Having Nonlinear Property Patents (Class 385/122)
  • Patent number: 8457453
    Abstract: Apparatus and methods that compensate for the thermally-induced drift of the resonance frequency of a closed-loop resonator include, in an exemplary embodiment, a waveguide-based Mach-Zehnder interferometer (MZI) and an overcoupled, waveguide-based microring resonator. The temperature-induced red-shifting ring resonance can be balanced by a spectral blueshift with temperature of the MZI. To stabilize the resonance of the ring at a given wavelength, the change in optical path lengths with temperature of the ring and the MZI should be equal and opposite. The interplay of nonlinear change in phase of ring resonator with temperature and linear change in phase of MZI with temperature, along with matching the period of this phase change, gives rise to perfect oscillation in the combined system resonance with temperature.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 4, 2013
    Assignee: Cornell University
    Inventors: Michal Lipson, Biswajeet Guha
  • Patent number: 8451528
    Abstract: Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 28, 2013
    Assignee: Ram Photonics, LLC
    Inventor: Ping Piu Kuo
  • Patent number: 8451529
    Abstract: A cA crystal configured to change a frequency of a laser through an optical parametric oscillation (OPO) process and a difference frequency generation (DFG) process is provided. The crystal includes: an OPO-DFG segment that is quasi-periodically poled to yield (i) a conversion of a laser pump light applied thereto, to a first signal and an idler, and (ii) a conversion of a first signal applied thereto, to a second signal and to the idler, by phase-matching a difference frequency generation (DFG) process and an OPO process therein simultaneously, wherein the laser pump light has a frequency that equals a sum of a frequency of the first signal and a frequency of the idler and wherein the frequency of the first signal equals a sum of a frequency of the second signal and the frequency of the idler.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 28, 2013
    Assignees: Elbit Systems Electro-Optics Elop Ltd., Ramot at Tel Aviv University Ltd.
    Inventors: Ady Arie, Zachary Sacks, Ofer Gayer, Gil Porat
  • Patent number: 8452144
    Abstract: A light emitter according to one embodiment has a fiber shape. And it includes a core portion containing a light emitting material, the material absorbing excitation light and emitting light having a wavelength longer than a wavelength of the excitation light. And also it includes a clad portion provided outside the core portion, the clad portion having a first region and second regions, the second regions being periodically formed in the first region, the second regions having a refractive index higher than a refractive index of a first region, the refractive index of the first region being equal to or higher than a refractive index of the core portion.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 28, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Saito, Yasushi Hattori, Rei Hashimoto, Shinya Nunoue
  • Patent number: 8447155
    Abstract: An optical device for generating a frequency comb includes an optical source and a first waveguide comprising a nonlinear optical medium operable to mix at least two input optical waves to generate a plurality of first optical waves. The optical device also includes a second waveguide concatenated to the first waveguide and characterized by a first dispersion characteristics and operable to compress the waveforms of the plurality of first optical waves and to reduce a frequency chirp introduced by the first waveguide. The optical device additionally includes a third waveguide concatenated to the second waveguide. The third waveguide comprises a nonlinear optical medium and is operable to mix the plurality of first optical waves to generate a plurality of second optical waves and to increase a total number of second optical waves with respect to a total number of first optical waves.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 21, 2013
    Assignee: Ram Photonics, LLC
    Inventors: Ping Piu Kuo, Yauheni Myslivets
  • Patent number: 8442373
    Abstract: Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 14, 2013
    Assignee: IMRA America, Inc.
    Inventors: Ingmar Hartl, Martin E. Fermann
  • Patent number: 8442372
    Abstract: The microstructured optical fibre comprises a core (4) surrounded by a sheath (1) comprising a base material having a refraction index (ni) and a plurality of at least two different types of inclusion: a first type of inclusion (2) having a refraction index n2 (n2>n1), and a second type of inclusion (3) having a refraction index n3 (n3<n1). The inclusions (2, 3) are arranged and dimensioned in such a way as to ensure guidance, by total internal reflection (RTI), of a fundamental mode of the light, centred on a wavelength ?RTI, and of a fundamental mode of the light in the first photonic forbidden band (BG1), centred on a wavelength ?BG1, which is different to that ?RTI of the fundamental mode guided by total internal reflection (RTI).
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 14, 2013
    Assignee: Universite des Sciences et Technologies de Lille
    Inventors: Yves Quiquempois, Geraud Bouwmans, Mathias Perrin, Aurelie Betourne, Marc Douay, Karen Delplace, Antoine Le Rouge, Laurent Bigot
  • Patent number: 8428408
    Abstract: Regarding an optical pulse reshaping device of CPF type, there are subjects to reduce the number of stages by enhancing a compression efficiency as extremely higher for one stage of the CPF with maintaining a quality of an output pulse as high, and to be able to improve a degree of multiplexing by obtaining an output pulse having a Gaussian function for both of a time waveform therefor and a frequency waveform therefor. By using a normal dispersion HNLF in place of a zero dispersion HNLF, which configures the conventional CPF, it becomes able to overcome the above mentioned subjects. Moreover, it becomes able to reduce the number of fusion splice for a fiber, and to reduce a propagation loss of the CPF, by enhancing the compression efficiency as higher.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Takashi Inoue
  • Patent number: 8422519
    Abstract: An optical supercontinuum radiation source for generating a broad optical supercontinuum from pump radiation having a wavelength in the range 900 nm to 1200 nm includes a microstructured optical fiber and a pump laser adapted to generate pump radiation for pumping the microstructured optical fiber. The fiber can have a ? (“delta”) value of greater than 0.3, the core region of the fiber can support a plurality of modes at the pump wavelength, and the cladding region can comprise at least two air holes extending along the length of fiber wherein the ratio of the diameter (d) of the air holes to their pitch (?) is greater than 0.6. The fiber can comprise a zero dispersion wavelength (ZDW) within ±200 nm of said pump wavelength.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: April 16, 2013
    Assignee: Fianium Ltd.
    Inventors: Jonathan Cave Knight, Dmitry Vladimirovich Skryabin, James Morgan Stone
  • Patent number: 8422120
    Abstract: A wavelength conversion element is provided as one including a monocrystalline nonlinear optical crystal. The nonlinear optical crystal has: a plurality of first regions having a polarity direction along a predetermined direction; a plurality of second regions having a polarity direction opposite to the predetermined direction; an entrance face into which a fundamental incident wave having a wavelength ? and a frequency ? is incident in a direction substantially perpendicular to the predetermined direction; and an exit face from which a second harmonic with a frequency 2? generated in the crystal emerges. The plurality of first and second regions are formed as alternately arranged in a period substantially equal to d expressed by a predetermined expression, between the entrance face and the exit face.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 16, 2013
    Assignees: Nikon Corporation, National Institute for Materials Science
    Inventors: Kenichi Muramatsu, Sunao Kurimura
  • Patent number: 8406584
    Abstract: A fiber optic device outputs, at high conversion efficiency, an idler lightwave having a wavelength ?2 different from the wavelength of a signal lightwave by converting the signal lightwave having an optional wavelength ?1 in a wide wavelength band. The fiber optic device comprises a wavelength tunable pump light source for outputting a pump lightwave having a wavelength of 2×(?1?1+?2?1)?1; a optical coupler for coupling and outputting the pump lightwave and the signal lightwave; and an optical fiber having a length of 450 m or less, the zero-dispersion wavelength thereof being in the wide wavelength band, the dispersion slope thereof at the zero-dispersion wavelength being +0.01 ps/nm2/km or more and +0.045 ps/nm2/km or less, wherein the optical fiber allows propagation of the signal lightwave and the pump lightwave output from the optical coupler, and generates an idler lightwave by means of the nonlinear optical phenomenon that occurs during such propagation.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: March 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaaki Hirano
  • Patent number: 8391660
    Abstract: A broadband light source includes one or more laser diodes that are capable of generating a pump signal having a wavelength shorter than 2.5 microns, a pulse width of at least 100 picoseconds and a pump optical spectral width. The light source also includes one or more optical amplifiers that are coupled to the pump signal and are capable of amplifying the pump signal to a peak power of at least 500 W. The light source further includes a first fiber that is coupled to the one or more optical amplifiers. The first fiber including an anomalous group-velocity dispersion regime and a modulational instability mechanism that operates to modulate the pump signal. The light source also includes a nonlinear element that is coupled to the first fiber that is capable of broadening the pump optical spectral width to at least 100 nm through a nonlinear effect in the nonlinear element.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 5, 2013
    Assignee: Cheetah Omni, L.L.C.
    Inventor: Mohammed N. Islam
  • Patent number: 8390922
    Abstract: A high index contrast waveguide based source for radiation. In some embodiments, the radiation is in the 0.5-14 Terahertz regime. Waveguides are provided that permit the generation of radiation at the sum and/or difference frequency of two input beams. In order to control the power level within the waveguide, embodiments in which pluralities of similar or identical waveguide are provided, and the input radiation is divided among the plurality of waveguides. The output radiation can be steered by applying phased array methods and principles.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: March 5, 2013
    Assignee: University of Washington
    Inventors: Tom Baehr-Jones, Michael J. Hochberg
  • Patent number: 8384991
    Abstract: A saturable absorber (SA) is constructed using a fiber taper embedded in a carbon nanotube/polymer composite. A fiber taper is made by heating and pulling a small part of standard optical fiber. At the taper's waist light is guided by the glass-air interface, with an evanescent field protruding out of the taper. Carbon nanotubes mixed with an appropriate polymer host material are then wrapped around the fiber taper to interact with the evanescent field. Saturable absorption is possible due to the unique optical properties of the carbon nanotubes. The device can be used in mode-locked lasers where it initiates and stabilizes the pulses circulating around the laser cavity. The SA can be used in various laser cavities, and can enable different pulse evolutions such as solitons, self-similar pulses and dissipative solitons. Other applications include but are not limited to optical switching, pulse cleanup and pulse compression.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: February 26, 2013
    Assignees: Cornell University, The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Khanh Kieu, Frank W. Wise
  • Patent number: 8384989
    Abstract: A device of oscillating an electromagnetic wave having a frequency of 0.1 THz to 3 THz from pump and idler waves by parametric effect. The device includes a supporting body, an oscillating substrate of a non-linear optical crystal, an adhesive layer adhering the supporting body and the oscillating substrate, and a film for reflecting the electromagnetic wave formed on a surface of the supporting body on the side of the adhesive layer. The oscillating substrate has an upper face, a bottom face and an incident face on which the pump wave is made incident, with the adhesive layer having a refractive index with respect to the pump wave lower than that of the oscillating substrate.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 26, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Jungo Kondo, Kenji Aoki, Yuichi Iwata, Tetsuya Ejiri
  • Patent number: 8385697
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8385699
    Abstract: Methods and systems for generating a supercontinuum light source, including generating electromagnetic radiation from a seed laser; coupling the seed laser electromagnetic radiation to a fiber amplifier comprising: a pump laser, a fiber coupler comprising an input and an output, and a nonlinear gain fiber comprising an input and an output, wherein the nonlinear gain fiber is configured to amplify and broaden the electromagnetic radiation from the seed laser; generating electromagnetic radiation from the pump laser; coupling the pump laser electromagnetic radiation and the seed laser electromagnetic radiation into the input of the fiber coupler; coupling the output of the fiber coupler into the input of the nonlinear gain fiber; and coupling out the amplified and broadened electromagnetic radiation from the nonlinear gain fiber. Other embodiments are described and claimed.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 26, 2013
    Inventor: Jian Liu
  • Patent number: 8379296
    Abstract: CdSiP2 crystals with sizes and optical quality suitable for use as nonlinear optical devices are disclosed, as well as NLO devices based thereupon. A method of growing the crystals by directional solidification from a stoichiometric melt is also disclosed. The disclosed NLO crystals have a higher nonlinear coefficient than prior art crystals that can be pumped by solid state lasers, and are particularly useful for frequency shifting 1.06 ?m, 1.55 ?m, and 2 ?m lasers to wavelengths between 2 ?m and 10 ?m. Due to the high thermal conductivity and low losses of the claimed CdSiP2 crystals, average output power can exceed 10 W without severe thermal lensing. A 6.45 ?m laser source for use as a medical laser scalpel is also disclosed, in which a CdSiP2 crystal is configured for non-critical phase matching, pumped by a 1064 nm Nd:YAG laser, and temperature-tuned to produce output at 6.45 ?m.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: February 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Peter G Schunemann, Kevin T Zawilski
  • Patent number: 8369670
    Abstract: An optical device is provided having a solid state nonlinear material with a nanostructured extent, in at least one dimension, that is less than about 10 nm or that is at a temperature of less than about 77 K. An electronic band gap, EGap, of the material is at least about twice as large as an energy of a photon with a wavelength, ?, equal to an operational wavelength of the device. The material is characterized by a switching figure of merit, ?, having a value that is at least about 2?. A dielectric structure is around at least one dimension of the nonlinear material in a geometric arrangement having a characteristic photonic band gap that at least partially overlaps the electronic band gap of the material. At least one waveguide is disposed at the dielectric structure in sufficient proximity with the material for coupling light to the material.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: February 5, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter Bermel, Alejandro Rodriguez, Marin Soljacic, John Joannopoulos
  • Patent number: 8355605
    Abstract: Optical waveguides can extend alongside one another in sufficient proximity such that light couples between or among them as crosstalk. The electromagnetic field associated with light flowing in one optical waveguide can extend to an adjacent optical waveguide and induce unwanted light flow. The optical waveguide receiving the crosstalk can comprise a phase shifting capability, such as a longitudinal variation in refractive index, situated between two waveguide lengths. Crosstalk coupled onto the first waveguide length can flow through the refractive index variation, be phase shifted, and then flow onto the second waveguide length. The phase shifted crosstalk flowing on the second waveguide can meet other crosstalk that has coupled directly onto the second waveguide segment. The phase difference between the two crosstalks can suppress crosstalk via destructive interference.
    Type: Grant
    Filed: October 17, 2009
    Date of Patent: January 15, 2013
    Assignee: Cirrex Systems LLC
    Inventor: Michael L. Wach
  • Patent number: 8351109
    Abstract: A nonlinear optic article for difference frequency generation is provided. The article comprises a wave mixer configured to generate a difference frequency mixing signal, the wave mixer comprising a compound made from one or more noncentrosymmetric crystal-glass phase-change materials comprising one or more chalcogenide compounds that are structurally one dimensional and comprise a polymeric 1?[PSe6?] chain or a polymeric 1?[P2Se62?] chain, wherein the one or more chalcogenide compounds are capable of difference frequency generation.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 8, 2013
    Assignee: Northwestern University
    Inventors: Mercouri G. Kanatzidis, In Chung
  • Patent number: 8343633
    Abstract: A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone(meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: January 1, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Mieczyslaw H. Mazurek, Robert L. Brott, David J. Kinning, Yufeng Liu, John E. Potts, Kevin R. Schaffer, Audrey A. Sherman, Wendi J. Winkler
  • Patent number: 8346041
    Abstract: The present invention relates to an optical communications system that allows improving OSNR while suppressing the power increase of pumping light for distributed Raman amplification. In the optical communications system, an optical fiber is laid in a transmission section between a transmitter station (or repeater station) and a receiver station (or repeater station), and optical signals are transmitted from the transmitter station to the receiver station via the optical fiber. In the optical communications system, pumping light for Raman amplification, outputted by a pumping light source provided in the receiver station, is fed into the optical fiber via an optical coupler, and the optical signals are distributed-Raman-amplified in the optical fiber. The transmission loss and the effective area of the optical fiber satisfy, at the wavelength of 1550 nm, a predetermined relationship.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: January 1, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Kazuya Kuwahara
  • Patent number: 8340486
    Abstract: A method for controlling the nonlinear moments of a nonlinear optical material of an electrooptical device is disclosed. The method includes controlling an optical mode region of the electrooptical device by providing a time varying signal to the electrooptical device via one or more electrodes of the device and affecting the nonlinear moments of the nonlinear optical material of the electrooptical device by providing a time independent bias to the device. In one embodiment, the nonlinear optical material includes a ?3 material. In another embodiment, the method includes employing the time independent bias to bias the ?3 material such that the ?3 material behaves in a manner analogous to a ?2 material.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 25, 2012
    Assignee: University of Washington
    Inventors: Michael Hochberg, Thomas W. Baehr-Jones
  • Patent number: 8331741
    Abstract: An acoustic sensor includes at least one photonic crystal structure and an optical fiber in optical communication with the at least one photonic crystal structure. The at least one photonic crystal structure has at least one optical resonance with a resonance frequency and a resonance lineshape, wherein at least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the acoustic sensor. The acoustic sensor further includes an optical fiber in optical communication with the at least one photonic crystal structure. The optical fiber is configured to transmit light which impinges the at least one photonic crystal structure and to receive at least a portion of the light which impinges the at least one photonic crystal structure.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: December 11, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8306378
    Abstract: Optical pulse compensator having a chirp unit including a normal dispersion fiber that provides a positive chirp to an input pulse and having a dispersion compensator including an anomalous fiber is provided. The nonlinear coefficient and the absolute value of the second-order group-velocity dispersion of the anomalous fiber that forms the dispersion compensator is set such that a soliton order becomes one or more, and the fiber length of the anomalous dispersion fiber is made to be equal to or smaller than a length required for optical soliton formation.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 6, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takashi Katagiri, Toshihiko Ouchi, Kentaro Furusawa
  • Patent number: 8305682
    Abstract: An apparatus and methods for generating a substantially supercontinuum-free widely-tunable multimilliwatt source of radiation characterized by a narrowband line profile. The apparatus and methods employ nonlinear optical mechanisms in a nonlinear photonic crystal fiber (PCF) by detuning the wavelength of a pump laser to a significant extent relative to the zero-dispersion wavelength (ZDW) of the PCF. Optical phenomena employed for the selective up-conversion in the PCF include, but are not limited to, four-wave mixing and Cherenkov radiation. Tunability is achieved by varying pump wavelength and power and by substituting different types of PCFs characterized by specified dispersion properties.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: November 6, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Haohua Tu, Stephen A. Boppart
  • Patent number: 8305679
    Abstract: A device for oscillating an electromagnetic wave having a frequency of 0.1 THz to 3 THz from pump and idler waves by a parametric effect. The device includes a supporting body, an oscillating substrate made of a non-linear optical crystal, and an adhesive layer adhering the supporting body and oscillating substrate. The oscillating substrate includes an upper face, a bottom face and an incident face on which the pump wave is made incident. The oscillating substrate provides cut-off with respect to the electromagnetic wave oscillated by the parametric effect when the pump and idler waves propagate in parallel with the bottom face.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 6, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Jungo Kondo, Kenji Aoki, Yuichi Iwata, Tetsuya Ejiri
  • Patent number: 8301001
    Abstract: An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations. The optical fiber includes a core, a first cladding, a second cladding, and a third cladding. The relative refractive index difference ?1 of the core is in the range of 0.3% to 0.38%, the relative refractive index difference ?2 of the first cladding is equal to or smaller than 0%, and the relative refractive index difference ?3 of the second cladding is in the range of ?1.8% to ?0.5%. The inner radius r2 and the outer radius r3 of the second cladding satisfy the expression “0.4r2+10.5<r3<0.2r2+16”, and the inner radius r2 of the second cladding is equal to or greater than 8 ?m.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 30, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Fumiaki Satou, Katsuyuki Aihara, Hiroshi Miyano, Takashi Sasaki
  • Patent number: 8298326
    Abstract: A compound for spacing nonlinear optical chromophores of the Formula I and the commercially acceptable salts, solvates and hydrates thereof, wherein R1, R2, R3, R4, W, X, Y, Z, Q1, Q2, Q4 and L have the definitions provided herein.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 30, 2012
    Inventors: Frederick J. Goetz, Sr., Frederick J. Goetz, Jr.
  • Patent number: 8290317
    Abstract: An apparatus and method for producing optical pulses of a desired wavelength utilizes a section of higher-order-mode (HOM) fiber to receive input optical pulses at a first wavelength, and thereafter produce output optical pulses at the desired wavelength through soliton self-frequency shifting (SSFS) or Cherenkov radiation. The HOM fiber is configured to exhibit a large positive dispersion and effective area at wavelengths less than 1300 nm.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 16, 2012
    Assignee: OFS Fitel, LLC
    Inventor: Siddharth Ramachandran
  • Patent number: 8284477
    Abstract: A lumped nanocircuit element design at IR and optical frequencies is provided that can effectively act as a lumped “diode” and a lumped “rectifier” for rectifying optical field displacement currents or optical electric field. The lumped nanocircuit element design can also act as a lumped second harmonic generator. The element is formed by juxtaposing an epsilon-negative nanoparticle with a nonlinear optical nanostructure.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: October 9, 2012
    Assignee: The Trustees of the University of Pennsylvania
    Inventor: Nader Engheta
  • Patent number: 8285091
    Abstract: A system for efficient generation of THz radiation is provided that includes a triply-resonant nonlinear photonic resonator coupled to at least one near-infrared (NIR) or optical waveguide and to at least one THz waveguide. The energy traveling through the at least one near-infrared (NIR) or optical waveguide is converted to THz radiation inside the triply-resonant photonic resonator via a nonlinear difference frequency generation (DFG) process.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 9, 2012
    Assignees: Massachusetts Institute of Technology, President & Fellows of Harvard College
    Inventors: Jorge Bravo-Abad, Ian B. Burgess, John D. Joannopoulos, Steven G. Johnson, Marko Loncar, Murray W. McCutcheon, Alejandro W. Rodriguez, Marin Soljacic, Yinan Zhang
  • Patent number: 8280211
    Abstract: An all-optical sampling device using four-wave mixing in third-order optically nonlinear materials is described. The four-wave mixing based sampler comprises a waveguide combiner, which adds a gate optical signal to a signal of interest to be sampled. In a four-wave mixing region, a sampled signal at the output optical frequency is produced. All of the optical signals are sent to a passive optical filter, which preferentially discards the gate and signal optical frequencies, but preserves the sampled signal at the output optical frequency. The sampled signal at the output optical frequency can be observed, displayed, recorded or otherwise manipulated.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 2, 2012
    Assignee: University of Washington
    Inventors: Tom Baehr-Jones, Michael J. Hochberg
  • Patent number: 8280210
    Abstract: An apparatus has a waveguide that includes a multiferroic medium. A controller is configured to apply a mechanical strain or a control electric or magnetic field to the multiferroic medium. The multiferroic medium has a dielectric permittivity or magnetic permeability that is responsive to the strain or the control field.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 2, 2012
    Assignee: Alcatel Lucent
    Inventors: Aref Chowdhury, Arthur Penn Ramirez, Theo Max Siegrist
  • Patent number: 8275010
    Abstract: The pulse light source according to the present invention comprises: a seed pulse generator 1 for outputting an input pulse 10 as a seed pulse; a pulse amplifier 2; and a dispersion compensator 3 for dispersion compensating a light pulse output from the pulse amplifier 2. Moreover, the pulse amplifier 2 comprises a normal dispersion medium (DCF 4) and an amplification medium (EDF 5) that are multistage-connected alternately, for changing the input pulse 10 to a light pulse having a linear chirp and outputting the light pulse. Furthermore, an absolute value of the dispersion of the DCF 4 becomes to be larger than the absolute value of the dispersion of the EDF 5.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Publication number: 20120236314
    Abstract: Coherent and compact supercontinuum light sources for the mid IR spectral regime are disclosed and exemplary applications thereof. The supercontinuum generation is based on the use of highly nonlinear fibers or waveguides. In at least one embodiment the coherence of the supercontinuum sources is increased using low noise mode locked short pulse sources. Compact supercontinuum light sources can be constructed with the use of passively mode locked fiber or diode lasers. Wavelength tunable sources can be constructed using appropriate optical filters or frequency conversion sections. Highly coherent supercontinuum sources further facilitate coherent detection schemes and can improve the signal/noise ratio in lock in detection schemes.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 20, 2012
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Patent number: 8270782
    Abstract: An optical fiber sensor may include an optical fiber configured to receive a light having a first frequency from a light source and to transmit the light through the optical fiber, the transmitted light having the first frequency and a second frequency which is generated by stimulated Brillouin scattering (SBS), a photodetector configured to receive the transmitted light from the optical fiber and to convert the transmitted light into an electric signal and a sensing circuit configured to calculate an average squared value of the electric signal received from the photodetector, which is dependent on a frequency difference between the first frequency and the second frequency.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: September 18, 2012
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Ju Han Lee
  • Patent number: 8270783
    Abstract: The present invention is directed towards systems and methods for adjusting intensity, wavelength and higher and lower frequency components of an optical signal. Photonic apparatus receives a first and a second optical signal. A waveguide provides an anomalous group velocity dispersion the first optical signal or the second optical signal and adjusts intensity or wavelength of the first optical signal or the second optical signal, in response to the anomalous group velocity dispersion. In some embodiments photonic apparatus receives an optical signal comprising a lower frequency component received an amount of time prior to a higher frequency component of the optical signal. A waveguide provides an anomalous group velocity dispersion for the optical signal and adjusts the amount of time between the higher frequency component and the lower frequency component in response to the anomalous group velocity dispersion.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: September 18, 2012
    Assignee: Cornell University
    Inventors: Mark Foster, Alexander Gaeta, Michal Lipson, Jay Sharping, Amy Foster
  • Patent number: 8264766
    Abstract: A wavelength conversion element is provided as one including a monocrystalline nonlinear optical crystal. The nonlinear optical crystal has: a plurality of first regions having a polarity direction along a predetermined direction; a plurality of second regions having a polarity direction opposite to the predetermined direction; an entrance face into which a fundamental incident wave having a wavelength ? and a frequency ? is incident in a direction substantially perpendicular to the predetermined direction; and an exit face from which a second harmonic with a frequency 2? generated in the crystal emerges. The plurality of first and second regions are formed as alternately arranged in a period substantially equal to d expressed by a predetermined expression, between the entrance face and the exit face.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: September 11, 2012
    Assignees: Nikon Corporation, National Institute for Materials Science
    Inventors: Kenichi Muramatsu, Sunao Kurimura
  • Publication number: 20120224597
    Abstract: Embodiments of the present invention describe systems and methods for delivering ultrashort laser pulses through an optical fiber system with higher order mode fiber output and without pre-chirping. In one embodiment of the present invention, an all-fiber delivery system comprises a mode-locked solid-state or fiber laser for generating laser pulses in the 0.2 ?m to 1.3 ?m wavelength range, a single mode fiber with normal dispersion, and a long-period-grating mode converter, and a higher order mode fiber with anomalous dispersion, wherein the all-fiber delivery system is free of bulk optics, and propagates laser pulses without pulse pre-chirping, and wherein higher order mode output beam from the all-fiber delivery system comprises pulses at less than about 200 femtoseconds.
    Type: Application
    Filed: February 13, 2012
    Publication date: September 6, 2012
    Applicant: OFS Fitel, LLC
    Inventors: Kim Jespersen, Tuan Le
  • Patent number: 8259386
    Abstract: A wavelength conversion element having an improved property-maintaining life and a method for manufacturing the wavelength conversion element are provided. A wavelength conversion element 10a has an optical waveguide 13. The wavelength of incoming light 101 input from one end 13a of the optical waveguide 13 is converted and outgoing light 102 is output from the other end 13b of the optical waveguide 13. The wavelength conversion element includes a first crystal 11 composed of AlxGa(1-x)N (0.5?x?1); and a second crystal 12 having the same composition as that of the first crystal. The first and second crystals 11 and 12 form a domain-inverted structure in which a polarization direction is periodically reversed along the optical waveguide 13, and the domain-inverted structure satisfies quasi phase matching conditions with respect to the incoming light 101. At least one of the first and second crystals has a dislocation density of 1×103 cm?2 or more and less than 1×107 cm?2.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: September 4, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Satoh, Michimasa Miyanaga, Yoshiyuki Yamamoto, Hideaki Nakahata
  • Patent number: 8260103
    Abstract: A multimode optical fiber has an equivalent modal dispersion value (DMDinner&outer) of less than 0.11 ps/m for (??max×D)>0.07 ps/m as measured on a modified DMD graph. The modified DMD graph accounts for chromatic dispersion to ensure that the multimode optical fiber has a calculated effective bandwidth EBc greater than 6000 MHz-km when used with multimode transverse sources.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: September 4, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Patent number: 8249407
    Abstract: An optical fiber that has a small bending loss can be securely prevented from being fractured due to accidental bending during installation or other operations, and is compliant with the G. 652 standard. The optical fiber includes a core, a first cladding, a second cladding and a third cladding. The relative refractive index difference ?1 of the core is in the range of 0.3% to 0.38%, the relative refractive index difference ?2 of the first cladding is equal to or smaller than 0%, and the relative refractive index difference ?3 of the second cladding is in the range of ?1.8% to ?0.5%. The inner radius r2 and the outer radius r3 of the second cladding satisfy the expression “0.4r2+10.5<r3<0.2r2+16”, and the inner radius r2 of the second cladding is equal to or greater than 8 ?m.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: August 21, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Fumiaki Satou, Katsuyuki Aihara, Hiroshi Miyano, Takashi Sasaki
  • Patent number: 8243363
    Abstract: An optical signal processing apparatus includes an input unit to which signal light is input; a wave coupling unit that couples the signal light from the input unit and pump light having a waveform different from that of the signal light; a first nonlinear optical medium that transmits light coupled by the wave coupling unit, the light being the signal light and the pump light; a dispersion medium that transmits the light that has been transmitted through the first nonlinear optical medium; and a second nonlinear optical medium that transmits the light that has been transmitted through the dispersion medium.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 14, 2012
    Assignee: Fujitsu Limited
    Inventor: Shigeki Watanabe
  • Patent number: 8243362
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the structure is heterostructure comprising dielectric materials arranged in two-dimensional space such that the overall structure is more rotationally symmetric than periodic structures. Symmetry may be five-fold or greater than six-fold. Such higher rotational symmetries provide stopgaps in nearly all directions. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 14, 2012
    Assignee: The Trustees Of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20120195560
    Abstract: An optical fiber module includes a polarization-maintaining highly-nonlinear optical fiber and a housing. The polarization-maintaining highly-nonlinear optical fiber includes a core, a cladding surrounding the core and having two stress applying portions formed to sandwich the core and extend along the core, and a coating covering the cladding. The housing houses the polarization-maintaining highly-nonlinear optical fiber which is wound in a ring coil shape. The polarization-maintaining highly-nonlinear optical fiber has a bending loss of 0.01 dB/turn or less at a wavelength of 1550 nm when bent to form a diameter of 20 mm, a nonlinear coefficient ? of 10 W1 km?1 or larger at the wavelength of 1550 nm, a cutoff wavelength ?c of 1530 nm or shorter, and a zero-dispersion wavelength of not shorter than 1400 nm and not longer than 1650 nm.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Masanori TAKAHASHI, Tomohiro Gonda, Ryuichi Sugizaki
  • Publication number: 20120195554
    Abstract: The present invention relates to an optical fiber comprising at least a first end with an first end facet, the optical fiber comprising a core region capable of guiding light at a first wavelength ?; and a microstructured cladding region surrounding said core region. The cladding region comprises an inner cladding region and an outer cladding region. The inner cladding region comprises inner cladding features arranged in an inner cladding background material having a refractive index n1, said inner cladding features comprising thermally collapsible holes or voids. The outer cladding region comprising outer cladding features arranged in an outer cladding background material, said outer cladding features comprising solid material with refractive index n2, wherein n2 is lower than n1. The invention further relates to methods for splicing such an optical fiber to an optical component and to methods for using such an optical fiber.
    Type: Application
    Filed: August 16, 2010
    Publication date: August 2, 2012
    Applicant: NKT Photonics A/S
    Inventor: Martin Dybendal Maack
  • Publication number: 20120177332
    Abstract: Optical pulse compensator having a chirp unit including a normal dispersion fiber that provides a positive chirp to an input pulse and having a dispersion compensator including an anomalous fiber is provided. The nonlinear coefficient and the absolute value of the second-order group-velocity dispersion of the anomalous fiber that forms the dispersion compensator is set such that a soliton order becomes one or more, and the fiber length of the anomalous dispersion fiber is made to be equal to or smaller than a length required for optical soliton formation.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 12, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takashi Katagiri, Toshihiko Ouchi, Kentaro Furusawa
  • Patent number: 8213754
    Abstract: An optical splitter, a combiner and a device. The optical splitter comprises a first longitudinal waveguide for receiving an incoming light wave; at least first and second pairs of output waveguides, the output waveguides of each pair being disposed on opposite sides of the first waveguide; wherein each of the output waveguides of each pair comprises a longitudinal portion disposed parallel to the first waveguide and such that optical power is coupled from the first waveguide into the respective longitudinal portions and the longitudinal portions of output waveguides of the first and second pairs are displaced along a length of the first waveguide; wherein each of the output waveguides of each pair further comprises a substantially S-shaped portion continuing from the respective longitudinal portions and such that optical power coupling between the respective S-shaped portions of output waveguides of the first and second pairs is substantially inhibited.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 3, 2012
    Assignee: Agency for Science Technology and Research
    Inventors: Jason Png, Soon Thor Lim