Having Specified Flow Path Or Pattern Within Reactor Core Patents (Class 376/385)
  • Patent number: 11158432
    Abstract: A heat pipe reactor may include a reactor core and one or more heat exchangers positioned on one or both sides of the reactor core. The heat pipe reactor may also include a plurality of heat pipes extending from the reactor core and out through the one or more heat exchangers. The reactor core may be composed of a plurality of monolithic blocks.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: October 26, 2021
    Assignee: Triad National Security, LLC
    Inventors: Robert Stowers Reid, Patrick Ray McClure, David Irvin Poston, Venkateswara Rao Dasari
  • Patent number: 8320513
    Abstract: A nuclear fission reactor, flow control assembly, methods therefor and a flow control assembly system. The flow control assembly is coupled to a nuclear fission module capable of producing a traveling burn wave at a location relative to the nuclear fission module. The flow control assembly controls flow of a fluid in response to the location relative to the nuclear fission module. The flow control assembly comprises a flow regulator subassembly configured to be operated according to an operating parameter associated with the nuclear fission module. In addition, the flow regulator subassembly is reconfigurable according to a predetermined input to the flow regulator subassembly. Moreover, the flow control assembly comprises a carriage subassembly coupled to the flow regulator subassembly for adjusting the flow regulator subassembly to vary fluid flow into the nuclear fission module.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 27, 2012
    Inventors: Charles E. Ahlfeld, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Jon D. McWhirter, Nathan P. Myhrvold, Ashok Odedra, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20090252277
    Abstract: An upper plenum structure of a cooled pressure vessel for a prismatic very high temperature reactor which secures a space for coolant to supply to a core and also supports an upper reflector located inside a graphite structure on top of the core. The upper plenum structure includes a cavity structure where the coolant goes down in the upper plenum structure, a plurality of upper reflector supports formed with the cavity and supporting the upper reflector located on top thereof, and a plurality of coolant distributing blocks. Each of the coolant distributing blocks is coupled with a bottom portion of a respective one of the upper reflector supports and is located on top of the core in order to distribute the coolant collected in a cavity, formed by the upper reflector support, to the core. The coolant distributing blocks cooperate with the upper reflector supports to define the cavity structure.
    Type: Application
    Filed: September 2, 2008
    Publication date: October 8, 2009
    Applicants: KOREA ATOMIC ENGERGY RESEARCH INSTITUTE, KOREA HYDRO & NUCLEAR POWER CO., LTD.
    Inventors: Min-Hwan KIM, Hong-Sik LIM, Dong-Ok KIM, Jong-Hwa CHANG, Won-Jae LEE
  • Patent number: 7455818
    Abstract: A method treats a flow gas that is guided via a catalytic adsorber module to oxidize contaminants carried in the flow gas. The method reliably purifies the flow gas using equipment that is held to a comparatively low level of complexity. To this end, the flow gas is guided in a first purification step via a first catalytic adsorber module to oxidize contaminants carried along therewith, during which molecular or atomic oxygen is added to the flow gas, and the flow gas mixed with the added oxygen is guided in a second purification step via an oxidation catalyst. The flow gas flowing away from the oxidation catalyst is guided in a third purification step via a second catalytic adsorber module to reduce excessive oxygen.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 25, 2008
    Assignee: Areva NP GmbH
    Inventor: Axel Hill
  • Patent number: 6445758
    Abstract: Within an upper plenum of a nuclear reactor, a portion of a heated coolant flows radially outward from a central portion of a core barrel (30) towards outlet nozzles (12) in a region of an upper core plate (21) extending outside of an outer periphery of the core along an inner wall of a core barrel (30). Portions of the coolant flows beneath the outlet nozzles (12). Thus, streams of heated coolant flowing in opposite directions may collide with each other. After collision, the flow directions of the heated coolant are changed to flow upward. Due to the collision, the coolant flow behavior becomes complicated and unstable, making it difficult to measure the temperature of the heated coolant with an outlet pipe (42) connected to the outlet nozzle (12).
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: September 3, 2002
    Assignee: Mitsubishi Heavy Industries, LTD
    Inventors: Hajime Izumi, Makoto Nakajima, Chikara Kurimura, Takehiko Tsutsui, Noboru Kubo, Mikio Kurihara, Toshio Ichikawa
  • Patent number: 5225153
    Abstract: A multiplicity of pebble-bed cores are housed within separate concrete cavities of a multi-cavity prestressed concrete pressure vessel. Primary cooling systems, one for each pebble-bed core, are supported within another cavity which is coaxial with the longitudinal axis of the prestressed concrete pressure vessel. Tunnel ducts formed within the walls of the concrete vessel communicate between the cavities which house the pebble-bed cores and the cavity which houses the primary cooling systems. Pipes connecting the cores to the primary cooling systems pass through these ducts.
    Type: Grant
    Filed: March 26, 1991
    Date of Patent: July 6, 1993
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Masao Yamada, Hitoshi Hayakawa
  • Patent number: 5015437
    Abstract: A reactor core for a gas-cooled reactor, which core is composed of a plurality of prismatic bodies (2) of graphite containing nuclear fuel and having a top wall, a bottom wall and a plurality of vertically extending side walls, each graphite body (2) being provided with a plurality of first coolant flow channels (4) extending vertically between the top wall and the bottom wall, and with a plurality of second coolant flow channels (6) extending transversely to the first channels (4) and each interconnecting a plurality of the first channels (4).
    Type: Grant
    Filed: November 17, 1989
    Date of Patent: May 14, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Hans K. Fauske, George H. Clare
  • Patent number: 4569820
    Abstract: The present invention relates to a nuclear reactor core and fuel elements therefore. Stackable fuel elements, having the usual coolant holes machined therethrough, are formed with grooves along their vertical extent for alignment with similar grooves on adjacent fuel elements to define additional coolant passageways. These grooves provide coolant passageways between adjacent fuel elements enhancing the mechanical stability of the core. Furthermore, these additional coolant passageways allow a more efficient utilization of reactor core space and permit coolant escaping into the interstices between adjacent ends of blocks to be collected at these additional coolant passageways. Stability may be enhanced further by means of complementary elevations and depressions formed on end faces of the fuel blocks.
    Type: Grant
    Filed: May 13, 1981
    Date of Patent: February 11, 1986
    Assignee: GA Technologies Inc.
    Inventor: Peter Fortescue
  • Patent number: 4554129
    Abstract: A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure.If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel.
    Type: Grant
    Filed: March 17, 1982
    Date of Patent: November 19, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles O. Peinado, Stanley L. Koutz