the increased likelihood of nuclei interaction for atoms confined in the limited dimensions of a nanotube structure, which generates energetic particles sufficient to transmute matter and exposing matter to be transmuted to these particles.
    Type: Application
    Filed: October 27, 2008
    Publication date: June 11, 2009
    Inventors: Christopher H. Cooper, James F. Loan, William K. Cooper, Alan G. Cummings
  • Patent number: 7529332
    Abstract: A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 5, 2009
    Assignee: The Regents of the University of California
    Inventors: Eric B. Norman, Stanley G. Prussin
  • Patent number: 7483509
    Abstract: A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 27, 2009
    Assignee: The Regents of the University of California
    Inventors: Eric B. Norman, Stanley G. Prussin
  • Patent number: 7474725
    Abstract: A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 6, 2009
    Assignee: The Regents of the University of California
    Inventors: Eric B. Norman, Stanley G. Prussin
  • Publication number: 20080123793
    Abstract: Disclosed herein is a device for generating thermal energy through a nuclear transmutation reaction when a hydrogen containing fuel comes into contact with a nanotube containing element in a reaction vessel for containing the nuclear transmutation reaction. The device further includes an energy absorption vessel containing an energy absorption fluid that absorbs energetic particles resulting from the transmutation reaction and a heat transfer system for transferring thermal energy of the energy absorption fluid to a working fluid, such as water. A method of generating power using such a device is also disclosed.
    Type: Application
    Filed: April 5, 2007
    Publication date: May 29, 2008
    Inventors: James F. Loan, William K. Cooper, Christopher H. Cooper
  • Patent number: 7366644
    Abstract: An irradiated state diagram that expresses a relation of a degree of long range order S to a variable R of an irradiated state related to a damage rate and an irradiation temperature is prepared according to an ordered structure of an alloy on basis of an evaluation formula related to an effect of irradiation on an irradiated state of the alloy by using, as parameters, a first threshold value Sth1 at which the degree of long range order begins to decrease greatly under irradiation, a second threshold value Sth2 at which the degree of long range order substantially reaches equilibrium after this decrease, and a degree of long range order in an equilibrium state Seq. An R-value is calculated and an S-value corresponding to the R-value is found. An Sth1-value, an Sth2-value and an Seq-value at the R-value are found and compared.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: April 29, 2008
    Assignee: Japan Nuclear Cycle Development Institute
    Inventor: Taiji Hoshiya
  • Patent number: 7349517
    Abstract: The burnout of a fuel element in a reactor is determined by first transferring a fuel element from a reactor to a measuring position and then subjecting the transferred fuel element at the position to a neutron flux. A first detector measures the total ? radiation emitted by the transferred fuel element and thereafter, if the radiation measured by the first detector exceeds a predetermined first limit, the transferred fuel element is returned back to the reactor. If not, a second detector measures a magnitude of high energy ? radiation above 1 MeV emitted by the transferred fuel element and thereafter only if the radiation measured by the second detector exceeds a predetermined second limit, the transferred fuel element is transferred back to the reactor. The element is not returned to the reactor if the radiation measured by the second detector is below the second limit.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: March 25, 2008
    Assignee: Forschungszentrum Julich GmbH
    Inventor: Peter Pohl
  • Patent number: 7286635
    Abstract: An elemental analyzer for identifying quantities of one or more elements in a material has a container for holding a material to be analyzed, a resonant gamma ray source unit for directing resonant gamma rays into the material in the container, and at least one detector for detecting gamma rays resonantly scattered by at least one predetermined element in the material. The resonant gamma ray source unit has an outer housing of gamma ray shield and a radiological shield material, with an inner chamber and an aperture directed towards the container, a moving gamma ray generator source of predetermined materials mounted in the chamber, the materials being selected from a predetermined group of materials which emit resonant gamma rays when exposed to particles or photons, the source being directed towards said aperture, and a source of particles or photons positioned in the chamber adjacent the gamma ray generator source.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 23, 2007
    Inventor: Raymond J. Proctor
  • Patent number: 7277521
    Abstract: A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: October 2, 2007
    Assignee: The Regents of the University of California
    Inventors: Eric B. Norman, Stanley G. Prussin
  • Patent number: 7269527
    Abstract: A sensor interface system and a sensor integration module support individual sensors and sensor arrays, with network connectivity and critical functions required for analog and digital sensors when deployed in field applications used for chemical, biological, radiation, nuclear and explosives (CBRNE) material identification. The sensor integration module enables efficient integration of a single sensor or for multiple sensors into an array using a modular sensor interface unit and provides individual TCP/IP addresses for each detector element, signal processing for the sensor data and communications capabilities establishing each detector and the sensor array as network elements on a distributed network.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: September 11, 2007
    Assignee: Innovative American Technology, Inc.
    Inventor: David L. Frank
  • Patent number: 7200198
    Abstract: An apparatus for producing a radionuclide includes a target chamber, a particle beam source operatively aligned with the target chamber, and a regenerative turbine pump for circulating a target fluid through the target chamber via first and second liquid transports. During bombardment of the target liquid in the target chamber by the particle beam source, the target liquid is prevented from reaching vaporization due to the elevated pressure within the target chamber and/or the rapid flow rate through the target chamber. A cooling system can be provided to circulate coolant to the first and second liquid transport conduits, the target chamber and the pump to ensure that the target liquid is cooled upon recirculation back into the target chamber.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: April 3, 2007
    Assignee: Duke University
    Inventors: Bruce W. Wieland, Bruce C. Wright
  • Patent number: 7151815
    Abstract: A method and associated apparatus for detecting concealed fissile, fissionable or special nuclear material in an article, such as a shipping container, is provided. The article is irradiated with a source of fast neutrons, and fast neutrons released by the fissile or fissionable material, if present, are detected between source neutron pulses. The method uses a neutron detector that can detect and discriminate fast neutrons in the presence of thermal neutrons and gamma radiation. The detector is able to process high count rates and is resistant to radiation damage, and is preferably a solid state neutron detector comprised of silicon carbide.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: December 19, 2006
    Assignee: Westinghouse Electric Co LLC
    Inventors: Francis H. Ruddy, Abdul R. Dulloo, John G. Seidel, Thomas V. Congedo, Bojan Petrovic, Vefa N. Kucukboyaci
  • Patent number: 7058153
    Abstract: A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: June 6, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Douglas W. Akers
  • Patent number: 6917044
    Abstract: A high power high yield target for the positron emission tomography applications is introduced. For production of Curie level of Fluorine-18 isotope from a beam of proton it uses about one tenth of Oxygen-18 water compared to a conventional water target. The target is also configured to be used for production of all other radioisotopes that are used for positron emission tomography. When the target functions as a water target the material sample being oxygen-18 or oxygen-16 water is heated to steam prior to irradiation using heating elements that are housed in the target body. The material sample is kept in steam phase during the irradiation and cooled to liquid phase after irradiation. To keep the material sample in steam phase a microprocessor monitoring the target temperature manipulates the flow of coolant in the cooling section that is attached to the target and the status of the heaters and air blowers mounted adjacent to the target.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: July 12, 2005
    Inventor: Behrouz Amini
  • Patent number: 6845137
    Abstract: A system and method for producing 18F-Fluoride by using a proton beam to irradiate 18Oxygen in gaseous form. The irradiated 18Oxygen is contained in a chamber that includes at least one component to which the produced 18F-Fluoride adheres. A solvent dissolves the produced 18F-Fluoride off of the at least one component while it is in the chamber. The solvent is then processed to obtain the 18F-Fluoride.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: January 18, 2005
    Assignee: Triumf
    Inventors: Thomas J. Ruth, Kenneth R. Buckley, Kwonsoo Chun, Salma Jivan, Stefan K. Zeisler
  • Patent number: 6813330
    Abstract: A device is provided that can capture and store electrically neutral excited species of antimatter or exotic matter (a mixture of antimatter and ordinary matter), in particular, excited positronium (Ps*). The antimatter trap comprises a three-dimensional or two-dimensional photonic bandgap (PBG) structure containing at least one cavity therein. The species are stored in the cavity or in an array of cavities. The PBG structure blocks premature annihilation of the excited species by preventing decays to the ground state and by blocking the pickoff process. A Bose-Einstein Condensate form of Ps* can be used to increase the storage density. The long lifetime and high storage density achievable in this device offer utility in several fields, including medicine, materials testing, rocket motors, high power/high energy density storage, gamma-ray lasers, and as an ignition device for initiating nuclear fusion reactions in power plant reactors or hybrid rocket propulsion systems.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 2, 2004
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Nitesh N. Shah, Harry A. Schmitt
  • Patent number: 6724852
    Abstract: The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 20, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Donald Smith, Bradley J. Micklich, Andreas Fessler