Phase Modulation Type Patents (Class 385/3)
  • Patent number: 8986553
    Abstract: A method for manufacturing an optical semiconductor device includes the steps of preparing a substrate product including a semiconductor layer, a mesa structure, and a protective layer; forming a buried layer composed of a resin on the substrate product; forming a first opening in the buried layer on the mesa structure; forming a second opening in the buried layer on the semiconductor layer; exposing the mesa structure and the semiconductor layer by etching the protective layer; forming a first electrode in the first opening; and forming a second electrode in the second opening. The step of forming the second opening includes a first etching step including etching the buried layer using a first resist mask for forming a recess and a second etching step including etching the buried layer using a second resist mask having an opening pattern which has an opening width not smaller than that of the recess.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: March 24, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takamitsu Kitamura, Hideki Yagi
  • Patent number: 8989523
    Abstract: Waveguide and associated methods for controlling an optical phase delay (OPD) of TE polarized light traveling along a propagation direction through a waveguide are disclosed. In one example, the method includes providing the waveguide with a core, at least one cladding; initially aligning at least a portion of the liquid crystal molecules in an initial orientation with their longitudinal axes oriented at an out-of-plane tilt angle, and their longitudinal axis oriented at an in-plane angle; providing the waveguide with a pair of electrodes for receiving a control signal; and applying the control signal to the pair of electrodes to rotate the liquid crystal molecules from the initial orientation, thereby controlling the optical phase delay of the TE polarized light traveling through the waveguide.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 24, 2015
    Assignee: Vescent Photonics, Inc.
    Inventors: Michael H. Anderson, Scott D. Rommel, Scott R. Davis
  • Publication number: 20150078763
    Abstract: An optical module includes a waveguide substrate including an optical waveguide and electrodes that apply electronic signals to the optical waveguide; a relay substrate disposed adjacent to the waveguide substrate; a terminal substrate disposed adjacent to the waveguide substrate and opposite to the relay substrate across the waveguide substrate; and a carrier substrate on which the waveguide substrate, the relay substrate, and the terminal substrate are mounted. The electrodes have a first interconnect unit from the relay substrate to the terminal substrate via the waveguide substrate and second interconnect units from the first interconnect unit and branching on the terminal substrate. Among the second interconnect units, a first interconnect branch includes a capacitor and a terminal resistor; and a second interconnect branch is connected to an interconnect of the carrier substrate via a bias resistor, passes under the waveguide substrate to a DC electrode for bias-adjusting on the relay substrate.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 19, 2015
    Applicant: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventors: Masaki SUGIYAMA, Seimi SASAKI, Takehito TANAKA
  • Publication number: 20150078702
    Abstract: In one embodiment, an optical phase shifter includes a first waveguide phase shifter and a second waveguide phase shifter. The optical phase shifter also includes a first polarization rotator optically coupled between the first waveguide phase shifter and the second waveguide phase shifter, where the first waveguide phase shifter, second waveguide phase shifter, and first polarization rotator are integrated on a single substrate.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Bryce Dorin, Winnie N. Ye
  • Patent number: 8983241
    Abstract: Techniques are described to form an optical waveguide switch that could reach a very high extinction ratio. In particular, this disclosure describes an asymmetric MZI, in which different waveguide capacitor structures are used in two arms of the MZI: a first arm with a waveguide capacitor to achieve the mainly phase modulation and a second arm with a waveguide capacitor to achieve mainly the magnitude modulation, respectively. Using the asymmetric MZI in accordance with this disclosure, one can design an algorithm to achieve almost unlimited extinction ration during the switching operation.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 17, 2015
    Inventor: Bing Li
  • Patent number: 8983240
    Abstract: The invention relates to an electro-optical phase modulator with a plurality of elements arranged between two substrates, which\are produced from an optically isotropic material which becomes optically anisotropic when an electrical field is applied, wherein for each of the elements respectively one electrode is arranged on both substrates and the electrodes can be individually controlled at least on one of the substrates.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 17, 2015
    Assignee: Universitaet Stuttgart
    Inventors: Patrick Schalberger, Norbert Fruehauf
  • Publication number: 20150070709
    Abstract: An electro-optic modulator includes a waveguide of a nonlinear optical material and an electrode line for generating an electrical field in a modulating region of the waveguide when a voltage is applied to the electrode line, thereby modulating light passing through the waveguide. Therein, the forward electro-optic response of the modulating region is the same as the backward electro-optic response; and the electro-optic response has a band-pass or a low-pass characteristic. A distance measuring device includes a light source emitting light, and such an electro-optic modulator arranged such that the emitted light passes through the electro-optic modulator in a first direction before being emitted from the distance measuring device, and after being reflected from a target passes through the electro-optic modulator in a second direction which is opposite to the first direction.
    Type: Application
    Filed: March 6, 2013
    Publication date: March 12, 2015
    Inventors: Henri Porte, Alexandre Mottet, Thomas Luthi, Burkhard Bockem
  • Publication number: 20150071582
    Abstract: An optical modulator includes: a modulator including an optical waveguide provided in a semiconductor substrate having an electro-optical effect and an electrode to apply an electric field depending on a bias voltage and a modulation signal to the optical waveguide; a driver circuit to generate a modulation signal in accordance with an input signal; a superimposer to superimpose a reference signal on the bias voltage, the reference signal having lower frequency than the modulation signal; and a controller to control a bias voltage in a direction orthogonal to a modulation direction of the modulator based on the frequency component of the reference signal extracted from a modulated optical signal generated by the modulator.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: Fujitsu Optical Components Limited
    Inventors: Hiroshi NISHIMOTO, Hiroshi Kuwahara
  • Publication number: 20150071583
    Abstract: An optical modulator includes: a modulator including an optical waveguide provided in a semiconductor substrate having an electro-optical effect and an electrode to apply an electric field depending on a bias voltage and a modulation signal to the optical waveguide; a driver circuit to generate a modulation signal in accordance with an input signal; a superimposer to superimpose a reference signal on the bias voltage, the reference signal having lower frequency than the modulation signal; and a controller to control a bias voltage in a direction orthogonal to a modulation direction of the modulator based on the frequency component of the reference signal extracted from a modulated optical signal generated by the modulator.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Hiroshi NISHIMOTO, Hiroshi KUWAHARA
  • Publication number: 20150063742
    Abstract: Method for modulating a carrier light wave with symbols, led through a modulating interferometer, the total path phase shift being the sum of a respective first, second, third or fourth static phase shift and a respective first, second, third or fourth variable modulating phase shift amount. For each of at least two symbols: the first variable modulating phase shift equals the sum of the first pair phase shift and the common phase shift; the second variable modulating phase shift equals the sum of the negative of the first pair phase shift and the common phase shift; the third variable modulating phase shift equals the sum of the second pair phase shift and the negative of the common phase shift; the fourth variable modulating phase shift equals the sum of the negative of the second pair phase shift and the negative of the common phase shift.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: FINISAR SWEDEN AB
    Inventor: Jan-Olof WESSTROM
  • Publication number: 20150063743
    Abstract: An object of the present invention is to provide an optical waveguide element module where the bonding wires can be prevented from disengaging or disconnecting so as to provide high reliability. Another object is to provide an optical waveguide element module that can be made compact and where an increase in the manufacturing cost can be minimized.
    Type: Application
    Filed: December 28, 2012
    Publication date: March 5, 2015
    Inventors: Kei Katou, Norikazu Miyazaki
  • Publication number: 20150063744
    Abstract: An optical polarization rotator includes first and second optical waveguide ribs located along a planar surface of a substrate. The second optical waveguide rib is located farther from the surface than the first optical waveguide rib. First segments of the optical waveguide ribs form a vertical stack over the substrate, and second segments of the optical waveguide ribs are offset laterally in a direction along the planar surface. The first and second optical waveguide ribs are formed of materials with different bulk refractive indexes.
    Type: Application
    Filed: November 5, 2014
    Publication date: March 5, 2015
    Applicant: ALCATEL LUCENT
    Inventor: Long Chen
  • Patent number: 8970945
    Abstract: Embodiments generally relate to an optical waveguide component configured for operation with amplitude modulated optical signals at a line rate. The optical waveguide component includes a first optical waveguide segment having a first port and a second port; and a plurality of second optical waveguides each forming a closed loop. Each of the second optical waveguides is electromagnetically coupled to the first optical waveguide exactly once, and each of the closed loops has a round trip time. A product of the line rate and each of the round-trip times is equal to or greater than unity.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 3, 2015
    Assignee: University of Zagreb, Faculty of Electrical Engineering and Computing
    Inventors: Tin Komljenovic, Dubravko Ivan Babic
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8965146
    Abstract: In a nest MZI modulator in which each arm includes a child MZI, the power consumption is reduced. The hybrid integrated-type nest MZI modulator of the embodiment 1a is configured so that, instead of placing a relative phase adjusting section in a parent MZI, a bias electrode Bias 90° in which an electric field is applied in the same direction to the polarization direction in both of the upper and lower arms is placed in each child MZI (see FIG. 4B). The bias electrode Bias 90° provided in each child MZI constitute the entirety of a relative phase adjusting section. The optical signals are subjected to a phase change after the output from the child MZI (see FIG. 1A), because such relative phase adjusting section can subject the optical signals of the upper and lower arms of the child MZI to a shift change in the same direction, respectively.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 24, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Goh, Yoshiyuki Doi, Shinji Mino, Ken Tsuzuki, Hiroshi Yamazaki, Takashi Yamada
  • Publication number: 20150049978
    Abstract: In a region in which silicon semiconductor layers having first and second conductive types are stacked, a concavoconvex structure including a Si1-xGex (x=0.01 to 0.9) layer is formed on a surface of the first silicon semiconductor layer, a relatively thin dielectric is formed on the concavoconvex structure, and a silicon semiconductor layer having the second conductive type is further stacked.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 19, 2015
    Inventors: Junichi Fujikata, Shigeki Takahashi
  • Publication number: 20150043866
    Abstract: Embodiments of the present disclosure provide a high-speed silicon modulator without the microwave mode conversion and provide 50-ohm impedance matching to drivers simultaneously. In one aspect, a device may include an input waveguide region, an optic splitter, two optic phase shifters, an optic splitter, and an output waveguide. The device may include two curved waveguides. Either or both of the curved waveguides may have specially doped regions including PN junctions or MOS capacitors. The PN junctions or MOS capacitors may be alternatively connected to both slots of a coplanar waveguide forming the electrodes.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Applicant: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Changhua Chen, Yanwu Zhang, Dong Pan, Tzungi Su
  • Publication number: 20150043867
    Abstract: A method for manufacturing a semiconductor optical device includes the steps of growing a stacked layer including lower and upper core layers, a first upper region including a non-doped layer, a second upper region including a p-type layer, and a cap layer; forming an upper mesa by etching the stacked layer; selectively etching the cap layer in the upper mesa on the first and second regions; forming a mask on the upper mesa in the second and third regions; and etching the upper mesa using the mask so as to form first to fourth mesa portions. The first and fourth mesa portions are formed by etching the first and second upper regions, and the second upper region and the cap layer, respectively. The second and third mesa portions are formed by etching the first and second upper regions, and the second upper region and the cap layer, respectively.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Inventors: Naoya KONO, Hideki YAGI, Takamitsu KITAMURA
  • Publication number: 20150043865
    Abstract: A Mach-Zehnder modulator arrangement includes at least one electro-optic Mach-Zehnder modulator having a first optical waveguide forming a first modulator arm and a second optical waveguide forming a second modulator arm. A travelling wave electrode arrangement includes first waveguide electrodes for applying a voltage across the first optical waveguide and second waveguide electrodes for applying a voltage across the second optical waveguide. The first waveguide electrodes are capacitively coupled to the second waveguide electrodes. A driver unit supplies an alternating voltage to the travelling wave electrode arrangement. The driver unit includes a first output port coupled to the first waveguide electrodes and a second output port coupled to the second waveguide electrodes. The driver unit supplies a first varying signal to the first waveguide electrodes via the first output port and a second varying signal to the second waveguide electrodes via the second output port.
    Type: Application
    Filed: January 10, 2013
    Publication date: February 12, 2015
    Inventor: Karl-Otto Velthaus
  • Publication number: 20150043864
    Abstract: Provided is an optical pulse-generator capable of efficiently using by a low driving voltage an entire band of an optical frequency comb input to a chirp compensator for the formation of an optical pulse. According to a graph shown in FIG. 4, dispersion compensation amounts (dispersion characteristics) necessary for a chirp (dispersion) compensator to efficiently compress an optical frequency comb which sinusoidally changes become an inverse of a parabolic coefficient. It is found that the dispersion compensation amount required at the center frequency is 2/? of that of a chirp being approximate to a linear chirp, and the required dispersion compensation amount increases as the frequency shift increases.
    Type: Application
    Filed: January 11, 2013
    Publication date: February 12, 2015
    Inventors: Masaaki Sudo, Tokutaka Hara
  • Publication number: 20150036966
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Application
    Filed: September 17, 2014
    Publication date: February 5, 2015
    Inventors: RICHARD DESALVO, CHARLES FRANKLIN MIDDLETON, IV
  • Publication number: 20150036965
    Abstract: A Mach-Zehnder optical modulator is provide and has a travelling wave electrode extending over two optical waveguide branches and modulating the relative phase of the optical beam components propagating in those branches. The travelling wave electrode has transmission line conductors and pairs of waveguide electrodes, the waveguide electrodes of each pair being coupled to one of the optical waveguide branches, respectively. The travelling wave electrode further includes active devices having a high impedance input electrically connected to one of the transmission line conductors and a low impedance output electrically connected to one of the waveguide electrodes. Each active device transfers the electrical modulation signal from the associated transmission line conductor onto the associated waveguide electrode according to a voltage transfer function.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Applicant: TERAXION INC.
    Inventors: Kelvin PROSYK, Andre HAGLEY
  • Publication number: 20150036964
    Abstract: A light source circuit transmits light incident from a semiconductor laser source to a plurality of optical devices. At least one optical branch section is formed to branch one input-side optical waveguide at least into a first output-side optical waveguide terminal and a second output-side optical waveguide terminal. A light path length (L1) between the optical branch section and a next-stage optical branch section or the optical device is connected to the first output-side optical waveguide extending from the optical branch section and a light path length (L2) between the optical branch section and the next-stage optical branch section selected such that the absolute value of a difference between (L1) and (L2) is (¼+i/2) times (i is zero or a positive integer) the wavelength of the light transmitted through the light source circuit.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 5, 2015
    Inventors: Makoto Okano, Masahiko Mori, Masashige Ishizaka, Takanori Shimizu, Nobuaki Hatori
  • Patent number: 8948546
    Abstract: An object of the present invention is to provide a temperature-independent optical frequency shifter for generating sub-carriers with a miniaturizable configuration, as well as to provide an all-optical OFDM modulator using the same that is compact, has low temperature dependence, and is even compatible with different frequency grids. Provided is an optical frequency shifter and an optical modulator using the same, the optical frequency shifter comprises one input optical port, a 1-input, 2-output optical coupler optically connected thereto, two Mach-Zehnder modulation units individually optically connected to the two outputs thereof, a 2-input, 2-output optical coupler optically connected to the individual outputs thereof, and two output optical ports optically connected to the outputs thereof, wherein the two Mach-Zehnder modulation units are driven by periodic waveforms at the same frequency whose phases differ from each other by (2p+1)?/2 (p: integer).
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 3, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Hiroshi Yamazaki, Takashi Goh, Ken Tsuzuki, Shinji Mino
  • Patent number: 8947766
    Abstract: An optical device comprising a tunable optical frequency comb generator. The comb generator includes an interferometer, and an optical feed-back loop waveguide.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 3, 2015
    Assignee: Alcatel Lucent
    Inventors: Long L. Chen, Christopher R. Doerr, Nicolas Dupuis
  • Patent number: 8942518
    Abstract: An apparatus comprising a cascaded set of deinterleavers. A first optical deinterleaver is configured to receive a first optical signal and a second optical signal. A second optical deinterleaver is configured to receive the second optical signal and a first optical output of the first optical deinterleaver. A third optical deinterleaver is configured to receive a second optical output of the first optical deinterleaver. The apparatus comprises an optical power splitter configured to provide the second optical signal received by the first optical deinterleaver and by the second optical deinterleaver.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 27, 2015
    Assignee: Alcatel Lucent
    Inventor: Pietro Bernasconi
  • Patent number: 8942517
    Abstract: A multi-mode interference includes a core portion suitable, at any point, for propagating an optical signal having multiple spatial modes. The core portion includes a shifting section for shifting phases of the spatial modes of the optical signal.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 27, 2015
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Wangqing Yuan, Satoshi Nishikawa
  • Patent number: 8941519
    Abstract: A light intensity subtractor according to one aspect of the present invention includes a light subtraction unit, a feedback circuit, a light input port, a first light output port, and a second light output port. The light subtraction unit receives input light through the light input port, outputs first output light to the first light output port, and outputs second output light to the second light output port. The light subtraction unit generates the first output light by reducing the light intensity of the second output light from the light intensity of the input light in accordance with a control voltage. The feedback circuit is connected to the light subtraction unit through the second light output port, and outputs the control voltage in accordance with the light intensity of the received second output light.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 27, 2015
    Assignee: NEC Corporation
    Inventor: Kenji Sato
  • Publication number: 20150023627
    Abstract: A method for producing a semiconductor optical device includes the steps of forming first and second optical waveguides; forming a first resin layer on the first and the second optical waveguides; forming an opening in the first resin layer; forming a first electrode in the opening; forming a second resin layer on the first electrode and the first resin layer; forming a groove in the second resin layer on the first electrode; forming a second electrode on the second resin layer, a side surface of the groove, and the top surface of the first electrode; and forming a third electrode on the second electrode. The second and third electrodes have a region in which the second and third electrodes pass over the second optical waveguide, and, in the region, the first and second resin layers are disposed between the second electrode and the second optical waveguide.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 22, 2015
    Inventors: Daisuke KIMURA, Hideki YAGI, Takamitsu KITAMURA
  • Publication number: 20150016767
    Abstract: An optical semiconductor device includes a laser oscillator on a semiconductor substrate; and an optical modulator on the semiconductor substrate. The laser oscillator includes a pair of reflecting mirrors at least one of which is a loop mirror, and the loop mirror includes a loop waveguide and a plurality of first ring resonators serially inserted in the loop waveguide. The optical modulator includes a plurality of second ring resonators connected in cascade along a modulator waveguide. A transmission band width of the first ring resonator is set greater than a transmission band width of the second ring resonator.
    Type: Application
    Filed: September 2, 2014
    Publication date: January 15, 2015
    Inventor: Tomoyuki Akiyama
  • Patent number: 8934741
    Abstract: An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: January 13, 2015
    Assignee: Brphotonics Produtos Optoelectronicos LTDA
    Inventors: Baoquan Chen, Hui Chen, Raluca Dinu, Diyun Huang, Bing Li, Eric Miller, Danliang Jin, Christopher A. Wiklof, Guomin Yu
  • Patent number: 8929689
    Abstract: An optical modulator is configured to include multiple modulating sections formed along each arm and create a unary-encoded optical output signal by driving the number of sections required to represent the data value being transmitted (e.g., three sections driven to represent the data value “3”, four sections driven to represent the data value “4”). An auxiliary modulating section, isolated from the optical signal path, is included for creating a path for current flow in situations where only an odd number of modulating sections are required to represent the data. The activation of the auxiliary modulation section minimizes the current imbalance that would otherwise be present along a common node of the arrangement.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 6, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Peter C. Metz, Bipin Dama, Kalpendu Shastri
  • Patent number: 8923660
    Abstract: In one embodiment, an optical phase shifter includes a first phase-shifter configured to phase shift a transverse electric (TE) component of an optical signal by a first phase-shift to produce a TE component of a first signal, and a transverse magnetic (TM) component of the optical signal by a second phase-shift to produce a TM component of the first signal. The optical phase-shifter includes a polarization-rotator configured to rotate the TE component of the first signal to produce a TM component of a rotated signal, and the TM component of the first signal to produce a TE component of the rotated signal. The optical phase-shifter includes a second phase-shifter configured to phase-shift a TE component of the rotated signal by a third phase-shift, and the TM component of the rotated signal by a fourth phase-shift, where the first phase-shifter, the polarization-rotator, and the second phase-shifter are integrated on a substrate.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 30, 2014
    Assignee: FutureWei Technologies, Inc.
    Inventors: Bryce Dorin, Winnie N. Ye
  • Patent number: 8923658
    Abstract: An optical waveguide device having a Mach-Zehnder type waveguide formed on a substrate is provided in which a slope of two waveguides input to an optical coupler on an output side of the Mach-Zehnder type waveguide is 0 degrees, a waveguide of the optical coupler after being coupled by the optical coupler is a multi-mode waveguide, and the waveguide which is output from the optical coupler is a three-branched waveguide including an output main waveguide and two output sub waveguides interposing the output main waveguide therebetween.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 30, 2014
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yasuhiro Ishikawa, Katsutoshi Kondou, Norikazu Miyazaki, Satoshi Oikawa
  • Patent number: 8923659
    Abstract: An optical switching apparatus includes an optical switch element which includes an input port and an output port, and to which a switch control signal is supplied to modulate and output signal light which enters the input port depending on a level of the switch control signal; and an optical gate element which is connected to the output port of the optical switch element and to which a gate control signal is supplied to switch an output of the signal light depending on a level of the gate control signal, wherein the optical switch element varies intensity of the signal light which is output from the output port depending on the switch control signal controlled based on magnitude of a light intensity signal of the optical gate element.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 30, 2014
    Assignee: Fujitsu Limited
    Inventor: Shigeaki Sekiguchi
  • Publication number: 20140376852
    Abstract: A semiconductor electro-optical phase shifter may include a central zone configured to be placed in an optical waveguide and doped at a first conductivity type, a first lateral zone adjacent a first face of the central region and doped at a second conductivity type, and a second lateral zone adjacent a second face of the central zone and doped at the second conductivity type.
    Type: Application
    Filed: April 28, 2014
    Publication date: December 25, 2014
    Applicant: STMICROELECTRONICS SA
    Inventor: Jean-Robert MANOUVRIER
  • Publication number: 20140376853
    Abstract: A Mach-Zehnder interferometer type optical modulator includes a first end facet and a reflecting portion opposing the first end facet; a single optical coupler including input and output ports, the optical coupler being disposed between the first end facet and the reflecting portion; first and second optical waveguides that are connected to the input ports of the optical coupler; third and fourth optical waveguides that are connected to the output ports of the optical coupler; and a phase shifting section disposed between the optical coupler and the reflecting portion. The phase shifting section includes a first optical waveguide structure constituting part of the third optical waveguide; a first upper electrode on the first optical waveguide structure; a second optical waveguide structure constituting part of the fourth optical waveguide; and a second upper electrode on the second optical waveguide structure.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventor: Jun-ichi HASHIMOTO
  • Patent number: 8917958
    Abstract: An electrical waveguide transmission device accepts a differential electrical input signal (e.g., S+ and S?) propagating along two separate signal conductors with grounded electrical return paths, and outputs the differential input signal to a series push-pull traveling wave electrode Mach-Zehnder optical modulator over a pair of output conductors that act as a return path for each other and provide a desired characteristic impedance matching that of the Mach-Zehnder optical modulator.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 23, 2014
    Assignee: Teraxion Inc.
    Inventor: Kelvin Prosyk
  • Publication number: 20140369637
    Abstract: The invention relates to a Mach-Zehnder modulator comprising a first optical waveguide forming a first modulator arm and a second optical waveguide forming a second modulator arm of the Mach-Zehnder modulator, an electrode arrangement comprising a plurality of first waveguide electrodes for applying a voltage across the first optical waveguide and a plurality of second waveguide electrodes for applying a voltage across the second optical waveguide, at least one electrically conductive connecting element generating a short-circuit between at least one of the first waveguide electrodes and at least one of the second waveguide electrodes. The electrode arrangement is a travelling wave electrode arrangement further comprising a first and a second electrical line extending at least partially parallel to the first and second optical waveguide. The first and the second waveguide electrodes are connected to the first and second electrical lines via connecting structures.
    Type: Application
    Filed: February 14, 2013
    Publication date: December 18, 2014
    Inventor: Detlef Hoffmann
  • Publication number: 20140369638
    Abstract: A method, comprising modulating digital data onto an optical carrier. Modulating includes intensity splitting the optical carrier in an input optical coupler of an interferometer. The interferometer including two or more controllable optical waveguides located on a substrate, each controllable optical waveguide connecting the input optical coupler to an output optical coupler of the interferometer and having a two-state modulator along a segment thereof. Modulating include optically modulating separate data streams onto each of the optical carriers produced by the splitting. The two or more controllable optical waveguides are connected to transmit an output to the output optical coupler, substantially different light amplitudes and/or phases when the two-state modulators of the two or more controllable optical waveguides are in different states, as driven by the data streams having different information content.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Inventor: Christopher R. Doerr
  • Patent number: 8909002
    Abstract: A light modulator (101) includes a waveguide (112) through which guided light propagates, a metal layer (113) formed adjacent to the waveguide (112), a conductive oxide layer (114) having electrical conductivity and formed on a surface of the metal layer (113) which is not adjacent to the waveguide (112), an insulating layer (115) formed adjacent to the conductive oxide layer (114), and a modulation circuit (102) that applies a voltage between the metal layer (113) and one of the conductive oxide layer (114) and the insulating layer (115). An interface (11) at which the conductive oxide layer (114) and the insulating layer (115) are adjacent to each other is formed at a distance shorter than a wavelength of the guided light in vacuum, from the surface of the metal layer (113) which is not adjacent to the waveguide (112).
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Takaoka, Kousei Sano, Hidenori Wada
  • Patent number: 8909001
    Abstract: An optical modulator comprises a substrate 4 having a thickness of 20 ?m or less and an electro-optic effect, a reinforcing substrate 6 holding the substrate 4 thereon and a resin layer 5 disposed between the substrate and the reinforcing substrate, in which the substrate 4 includes optical waveguides 1 and 2 and control electrodes 3 and 31 which control light waves propagating through the optical waveguide, in which the optical waveguides include at least two optical waveguides 1 separated from each other, and in which the control electrodes 31 disposed between the two optical waveguides are configured to include two electrodes 31 disposed along each optical waveguide, and a thin line 8 conducting the two electrodes 31 at a same potential.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: December 9, 2014
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Norikazu Miyazaki, Motohiro Takemura, Youichi Hosokawa
  • Publication number: 20140355926
    Abstract: An electro-optic Mach-Zehnder modulator arrangement includes first and second optical waveguides forming, respectively, first and second arms of the Mach-Zehnder modulator. An electrode arrangement includes a first waveguide electrode output port coupled to the first waveguide electrodes a second waveguide electrode arranged on top of a capacitive segment of the first and the second optical waveguides, respectively, such that a voltage can be applied across the capacitive segments of the first and second optical waveguide. At least one driver unit supplies a voltage to the electrode arrangement. The driver unit includes first and second output ports coupled, respectively, to the first and second waveguide electrodes. The driver unit supplies first and second varying signals to the first and second waveguide electrodes via the first and second output ports, respectively. A non-grounded conductive region connects the capacitive segments of the first and second optical waveguides to each other.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 4, 2014
    Applicant: Fraunhofer-Gesellschaft Zur Fordering Der Angewandten Forschung E.V.
    Inventor: Karl-Otto Velthaus
  • Publication number: 20140355924
    Abstract: An optical modulator includes: a substrate that has electrooptical effect and has a Mach-Zehnder modulator that has a 2×2 coupler acting as a splitter, two intermediate waveguides coupled to outputting waveguides of the splitter and another 2×2 coupler acting as a combiner coupled to the two intermediate waveguides; and a suppresser that suppresses a power of an output light from an uncoupled waveguide and an input light into the uncoupled waveguide of at least one of the 2×2 couplers in an extending direction of the Mach-Zehnder modulator.
    Type: Application
    Filed: April 11, 2014
    Publication date: December 4, 2014
    Applicant: Fujitsu Optical Components Limited
    Inventor: Masaki SUGIYAMA
  • Publication number: 20140355925
    Abstract: A semiconductor electro-optical phase shifter may include an optical action zone configured to be inserted in an optical waveguide, and a bipolar transistor structure configured so that, in operation, collector current of the bipolar transistor structure crosses the optical action zone perpendicular to the axis of the optical waveguide.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 4, 2014
    Applicant: STMICROELECTRONICS SA
    Inventor: Jean-Robert MANOUVRIER
  • Patent number: 8903202
    Abstract: A Mach-Zehnder optical modulator with a travelling wave electrode having one or more signal transmission line conductors and one or more ground transmission line conductors is provided. The modulator includes a ground strip conductor extending substantially in parallel to the ground transmission line conductors, and a distributed bridging structure electrically connecting the ground strip conductor and at least one of the ground transmission line conductors along a substantial portion of a length thereof. The distributed bridging structure may be embodied by a plurality of electrical connections at disposed regularly spaced intervals.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Teraxion Inc.
    Inventors: Kelvin Prosyk, Ian Nicholas Woods
  • Publication number: 20140348460
    Abstract: In one embodiment, an optical phase shifter includes a first phase-shifter configured to phase shift a transverse electric (TE) component of an optical signal by a first phase-shift to produce a TE component of a first signal, and a transverse magnetic (TM) component of the optical signal by a second phase-shift to produce a TM component of the first signal. The optical phase-shifter includes a polarization-rotator configured to rotate the TE component of the first signal to produce a TM component of a rotated signal, and the TM component of the first signal to produce a TE component of the rotated signal. The optical phase-shifter includes a second phase-shifter configured to phase-shift a TE component of the rotated signal by a third phase-shift, and the TM component of the rotated signal by a fourth phase-shift, where the first phase-shifter, the polarization-rotator, and the second phase-shifter are integrated on a substrate.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 27, 2014
    Applicant: FutureWei Technologies, Inc.
    Inventors: Bryce Dorin, Winnie N. Ye
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Publication number: 20140341499
    Abstract: A semiconductor electro-optical phase shifter comprises a central zone (I1, I2) having a minimum doping level; first and second lateral zones (N+, P+) flanking the central zone along a first axis, respectively N and P-doped, so as to form a P-I-N junction between the first and second lateral zones. The central zone comprises first and second optical action zones (I1, I2) separated along the first axis. The second lateral zone is doped discontinuously along a second axis perpendicular to the first axis. Two electrical control terminals (A, C) are provided, one in contact with the first lateral zone, and the other in contact with doped portions of the second lateral zone.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 20, 2014
    Applicant: STMICROELECTRONICS SA
    Inventor: Jean-Robert MANOUVRIER
  • Publication number: 20140341498
    Abstract: A semiconductor electro-optical phase shifter may include a first optical action zone having a minimum doping level, a first lateral zone and a central zone flanking the first optical action zone along a first axis, doped respectively at first and second conductivity types so as to form a P-I-N junction between the first lateral zone and the central zone. The phase shifter may include a second optical action zone having a threshold doping level, and a second lateral zone flanking the second optical action zone with the central zone along the first axis doped at the first conductivity type so as to form a P-I-N junction between the second lateral zone and the central zone.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 20, 2014
    Applicant: STMICROELECTRONICS SA
    Inventor: Jean-Robert MANOUVRIER