Having A Central Strength Member Patents (Class 385/103)
  • Patent number: 7603012
    Abstract: A fiber optic cable that includes one or more optical fibers, and one or more strength members spanning the length of the cable. The cable also includes a protective jacket protecting the cable across all, or at least substantially all of its length. One or more ends of the cable (and potentially as much as the entire length of the cable), includes a jacket portion that surrounds the strength member(s), and a jacket portion that surrounds the optical fiber(s). These jacket portions are connected by a peelable separation portion. Accordingly, when the optical fiber portion of the jacket is pulled relative to the strength member portion of the jacket, the separation portion ruptures permitting the strength member portion and the optical fiber portion to be peeled away from each other. This allows for independent control of the termination of the strength member(s) relative to the optical fiber(s).
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 13, 2009
    Assignee: Finisar Corporation
    Inventor: Donald A. Ice
  • Publication number: 20090190888
    Abstract: The present invention relates to an optical cable comprising one or more optical waveguides, which one or more optical waveguides are provided with a protective layer, a buffer tube surrounding said one or more optical waveguides, which buffer tube is surrounded by an outer sheath, while a radial interspace is present between said outer sheath and said buffer tube, which radial interspace is filled with a filler.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 30, 2009
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Kees Van Trigt, Arnoldus Gertrudis Wilhelmus Berkers, Mijndert Doorn, Erik Versteeg
  • Patent number: 7566474
    Abstract: The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 28, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 7555182
    Abstract: A multi-layered laminate armor wrap for use with a various cables is disclosed, the armor wrap having at least one water absorbing fabric layer, at least one polymer layer, and at least one layer fabricated from a metal or a metal alloy. Each layer in the multi-layered laminate armor wrap is fused or adhered to the adjacent layers to form a fused or sealed laminate armor wrap. A method of making such an armor wrap is also disclosed.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 30, 2009
    Assignee: Reynolds Packaging LLC
    Inventor: Oscar Martin
  • Patent number: 7551813
    Abstract: Simplified and insensitive to ambient condition mechanical bi-directional fiber-optic switch that can work in fire and explosion hazardous environment. The switch houses a sensitive element—a length of single-mode optic fiber and a bending device, which being activated provides specific bending of the optic fiber that introduces high attenuation of an optic signal so completely terminating light signal transmission. The switch can be configured as single on/off switch or multi-channel one.
    Type: Grant
    Filed: November 18, 2007
    Date of Patent: June 23, 2009
    Inventor: Gennadii Ivtsenkov
  • Publication number: 20090136187
    Abstract: Disclosed are fiber optic cables and assemblies for routing optical networks closer to the subscriber. The fiber optic cables have a robust design that is versatile by allowing use in aerial application with a pressure clamp along with use in buried and/or duct applications. Additionally, the fiber optic cables and assemblies have a relatively large slack storage capacity for excess length. Assemblies include hardened connectors such as plugs and/or receptacles suitable for outdoor plant applications attached to one or more ends of the fiber optic cables for plug and play connectivity.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Inventors: George C. Abernathy, David A. Seddon, Kenneth D. Temple, JR.
  • Publication number: 20090129733
    Abstract: A multi-tight buffer fiber optic cable includes a first layer of tight buffer optical fibers and at least one second layer of tight buffer optical fibers surrounding the first layer of tight buffer optical fibers. A jacket surrounds the at least one second layer of tight buffer optical fibers, where the first layer of tight buffer optical fibers and the at least one second layer of tight buffer optical fibers are helically wound, and where the at least one second layer of tight buffer optical fibers are helically wound in the same direction as the first layer of tight buffer optical fibers and at substantially the same lay length.
    Type: Application
    Filed: October 27, 2008
    Publication date: May 21, 2009
    Inventors: David Keller, Randie Yoder, Dan Rouse, Chris Raynor, Woody Rhodes
  • Patent number: 7536071
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least one micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa·s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: May 19, 2009
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Publication number: 20090116797
    Abstract: An optical cable comprises a cable core (100) containing optical transmission elements (10) surrounding a centrally arranged strain relief element (20). Yarns (31) are arranged as a further strain relief element in a manner surrounding the cable core (100). The entire arrangement is surrounded by a cable sheath (400). A thermoplastic material into which vegetable fibers are embedded as a filler is used as materials for the conductor sleeves (2) of the optical transmission elements, the strain relief elements (20) and the cable sheath (400). The use of such vegetable-fiber-filled plastic materials makes it possible to improve the material properties of conductor sleeve, cable sheath and strain relief elements such as, for example, the shrinkage behavior of materials during production and also the transverse compressive and tensile strength.
    Type: Application
    Filed: July 28, 2008
    Publication date: May 7, 2009
    Inventors: Andreas Stingl, Stefan Fruhnert
  • Patent number: 7520678
    Abstract: A junction box and hybrid fiber optic cable connector which permit repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire cable assembly or retermination of the cable. A method of repairing a hybrid fiber/copper cable and connector.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: April 21, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: M'hamed Anis Khemakhem, Dean Michael Rosenthal, Duane Sand, Jeffery Louis Peters, Joy K. McKnight, Ross Heggestad, Patrick Jude Nault, Foad Abdulkadir Mohamed Ahmed
  • Publication number: 20090087148
    Abstract: An optical fiber cable suitable for drop cable applications has a dual jacket, dual reinforcement layers, a round cross section, and a tight buffered construction. The optical fiber cable is a compact unitary coupled fiber assembly that has a small profile, and is light in weight, while still sufficiently robust for many indoor/outdoor drop cable installations. The small profile and round construction make the cable easy to connectorize.
    Type: Application
    Filed: January 18, 2008
    Publication date: April 2, 2009
    Inventors: Kelvin B. Bradley, Peter A. Weimann
  • Publication number: 20090074364
    Abstract: A fiber optic cable includes at least one optical fiber, at least one strength member, at least one dry insert, and a cable jacket. The cable jacket has a cavity with a generally rectangular cross-section with the at least one optical fiber and the at least one dry insert disposed therein. The at least one optical fiber has a predetermined level of coupling to the cable jacket that is provided by the at least one dry insert within the cavity of cable jacket. The predetermined level of coupling is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable. Additionally, fiber optic cables of the present invention are also suitable as a portion of a cable assembly.
    Type: Application
    Filed: November 25, 2008
    Publication date: March 19, 2009
    Inventors: Anne G. Bringuier, Jody L. Greenwood, David Alan Seddon, Kenneth D. Temple, JR.
  • Publication number: 20090074363
    Abstract: An optical tube assembly having at least one optical waveguide, at least one dry insert, and a tube. The at least one optical waveguide is disposed within the tube and generally surrounds the at least one optical waveguide. In one embodiment, the dry insert has a first layer comprising a felt having at least one type of non-continuous filament. The dry insert may also include a plurality of water-swellable filaments. In another embodiment, a dry insert has a first layer, a second layer, and a plurality of water-swellable filaments. The first and second layers are attached together at least along the longitudinal edges thereof, thereby forming at least one compartment between the first and second layers and the plurality of water-swellable filaments are generally disposed in the at least one compartment. The dry insert also is advantageous in tubeless cable designs.
    Type: Application
    Filed: November 18, 2008
    Publication date: March 19, 2009
    Inventors: Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, JR., Jason C. Lail
  • Publication number: 20090003779
    Abstract: Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material and features a number of raised members projecting toward the optical fibers. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer. This arrangement distributes the compressive force applied to discrete points along the outer perimeter of the optical fiber element.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Applicant: DRAKA COMTEQ B.V.
    Inventor: Don Parris
  • Patent number: 7471862
    Abstract: A fiber optic cable includes at least one optical fiber, at least one strength member, at least one dry insert, and a cable jacket. The cable jacket has a cavity with a generally rectangular cross-section with the at least one optical fiber and the at least one dry insert disposed therein. The at least one optical fiber has a predetermined level of coupling to the cable jacket that is provided by the at least one dry insert within the cavity of cable jacket. The predetermined level of coupling is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable. Additionally, fiber optic cables of the present invention are also suitable as a portion of a cable assembly.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 30, 2008
    Assignee: Corning Cable Systems, LLC
    Inventors: Anne G. Bringuier, Jody L. Greenwood, David Alan Seddon, Kenneth D. Temple, Jr.
  • Patent number: 7463803
    Abstract: A substantially flat fiber optic drop cable assembly comprises: a fiber optic connector comprising a fiber optic ferrule and a housing; a crimp body coupled to the housing of the fiber optic connector; a fiber optic cable comprising a pair of strength members disposed partially within the fiber optic cable; a first sheath disposed between the fiber optic connector and the fiber optic cable, the first sheath coupled to the crimp body; a second sheath disposed between the fiber optic connector and the fiber optic cable, the second sheath coupled to the fiber optic cable; and a demarcation element joining the first sheath and the second sheath, wherein the demarcation element comprises a substantially tubular element; wherein the pair of strength members are configured to engage the crimp body about the first sheath, the second sheath, and the demarcation element.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: December 9, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T Cody, Radawan Hall, Christopher Paul Lewallen, James P. Luther
  • Publication number: 20080298754
    Abstract: An optical cable (1) comprises a cable sheath (11) and at least two optical transmission elements (101) and (102), which are arranged within the cable sheath (11). One (101) of the optical transmission elements (101) and (102) comprises a buffer tube (1011), at least one optical waveguide (10101) and at least one swelling element (10111). The buffer tube (1011) surrounds the at least one optical waveguide (10101) and the at least one swelling element (10111). The swelling element (10111) comprises a swelling material, which can swell by supplying it with water. If water penetrates into the optical transmission element, the swelling element (10111) swells and seals off the optical transmission element, so that spreading of the water in the longitudinal direction of the optical transmission element is prevented.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 4, 2008
    Applicant: CCS TECHNLOGY, INC.
    Inventors: Gunter Wunsch, Rainer Kamps
  • Publication number: 20080273845
    Abstract: Described is an optical fiber cable designed for drop cable applications that has a compact profile, and is suitable for both the indoor and outdoor portions of the installation. The new design has three functional units, an optical fiber subunit, and two strength members arranged side-by side on either side of the optical fiber. The overall cable cross section round. In a preferred embodiment, the optical fiber module of the cable has a coupled fiber design.
    Type: Application
    Filed: July 18, 2007
    Publication date: November 6, 2008
    Inventor: Peter A. Weimann
  • Publication number: 20080253722
    Abstract: The present disclosure relates to a fiber optic telecommunications cable assembly including a main fiber optic cable and a tether cable that branches from the main fiber optic cable at a breakout location. The fiber optic telecommunications cable assembly also includes a breakout block mounted to the main fiber optic cable at the breakout location, and an over-mold that covers the breakout block and at least a portion of the main fiber optic cable. The breakout block defines a straight-through channel in which the main fiber optic cable is received and a breakout channel that branches out from the straight-through channel. The breakout block includes seams with overlap configurations that prevent the over-mold from entering the breakout block through the seams. The breakout block also includes barrier dams for preventing bonding material from entering the breakout channel.
    Type: Application
    Filed: April 12, 2007
    Publication date: October 16, 2008
    Inventors: Erik Gronvall, Paul Suek, Andy Schmidt, Yu Lu, Scott Carlson
  • Patent number: 7433564
    Abstract: An optical phase modulator made of lithium niobate or the like phase-modulates the output light of a single-wavelength laser light source 20 that emits CW light, and the phase-modulated light is inputted to a dispersion medium 22. The positive chirp and negative chirp of light to which frequency chirp is applied by phase modulation draw near in the dispersion medium and an optical pulse is generated.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 7, 2008
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Publication number: 20080240660
    Abstract: Disclosed are fiber optic structures having at least one optical fiber and a protective covering such as a cable jacket or matrix material. The fiber optic structures include an attachment portion for providing the craft an installation option for securing the same. Specifically, the fiber optic cable has a first portion that has at least one optical fiber and an attachment portion. The attachment portion generally extends away from the first portion, thereby providing a portion of the fiber optic structure suitable for receiving a fastener therethrough without damaging the at least one optical fiber or causing undue levels of optical attenuation. The fiber optic structures may also have a bulbous first portion for indicating the location of the optical fiber to the craft.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Samuel Don Nave, Todd Ray Rhyne
  • Patent number: 7422378
    Abstract: The present disclosure relates to a telecommunications cable including a distribution cable and a tether that braches from the distribution cable at a mid-span breakout location. A flexible closure covers the mid-span breakout location. Within the closure, fibers are broken out from the distribution cable and spliced to fibers of the tether. The lengths of broken out fibers within the flexible closure are provided with sufficient excess fiber length to allow the closure to be readily bent/flexed in any direction without damaging the fibers.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: September 9, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Keith Millea, Jeff Gniadek
  • Publication number: 20080212927
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least ones micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa-s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Application
    Filed: September 27, 2004
    Publication date: September 4, 2008
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Patent number: 7421169
    Abstract: An optical fiber cable that sustains reduced increase in transmission loss and optical fiber breakage when subject to external pressure exerted thereon, comprises an aggregate of elements including central buffer filaments disposed in the center part of the optical fiber cable and a plurality of optical fibers disposed around the central buffer filaments, as well as circumferential strength filaments disposed around the outer periphery of the aggregate of elements, and a sheath covering the circumferential strength filaments.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 2, 2008
    Assignee: Fujikura Ltd.
    Inventors: Takeshi Honjo, Satoru Shiobara, Tsuyoshi Shimomichi, Keiji Ohashi
  • Patent number: 7415181
    Abstract: A fiber optic cable has at least one optical fiber, at least one strength member having a major strength member dimension, and a cable jacket. The cable jacket has two major surfaces that are generally flat and includes a cavity with a cavity minor dimension generally orientated with a minor dimension of the fiber optic cable, wherein the at least one optical fiber is disposed within the cavity. In one embodiment, the cavity minor dimension of the fiber optic cable is about the same size or larger than the strength member dimension that is generally aligned with a minor dimension of the cable, thereby allowing access to the cavity when the fiber optic cable is entered while inhibiting damage to the at least one optical fiber. Fiber optic cables of the present invention are also suitable as a portion of a cable assembly.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: August 19, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Jody L. Greenwood, David L. Dean, Jr., Kenneth D. Temple, Jr., Keith H. Lail
  • Patent number: 7403685
    Abstract: A telecommunications cable includes a distribution cable, a tether branching from the distribution cable at the mid-span breakout location, an enclosure that surrounds the breakout location, and an access device including a ripcord installed on the enclosure. Typically, the first and second ends of the ripcord are arranged adjacent the first end of the enclosure and a middle of the ripcord forms a half-loop adjacent the second end of the enclosure. The ripcord is configured to cut through the body of the enclosure when pulled from at least one of the first and second ends.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: July 22, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventor: Dennis Ray Wells
  • Patent number: 7397991
    Abstract: A fiber optic cable having at least one optical fiber such as a microstructured bend performance optical fiber disposed within a protective covering. The protective covering is highly flexible and the fiber optic cable has extremely low delta attenuation when aggressively bent compared with the conventional fiber optic cable designs. By way of example, the delta attenuation of one fiber optic cable design is about 0.33 dB or less when wrapped 3 turns about a 7.5 millimeter mandrel at a reference wavelength of 1625 nanometers. Other variations of the present invention include a connector attached to the fiber optic cable.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 8, 2008
    Assignee: Corning Cable Systems LLC
    Inventor: James A. Register
  • Patent number: 7391944
    Abstract: A drop cable includes a jacket having first and second opposing sides. The first side has a concave surface. At least one strength member is disposed in the jacket. An optical transmission component is disposed within the jacket and proximate the concave surface. The optical transmission component includes a plurality of optical fibers.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: June 24, 2008
    Assignee: Draka Comteq B.V.
    Inventors: Olaf Loy Storaasli, Jeffrey Scott Barker
  • Patent number: 7391943
    Abstract: A fiber optic cable includes a messenger section having at least one strength member, a carrier section having at least one optical fiber therein, and a common jacket that forms a common jacket. In one embodiment, the carrier jacket has a preferential tear portion adjacent to the at least one optical fiber with a substantially continuous outer surface in the carrier jacket adjacent to the preferential tear portion. The preferential tear portion may be defined by at least one of: at least one internal void, at least one weld line, and at least one wing extending from a tape disposed about the one or more optical fibers. Various alternatives are possible. For example, the carrier jacket may also or alternatively include at least one gripping area extending for enhancing the gripping of the carrier section when pulling apart the carrier section and messenger section.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: June 24, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley J. Blazer, George Neill Abernathy, Gregory A. Lochkovic, Reginald Roberts
  • Patent number: 7379642
    Abstract: The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: May 27, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 7373057
    Abstract: An optical fiber cable has a highly reduced diameter. The cable has a central strength member; a number of tubes containing loosely arranged optical fibers, each tube having a thickness, and each optical fiber having a coating; and a protective outer jacket, wherein the filling coefficient of optical fibers in at least one loose tube is ?45°/0. The tubes are made of a material having an elasticity modulus ?700 MPa; and the optical fibers are SM-R fibers having a microbending sensitivity ?4.0 dB·km?1/g·mm?1 at a temperature of about ?30° C. to +60° C. at about 1550 nm.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 13, 2008
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Enrico Consonni
  • Patent number: 7359600
    Abstract: Disclosed is a loose tube optical cable having an unstranded structure, which includes a tensile strength member longitudinally elongated and having a central axis deviated from the center of the optical cable, a loose tube optical fiber unit longitudinally elongated without intended twist against the tensile strength wire, and a cable coating for wrapping an aggregation in which the tensile strength member and the loose tube optical fiber unit are straightly aggregated. By suitably selecting geometric parameters of the tensile strength member and the loose tube optical fiber unit, the center of mass of the aggregation is positioned within the tensile strength member and the maximum modulus of elongation of the optical fiber is restricted within a predetermined range in a predetermined bending radius.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: April 15, 2008
    Assignee: LS Cable Ltd.
    Inventors: Tae-Gyoung Kim, Min Son
  • Patent number: 7330621
    Abstract: Flexible closures and other flexible optical assemblies that are installed within a factory, or in the field, and then deployed using cable installation methods, wherein the flexible closures and assemblies have the ability to bend and twist without incurring physical damage to their structure, optical fibers and splices disposed within, and without significant attenuation in the optical fibers when exposed to conventional installation stresses. Flexible closures that replace conventional substantially rigid closures in order to facilitate pre-engineered and assembled distribution cable installation within an optical network, and the physical, bending and material properties of such closures, and methods of manufacturing and installing the same.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: February 12, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Lars K. Nielsen, James P. Luther, Thomas Theuerkorn
  • Patent number: 7324730
    Abstract: A cable which includes conductor bundles prepared from at least one optical fiber positioned either centrally or helically about the center axis of the bundle, metallic conductors helically positioned around the bundles center axis, and a polymeric insulation material. A method of making a cable including forming a conductor bundle by placing helically positioned conductors and optical fibers about the periphery of a central optical fiber or metallic conductor, encasing the conductors, optical fibers, in a polymeric insulation material, and grouping the conductor bundles together.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: January 29, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Joseph Varkey, Ravicharan Mydur, Noor Sait, Willem Wijnberg, Sumitra Kunathikom, Monica Darpi
  • Patent number: 7321709
    Abstract: An optical cable according to the present invention relates to an optical cable having a construction to enable reduction of a cable outer diameter, and/or improvement of contained efficiency of coated optical fibers while an increase of transmission loss in each coated optical fiber is suppressed. The optical cable has a loose-tube type of structure constructed by: a tension member; a plurality of tubes stranded together around the tension member; and an outer sheath covering the outer periphery of the plurality of tubes. One or more coated optical fibers are contained in each tube. A ratio of A/B is 6.3 or more but 7.0 or less, where each coated optical fiber has a mode field diameter A in a range of 8.6±0.4 ?m at a wavelength of 1.31 ?m, and where a fiber cutoff wavelength thereof is B ?m.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: January 22, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tomoyuki Yokokawa, Eisuke Sasaoka
  • Patent number: 7317863
    Abstract: The present disclosure relates to a telecommunications cable including a distribution cable and a tether that branches from the distribution cable at a mid-span breakout location. A flexible closure covers the mid-span breakout location. Within the closure, fibers are broken out from the distribution cable and spliced to fibers of the tether. The lengths of broken out fibers within the flexible closure are provided with sufficient excess fiber length to allow the closure to be readily bent/flexed in any direction without damaging the fibers.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: January 8, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Keith Millea, Jeff Gniadek
  • Patent number: 7313304
    Abstract: The present invention provides a dielectric optical fiber cable which is capable of being remotely detected while buried. Specifically, this invention incorporates a detectable and easily removable locating element which is attached to the optical fiber cable by a web defined by the jacket extending over both the optical fiber cable and the locating element. The web allows for the locating strand to be easily removed once separation of the locating element from the optical fiber cable is initiated. The web is designed to allow the initial tear to propagate into a precise longitudinal tear along a predetermined length of the optical fiber cable.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: December 25, 2007
    Assignee: Sumitomo Electric Lightwave Corp.
    Inventors: Robert J. Andrews, Scott M. Chastain, Stephen R. Stokes, George A. Mackie
  • Patent number: 7313303
    Abstract: An optical cable having an optical core with a strength member and optical fibers embedded in a thermoplastic material. The optical core has a joint section having substantially the same diameter as the one of the optical core. The joint section has a jointed strength member and a plurality of spliced optical fibers, the jointed portion of the strength member and the spliced portion of the optical fibers being embedded into a cured polymeric material. A method for manufacturing an optical core is also disclosed.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: December 25, 2007
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Feliciano Cecchi, Alessandro Ginocchio, Nunzio Romanini, Giovanni Brandi
  • Patent number: 7308176
    Abstract: The specification describes an optical fiber drop cable with a flat configuration and having two side-by-side subunits. One of the subunits contains a cable strength member, e.g. a steel wire or stranded wire. The other subunit is an optical fiber subunit, which contains the optical fiber(s), and also contains one or more additional strength members. In a preferred embodiment, the cable is dry, and has conformal encasements that couple the optical fiber(s) to the outer cable sheath.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: December 11, 2007
    Assignee: Furukawa Electric North America Inc.
    Inventors: Luis M. Bocanegra, Harold P. Debban, Peter A. Weimann
  • Patent number: 7292757
    Abstract: A method and apparatus for determining and adjusting binder laylength during the process of manufacturing a selected fiber optic cable design. Specifically, a binder, having a distinguishing and physically detectable feature, is wrapped around fiber optic bundles or a buffer tube. A detection system detects the unique feature associated with the binder and thus creates a calculates a representative distance value. The distance value is calculated in relation the periodic spacing between two detected points on the physically detectable binder and is continuously monitored by a closed feedback loop. A computer receives status data from the closed feedback loop and compares the received data to a stored laylength parameter. In light of the comparison, an algorithm adjusts the binder head speed accordingly. This process repeats until the desired stored laylength is detected by the detection system.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: November 6, 2007
    Assignee: Draka Comteq B.V.
    Inventor: Michael T. Rossi
  • Patent number: 7289714
    Abstract: A telecommunications cable includes a distribution cable, a tether, and a tube. One end of a length of optical fiber optically couples to the distribution cable and the opposite end of the length of optical fiber optically couples to the tether cable. The tube is mounted over the length of optical fiber. The tube defines an opening adjacent one end of the tube. The tube includes fingers adjacent the opening having sufficient flexibility to enable the one end of the tube to wrap around buffer tubes of the distribution cable.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 30, 2007
    Assignee: ADC Telecommunication, Inc.
    Inventor: Dennis Ray Wells
  • Patent number: 7280725
    Abstract: A furcation tube including a central channel for receiving a fiber optic drop cable in a first end and an upjacket in a second end to transition an optical fiber within the drop cable into the upjacket for termination. A method of transitioning an optical fiber from a drop cable to a smaller upjacket.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: October 9, 2007
    Assignee: ADC Telecommunications, Inc.
    Inventors: Troy Brown, Steven C. Zimmel, Justin R. Horton
  • Patent number: 7272282
    Abstract: Fiber optic cables and assemblies useful for distribution of the optical fibers to a network are disclosed. The fiber optic cables include a first strength component and a second strength component with a cable jacket generally surrounding the first and second strength components. One or more compartments are defined between the first and second strength components for housing one or more optical fibers. The optical fibers of the fiber optic cable are easily accessible by the craft for distribution to the network, thereby allowing the construction of assemblies that are suitable for distribution of the optical fibers to the network.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 18, 2007
    Assignee: Corning Cable Systems. LLC.
    Inventors: David Alan Seddon, Warren W. McAlpine
  • Patent number: 7254303
    Abstract: An optical tube assembly and method of manufacture include at least one optical waveguide, at least one dry insert that generally surrounds the at least one optical waveguide, and a tube. The dry insert includes a tape and at least one filament attached to the tape, thereby forming a plurality of loops. In preferred embodiments, either the tape or the at least one filament of the dry insert has a water-swellable component. Additionally, the optical tube assembly may be a portion of a fiber optic cable.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 7, 2007
    Assignee: Corning Cable Systems, LLC.
    Inventor: Alan T. Parsons
  • Patent number: 7251411
    Abstract: The present disclosure relates to a telecommunications cable including a distribution cable and a tether that branches from the distribution cable at a mid-span breakout location. A flexible closure covers the mid-span breakout location. Within the closure, fibers are broken out from the distribution cable and spliced to fibers of the tether. The lengths of broken out fibers within the flexible closure are provided with sufficient excess fiber length to allow the closure to be readily bent/flexed in any direction without damaging the fibers.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 31, 2007
    Assignee: ADC Telecommunication, Inc.
    Inventors: Yu Lu, Keith Millea, Jeff Gniadek
  • Patent number: 7242841
    Abstract: A flexible cross-connect apparatus for cross-connecting fiber optic cables includes a transition strength member, at least one cable clamp assembly, at least one fiber storage device, and a cover for protecting the cross-connect apparatus. The cross-connect apparatus is flexible about a preferential bending plane because the transition strength member includes a preferential bending plane for influencing bending. The at least one cable clamp assembly is used for securing one or more cables with the transition strength member at the ends. In one embodiment, a splice carriage is removably attached to the transition strength member for aiding the craftsman to work at a splicing station.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: July 10, 2007
    Assignee: Corning Cable Systems, LLC
    Inventors: Jody L. Greenwood, Kenneth D. Temple, Jr., David L. Dean, Jr., Keith H. Lail
  • Patent number: 7242831
    Abstract: An optical fiber assembly includes a central strength member, multiple tubes, stranded yarn, a water protection layer, reinforced strength yarns and an outer sheath. At least one of the multiple tubes has one or more optical fibers disposed within. The stranded yarn is formed around the multiple tubes and the central strength member. The water protection layer is formed around the stranded yarn. The reinforced strength yarns are formed around the water protection layer and the outer sheath is formed around the reinforced strength yarns. The optical fiber assembly has an overall diameter of less than about 11.5 mm and exhibits low strain when subjected to a tension of at least 600 pounds.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 10, 2007
    Assignee: Verizon Business Global LLC
    Inventor: John A. Fee
  • Patent number: 7239781
    Abstract: The present inventions relate generally to umbilicals comprising at least one inner tube and at least one composite fiber element to provide greater resistance to radial compressive forces. Such umbilicals may be used in subsea hydrocarbon production applications.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 3, 2007
    Assignee: Oceaneering International, Inc.
    Inventors: Andre Chartier, Paul Gahm
  • Patent number: 7221831
    Abstract: A multi-tube fiber optic cable maintains a plurality of fiber tubes, each fiber tube containing at least one optical fiber therein. The plurality of fiber tubes are disposed apart from a central axis of the cable. A plurality of strength members are disposed apart from a central axis of said cable. An outer jacket surrounds the plurality of fiber tubes and the plurality of strength members and is formed from a pressure extruded polymer. The plurality of fiber tubes and strength members are held in either one of an oscillated geometry or a helical geometry by the pressure extruded jacket.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: May 22, 2007
    Assignee: Nexans
    Inventors: David Keller, Randie Yoder
  • Patent number: 7218821
    Abstract: The specification describes an optical fiber drop cable with a flat configuration and having two side-by-side subunits. One of the subunits contains a cable strength member, e.g. a steel wire or stranded wire. The other subunit is an optical fiber subunit, which contains the optical fiber(s), and also contains one or more additional strength members. In a preferred embodiment, the cable is dry, and has conformal encasements that couple the optical fiber(s) to the outer cable sheath.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 15, 2007
    Assignee: Furukawa Electric North America Inc.
    Inventors: Luis M. Bocanegra, Harold P. Debban, Peter A. Weimann