Structure Surrounding Optical Fiber Bundle-to-bundle Connection Patents (Class 385/54)
  • Patent number: 8388242
    Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8328432
    Abstract: A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, David L. Dean, Jr., Christopher S. Houser, James M. Wilson
  • Patent number: 8280205
    Abstract: The invention pertains to an optical connector assembly having an alignment mechanism for coupling two single-lens, multi-fiber optical connectors together. Particularly, each connector comprising a single lens through which the light from multiple fibers is expanded/focused for coupling to corresponding fibers in a mating connector. In one aspect of the invention, the alignment mechanism includes mating features extending from the fronts of the lenses having substantially longitudinal surfaces that meet and contact each other when the two connectors are coupled together in only one or a limited number of rotational orientations relative to each other to as to properly rotationally align the multiple fibers in the two mating connectors. This mechanism also helps align the two connectors with the optical axes of their lenses parallel to each other.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: October 2, 2012
    Assignee: Tyco Electronics Corporation
    Inventors: David Donald Erdman, Michael Aaron Kadar-Kallen
  • Publication number: 20120243830
    Abstract: A fiber optic connector assembly (10) for a bundle (22) of fibers (20) is provided. The connector assembly (10) includes an opposing pair of keyed end assemblies (19) and a keyed housing (34) for receiving them. Each keyed end assembly (12) includes key ring (30) with a projecting tab (31) departed to mate with a key slot (32) in the keyed housing (34). A method for aligning the fibers (20) in the bundle (22) using an alignment guide (48) is provided to assemble the connector (10).
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: Valdo Fiber Optics, Inc.
    Inventors: Michel Y. Rondeau, Israel Miranda, Richard Lam
  • Patent number: 8267596
    Abstract: A fiber optic connector assembly includes a fiber optic cable with one or more optical fiber ribbons attached to a fiber optic connector. The connector includes a ferrule assembly and a crimp body with a fiber access aperture. The aperture has at least two walls defining a first width and a second width defining a predetermined delta and a predetermined aspect ratio. The delta and aspect ratio provide optical fiber access for alignment of the optical fiber ribbon to the optical fiber ferrule assembly. A method of making the fiber optic connector assembly is also disclosed.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 18, 2012
    Assignee: Corning Cable Systems LLC
    Inventor: Thomas Theuerkorn
  • Patent number: 8240927
    Abstract: A cable attachment system is disclosed for attaching a fiber optic connector to a fiber optic cable. In particular, strength members of the fiber optic cable are crimped between a crimp sleeve and a cable anchor, and the cable anchor is anchored to the fiber optic connector. An end of the crimp sleeve is adapted to receive an end of a jacket of the fiber optic cable. An end of the cable anchor includes a nipple adapted for insertion into the end of the jacket. An end portion of the jacket is crimped between an intermediate portion of the crimp sleeve and the nipple of the cable anchor. A support portion of the crimp sleeve, positioned between the end and the intermediate portion of crimp sleeve, supports a transitioning portion of the jacket beyond the end of the cable anchor.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 14, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Craig M. Standish
  • Patent number: 8226305
    Abstract: A fiber optic connector release mechanism for releasing a transceiver module in a cage permanently mounted on a PCB is disclosed. The release mechanism includes a bail rotating a U-shaped flange through a two stage travel path to urge the bail forward in a slide path on the transceiver module. The release mechanism includes a boss disposed on one of the bail and the arm assembly and a dimple disposed on another of the bail and the arm assembly to secure the bail in a locked position. As the bail moves forward from the locked position, wedge elements at the end of arms extending rearward may contact locking tabs on the cage, forcing the locking tabs outward. As the locking tabs are forced outward, the shoulders of the transceiver module are released, and the transceiver module is free to slide out of the cage.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: July 24, 2012
    Assignee: Fourte Design & Development, LLC.
    Inventors: Raja Maruthu Thirugnanam, Gioni Bianchini, Rob Golden
  • Patent number: 8206043
    Abstract: A fiber optic connector release mechanism is disclosed. The mechanism may be used to release a transceiver module housed in a cage that is permanently mounted on a printed circuit board. The release mechanism may include a cam mounted bail that rotates a U-shaped flange through a two stage travel path to urge the bail forward in a slide path on the transceiver module. As the bail begins to move forward, wedge elements at the end of a pair of slide arms extending rearward from the bail may contact locking tabs on the cage, forcing the locking tabs outward. As the locking tabs are forced outward, the shoulders of the transceiver module are released, and the transceiver module is free to slide out of the cage as the operator pulls on the bail.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 26, 2012
    Assignee: Fourte Design & Development, LLC
    Inventors: Raja Maruthu Thirugnanam, Rob Golden, Gioni Bianchini
  • Publication number: 20120106894
    Abstract: An connector assembly (100) includes an insulative housing (1) having a main portion (11) and a tongue portion (12) extending forwardly from the main portion, a cavity (121) defined in the tongue portion; a plurality of terminals (2) retained in the insulative housing; an optical module (3) accommodated in the cavity, said optical module having a base portion and a plurality of lenses combined with the base portion; and a biasing member (4) having a holder (40), an elastic element (43) accommodated in the holder and at least one post assembled to the holder and urged by the elastic element so as to push the optical module forwardly.
    Type: Application
    Filed: October 30, 2011
    Publication date: May 3, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: HSIEN-CHU LIN, HSIANG-CHI WEN
  • Publication number: 20120099819
    Abstract: An optical contact having a ferrule extending along a longitudinal axis, the ferrule having a front face facing an optical contact of complementary type when the optical contact is connected to the optical contact of complementary type, and a rear face opposite from the front face, and a body within which the ferrule is received in optionally movable manner, the body including at least one portion surrounding the outside of the ferrule around the longitudinal axis thereof, and at least one portion extending beyond the rear face of the ferrule towards the outside thereof.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 26, 2012
    Applicant: RADIALL
    Inventor: Laurent VALENCIA
  • Patent number: 8157455
    Abstract: The optical connector, comprising: a first plug having a first ferrule for holding a first multiple optical fiber; a second plug having a second ferrule for holding a second multiple optical fiber; a first housing on which the first plug is detachably fixed; a second housing which is detachably fixed on the first housing and on which the second plug is fixed in such a manner that each edge face of optical fibers of the first multiple optical fiber and each edge face of optical fibers of the second multiple optical fiber are mutually adjusted, and the first housing has a first ferrule positioning member for positioning the first ferrule in relation to the second ferrule.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 17, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Hideki Miyazaki
  • Publication number: 20120027354
    Abstract: A backplane, a method for making a backplane, and optical communication apparatuses. The backplane includes: a plurality of optical elements each selected from the group consisting of: (i) optical fibers, (ii) optical waveguides, and (iii) a combination thereof, where the plurality of optical elements have the same length, where the plurality of optical elements form at least one bundle, where the elements are bundled at both ends of the at least one bundle such that end portion lengths of the plurality of optical elements differ from each other, thus forming a broadcast-star topology, and where the plurality of optical elements is connected such that communication distance between at least two blades that can be inserted into the back plane is constant.
    Type: Application
    Filed: June 28, 2011
    Publication date: February 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yasunao Katayama, Seiji Munetoh, Atsuya Okazaki
  • Publication number: 20120027355
    Abstract: The present disclosure relates to a fiber optic network architecture that uses outside plant fan-out devices to distribute optical signals between fiber distribution hubs and multi-service terminals. The network architecture can also include collector boxes positioned at selected locations of the network architecture. Additionally, patching systems can be used in facilitating upgrading the capacity of the fiber optic network.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 2, 2012
    Applicant: ADC Telecommunications, Inc.
    Inventors: Thomas G. LeBlanc, Bryan Kennedy, Erik Gronvall, Douglas C. Ellens
  • Patent number: 8100588
    Abstract: A small form factor pluggable (SFP) optical transceiver module and method for performing optical communications are provided. The SFP optical transceiver module has a housing to which a duplex receptacle is secured. The duplex receptacle has a C-shaped opening, the upper and lower portions of which are defined by upper and lower flexible retaining elements for receiving and retaining a duplex optical connector therein. An electrical assembly of the module is secured within the transceiver module housing. The electrical assembly comprises a PCB, the back end of which is configured as a plug end for removably plugging the PCB into a receptacle of an external communications management system.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 24, 2012
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus Van Haasteren, Tze Wei Lim
  • Patent number: 8021056
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13, 15; 23, 25) or grooves (141, 151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: September 20, 2011
    Assignee: AB Sciex, LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Publication number: 20110188809
    Abstract: A fiber optic cable bundle includes a first group of fiber optic cables and a second group of fiber optic cables. Each fiber optic cable in the first group includes a first axial end and an oppositely disposed second axial end. The first axial end of each fiber optic cable in the first group includes a connector. Each fiber optic cable in the second group includes a first axial end and an oppositely disposed second axial end. The first axial end of each fiber optic cable in the second group includes a connector. The connectors of the second group are offset from the connectors of the first group by a first axial offset distance. A plurality of binder members is contra-helically served about the first and second groups of fiber optic cables.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 4, 2011
    Applicant: ADC Telecommunications, Inc.
    Inventors: Thomas G. LeBlanc, Ronald J. Kleckowski
  • Patent number: 7980769
    Abstract: A vacuum optical fiber connector includes a port flange attached to a vacuum flange for housing a first waveguide connector to which an optical fiber bundle is attached, an optical transparent body placed on the outside of the port flange, and an attachment member formed with a fit shape relative to the port flange for housing a second waveguide connector to which an optical fiber bundle is attached. The first and second waveguide connectors are positioned at least in two directions orthogonal to an optical axis with optical coupling of the first and second waveguide connectors.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: July 19, 2011
    Assignee: Mitutoyo Corporation
    Inventor: Tomotaka Takahashi
  • Patent number: 7980767
    Abstract: An optical fiber connection system detects when proper connection is made between a fiber-optic cable and a bulkhead. A conductive strip on the fiber-optic cable contacts a first and second conductor on the bulkhead upon proper positioning of the bulkhead relative to the fiber-optic cable. The system includes indicators for displaying which of a plurality of termination points is properly terminated. In addition, the system includes alternative embodiments for turning off an energy source feeding the fiber-optic cable, in the event the fiber-optic cable becomes disconnected from the bulkhead.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 19, 2011
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: William Riha
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20110091158
    Abstract: Provided is a connector unit capable of surely positioning and cone ting a plurality of optical fiber plugs in a short time and easily releasing the connected state of the optical fiber connectors even if the quantity of the optical fiber connectors is increased. The connector unit (10) comprises a positioning member (12) for positioning a plurality of optical fiber plugs (11), an adapter (13) with plug guide hole parts (20) into which the tip ends of the optical fiber plugs (11) we inserted for connection with each other, and guide parts (14) for guiding the positioning member (12) relative to the adapter (13) and inserting the tip ends of the optical fiber plugs (11) into the plug guide hole parts (20) of the adapter (13) for connection with each other.
    Type: Application
    Filed: March 2, 2009
    Publication date: April 21, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Mitsuhiro Iwaya, Masayuki Iwase
  • Publication number: 20110064361
    Abstract: Provided is a multi-fiber connector and a method of providing a secure fiber network, where the multi-fiber connector includes a housing; a multi-position ferrule disposed within the housing, the multi-position ferrule including a plurality of fiber holes arranged in a predetermined pattern; and at least one fiber. Each of the plurality of fiber holes is configured to receive one of the at least one fiber and each fiber is selectively inserted within one of the plurality of fiber holes at a selected position among the plurality of fiber holes. Additionally, only a portion of the plurality of fiber holes are populated with the at least one fiber and a remaining portion of the plurality of fiber holes are not populated with fibers.
    Type: Application
    Filed: December 11, 2009
    Publication date: March 17, 2011
    Applicant: AFL TELECOMMUNICATIONS LLC
    Inventor: Kheng Hwa Seng
  • Publication number: 20110052122
    Abstract: An optical assembly comprises a first optical transmission cable comprising first connectors being of a first type, and a second optical transmission cable comprising second connectors being of a second type. The first optical transmission cable comprises ends respectively being terminated with one of said first connectors. The second optical transmission cable comprises ends respectively being terminated with one of said second connectors. Connectors of different types are configured to be connected with each other. The second connectors are respectively configured to be connected to an optical transceiver unit.
    Type: Application
    Filed: August 4, 2010
    Publication date: March 3, 2011
    Inventors: Luis Brücher, Christian Kraettli, Oliver Oelze, Sebastian Schreiber
  • Patent number: 7881578
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 1, 2011
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7841778
    Abstract: An optical connector 10 includes a ferrule 20 to secure the set of multiple optical fibers 100, a plug member 21 to hold the ferrule 20, and a spacer 22 having a pin 23 for guiding, the spacer being integrally fixed to the ferrule 20 by means of inserting the pin 23 into the ferrule 20 to be secured together with the ferrule within the plug member 21, wherein the ferrule 20 has at least one first positioning portion for example a recessed portion 51, 52, and the spacer 22 has at least one second positioning portion for example a projection 61, 62 which is fitted to a corresponding first positioning portion to position the ferrule to the spacer.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 30, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Naoya Nishimura, Hideki Miyazaki
  • Publication number: 20100284651
    Abstract: The invention relates to an optical pin-and-socket connector for the detachable connection of a plurality of optical cores (115) having an insert (112, 112?), in which the cores (115) are inserted on a first side, the cores (115) ending in said connector with the optical fibers (119, 120) thereof, and said connector having an expansion device (117, 118) on a second side, on which the beams exit the fibers (119, 120) in an expanded manner. A simplification of the assembly and installation is achieved in that the insert (112, 112?) comprises two separate partial elements (113, 117, 118) that can be assembled, one of which is configured as an expansion device (117, 118) and the other is configured as a retaining block (113) for receiving the ends of the optical cores (115).
    Type: Application
    Filed: August 19, 2008
    Publication date: November 11, 2010
    Applicant: HUBER+SUHNER AG
    Inventors: Roger Krähenbühl, Thomas Ammer
  • Publication number: 20100278488
    Abstract: The optical connector, comprising: a first plug having a first ferrule for holding a first multiple optical fiber; a second plug having a second ferrule for holding a second multiple optical fiber; a first housing on which the first plug is detachably fixed; a second housing which is detachably fixed on the first housing and on which the second plug is fixed in such a manner that each edge face of optical fibers of the first multiple optical fiber and each edge face of optical fibers of the second multiple optical fiber are mutually adjusted, and the first housing has a first ferrule positioning member for positioning the first ferrule in relation to the second ferrule.
    Type: Application
    Filed: February 15, 2008
    Publication date: November 4, 2010
    Applicant: The Furukawa Electric Co., Ltd.
    Inventor: Hideki Miyazaki
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Publication number: 20100254658
    Abstract: When a glass fiber and an inner fiber coating layer are to be attached to a connector by removing an outer fiber coating layer while leaving the inner fiber coating layer as it is, a collective coating and the outer fiber coating layer can be removed at a stretch so that the inner fiber coating layer can easily and satisfactorily be exposed. In the ultraviolet curable resin coating layer of a coated optical fiber 17 of an optical fiber ribbon 11 for wiring of equipment, the inner fiber coating layer 15 has a Young's modulus of 600 MPa to 1000 MPa, and the outer fiber coating layer 16 has a Young's modulus of 10 MPa to 300 MPa. The material of the outer fiber coating layer 16 is made by mixing 100 weight parts of base resin, 1-30 weight parts of silicone-based additive, and 0.5 to 40 weight parts of long chain fatty acid ester compound, wherein the base resin is a material made of a urethane metha acrylate oligomer, a mono-functional or multi-functional reactive dilution monomer, and an optical initiator.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Inventors: Kazunori Tanaka, Kazumasa Oishi, Tomoyuki Hattori, Tetsuya Haruna, Wataru Sakurai, Mitsuaki Tamura, Kazuto Saito
  • Publication number: 20100254659
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Inventors: Timothy W. Anderson, Richard L. Case
  • Patent number: 7802923
    Abstract: A junction is made between a first microfluidic substrate (12) having an elongate component (303) protruding from it and a second microfluidic substrate (22) having a corresponding conduit (261). Each of the substrates has a pair of alignment features, for example planar orthogonal surfaces (13,15; 23,25) or grooves (141,151; 241, 251) in opposite sides of the substrate. The substrates are placed on an alignment jig 6 having location features (63, 65) corresponding to the alignment features. The elongate component can be surrounded by a compressible gasket 40). The substrates are pushed towards each other so that the elongate component enters the conduit and the gasket, if any, is compressed. A fluid-tight junction results so long as the substrates are maintained in the necessary position, either by permanent means, or, if a junction which can be disassembled is needed, by maintaining pressure between the substrates.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: September 28, 2010
    Assignee: AB Sciex LLC
    Inventors: Don W. Arnold, Kenneth R. Hencken, Sammy S. Datwani, Patrick Pak-Ho Leung, Douglas R. Cyr, Jason E. Rehm
  • Patent number: 7798727
    Abstract: Various embodiments of duplex fiber optic connectors and optical transceiver modules are provided. One embodiment comprises an optical transceiver module comprising: an integrally-formed housing having a duplex front port with a pair of alignment holes for receiving a pair of ferrules from a duplex fiber optic connector, the duplex front port having an upper flexible retaining element and a lower flexible retaining element for retaining the pair of ferrules from the duplex fiber optic connector; an opto-electronic assembly contained within the housing; and an electrical interface extending from the integrally-formed housing.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 21, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus J. P. van Haasteren, Tze Wei Lim
  • Patent number: 7781725
    Abstract: Methods and apparatus for predicting service life of remote equipment for infiltration of liquid are disclosed. Such methods and apparatus preferably include at least one fiber optic sensor assembly adapted to react after being exposed to a predetermined quantity of liquid.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 24, 2010
    Inventor: Guy E. Mossman
  • Patent number: 7758255
    Abstract: A fiber optic connector uses an expanded light beam design in a universal receptacle that couples to a single style of plug on the ends of all harnesses. A single, mirror image socket design is used on bulkhead receptacles or box connections, with which two harness plugs mate. The receptacle uses optical lenses for expanding, collimating, and focusing the beam from the plug terminii. The optical lens may comprise rod lenses, ball lenses, or any other optical component that accomplishes the desired beam manipulation with the required diameters and lengths. The optical components are captured in a sleeve that holds the components, establishes the distance between the plug terminii and the lenses, and provides the alignment needed between the plug ferrules and the optical components.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: July 20, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Richard C. Jones
  • Publication number: 20100150502
    Abstract: In one embodiment, an assembly having a first board, a second board, a fiber bundle, and at least one movable stage is provided. The fiber bundle has a first end and a second end, and the first end of the fiber bundle is attached to the first board first face. The movable stage has a second optical array provided thereon or therein. The movable stage is disposed on the second board such that the at least one motor steers the movable stage. The movable stage is steered such that the second optical array is aligned with the second end of the fiber bundle in a desired manner.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 17, 2010
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 7717625
    Abstract: An optical fiber interconnect system wherein the adapter is connected to and released from the holder and the connector is connected to and released from adapter through two push-release connection and release mechanisms. The connector is engaged with the adapter by applying an insertion force to the connector. The connector is released by applying a releasing force to the connection mechanism on the adapter. The system of the invention includes a holder for attachment of the adapter to a front panel. A release opening is provided on the holder for the release of the adapter from the holder from the front of the panel so as to provide access to the back connector.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: May 18, 2010
    Assignee: Illum Technologies, Inc.
    Inventors: Mark Margolin, Gregory Bunin
  • Patent number: 7712976
    Abstract: An active cable that is configured to communicate over much of its length using one or more optical fibers, and that includes an integrated electrical connector at least one end. The active cable includes an integrated retiming mechanism. Thus, multiple links of cable may be used while reducing the chance that the jitter will exceed allowable limits. The cable may be an electrical to optical cable, and electrical to electrical cable, or one of many other potential configurations.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: May 11, 2010
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Greta Light, The-Linh Nguyen, Darin J. Douma
  • Publication number: 20100080510
    Abstract: Consistent with the present disclosure, a ferrule is provided that includes first and second channels, for example. Multiple fibers of a ribbon cable, for example, are divided into groups and fed into corresponding channels of the ferrule. Since multiple channels are provided, however, each channel can be made relatively narrow. As noted above, thermal stress in a channel increases with increasing channel widths. Thus, by providing smaller channel widths, the fibers in those channels experience less thermal stress. Moreover, the channels are spaced from one another so that the lateral spacing between adjacent fibers in the ribbon cable is maintained in the ferrule. As a result, the fibers are not bent laterally, and thus may experience little bending stress.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: JOSEPH Edward RISKA, Christopher E. Young
  • Publication number: 20100074576
    Abstract: In one embodiment, method of forming fibers is provided. The method includes modifying a first exposed edge of at least one core of a first fiber. The first fiber has a first end, a second end, and a length between the first end and the second end. The second end has the first exposed edge of the core, and the first exposed edge has a first diffusion state. The first fiber may transmit light along the core. The modification of the first exposed edge includes modifying the first diffusion state of the first exposed edge of the core to a second diffusion state such that light exiting the first exposed edge in the second diffusion state is spread over a greater number of angles relative to angles of the light exiting the first exposed edge in the first diffusion state.
    Type: Application
    Filed: December 3, 2009
    Publication date: March 25, 2010
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 7680377
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 16, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7665904
    Abstract: An optical transceiver includes a housing formed to be inserted into or extracted from a cage in a host device, a movable lock member for preventing the housing from being extracted from the cage, where the cage includes a lock hole for preventing the housing from being extracted from the cage when the movable lock member is placed into the lock hole, and an integration parts.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: February 23, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventor: Juhyun Yu
  • Publication number: 20100014810
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 21, 2010
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7628544
    Abstract: An optical fiber connection system detects when proper connection is made between a fiber-optic cable and a bulkhead. A conductive strip on the fiber-optic cable contacts a first and second conductor on the bulkhead upon proper positioning of the bulkhead relative to the fiber-optic cable. The system includes indicators for displaying which of a plurality of termination points is properly terminated. In addition, the system includes alternative embodiments for turning off an energy source feeding the fiber-optic cable, in the event the fiber-optic cable becomes disconnected from the bulkhead.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: December 8, 2009
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: William Riha
  • Patent number: 7618198
    Abstract: First and second connector units each have a contact chamber with a front wall having an opening closed by a stopper. Seals in the respective openings surround and seal the stoppers prior to mating. The stopper in the first connector unit is retracted into the housing during mating while the front wall of second connector unit is retracted into its housing during mating, pushed back by the front wall of the first connector unit, separating the stoppers from the end wall openings and allowing communication between the contact chambers through a passageway defined by the aligned openings. The seals in the end walls seal the passageway during and after mating. A contact assembly in the first connector unit moves transversely into alignment with the passageway for contact with a corresponding fixed contact assembly in the second connector unit as the units move into mating engagement.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 17, 2009
    Assignee: Teledyne ODI, Inc.
    Inventors: Peter R. Baxter, Srikanth Ramasubramanian, Stewart M. Barlow
  • Patent number: 7599588
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: October 6, 2009
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20090232454
    Abstract: A vacuum optical fiber connector includes a port flange attached to a vacuum flange for housing a first waveguide connector to which an optical fiber bundle is attached, an optical transparent body placed on the outside of the port flange, and an attachment member formed with a fit shape relative to the port flange for housing a second waveguide connector to which an optical fiber bundle is attached. The first and second waveguide connectors are positioned at least in two directions orthogonal to an optical axis with optical coupling of the first and second waveguide connectors.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 17, 2009
    Applicant: MITUTOYO CORPORATION
    Inventor: Tomotaka TAKAHASHI
  • Publication number: 20090196553
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Application
    Filed: April 14, 2009
    Publication date: August 6, 2009
    Inventors: Timothy W. Anderson, Richard L. Case
  • Publication number: 20090136182
    Abstract: A female ferule is fixed to a terminal of a multi-core optical fiber in which a sheath is provided outside a large number of optical fibers being tied in a bundle and a portion of the sheath is removed. The female ferule includes a ferule body which includes a cylindrical portion and a step which is formed on an outer surface and at a rear side of the cylindrical portion, and a sleeve which includes an insertion-connected portion for a male ferule serving as a connection partner at the one end and a coupling-connected portion for the cylindrical portion at the other end. The sleeve is retrofitted to the ferule body. The cylindrical portion includes a caulking-fed portion for the bundle optical fibers and an insertion/coupling-fixed portion for the coupling-fixed portion, the caulking-fixed portion and the insertion/coupling-fixed portion are formed successively from a front end face of the cylindrical portion.
    Type: Application
    Filed: September 17, 2007
    Publication date: May 28, 2009
    Applicant: YAZAKI CORPORATION
    Inventor: Tsuyoshi OSHIMA
  • Patent number: 7537393
    Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 26, 2009
    Assignee: Commscope, Inc. of North Carolina
    Inventors: Timothy W. Anderson, Richard L. Case
  • Publication number: 20090103869
    Abstract: There is provided a connecting system including a connecting apparatus that includes (i) a signal transfer path that transfers one of an electrical signal and an optical signal and (ii) a connecting device that connects the signal transfer path to a connection target component in such a manner that a signal is capable of being transferred therebetween, and a connected apparatus that includes the connection target component to be connected to the signal transfer path. Here, the connecting device includes a moving portion that has therein a sealed space. The moving portion moves an end portion of the signal transfer path closer to the connection target component so that the end portion of the signal transfer path is connected to the connection target component in response to an increase in a pressure within the moving portion, and moves the end portion away from the connection target component in response to a decrease in the pressure within the moving portion.
    Type: Application
    Filed: April 8, 2008
    Publication date: April 23, 2009
    Applicant: ADVANTEST CORPORATION
    Inventors: KAZUHIRO FUJITA, DAISUKE WATANABE, TOSHIYUKI OKAYASU
  • Patent number: 7517157
    Abstract: An optical fiber connector has a center component provided with opposite first and second ends into which first and second connector inserts holding ends of respective optical fiber bundles are to be inserted, an optical core element mounted in the center component having opposite ends against which the ends of the respective optical fiber bundles in the first and second connector inserts are to be abutted in alignment, and fastener elements provided with the first and second ends for securely holding the first and second connector inserts in abutting contact with the respective opposite ends of the optical core element.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 14, 2009
    Assignee: The Boeing Company
    Inventors: Michael R. McNiece, John V. Alexander, Robert A. Nowak, Rick Bomber, James L. Melquist