Eccentric Arrangement Patents (Class 385/67)
  • Patent number: 11199671
    Abstract: Glass-as-a-Platform (GaaP) assemblies are provided. Embodiments of the GaaP assembly comprise a first glass plate and a second glass plate, each disposed under one or more switch ASICs and one or more opto-electronic devices co-packaged on the same substrate. Each glass plate includes a plurality of waveguides. The co-packaged substrate is disposed on top of one or more of the first glass plate and second glass plate, the first glass plate configured to couple to one or more opto-electronic devices and the second glass plate configured to couple to one or more other opto-electronic devices. A faceplate interface end of each glass plate is configured to connect to one or more optical cable connectors. The glass plates are configured to route optical signals to and from one or more opto-electronic devices and one or more optical cable connectors through the one or more waveguides and openings in the co-packaged substrate.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: December 14, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Kevin B. Leigh
  • Patent number: 10935740
    Abstract: Disclosed is a plug-in connector module having at least one optical waveguide and at least one optical sensor, preferably a photodiode, which is arranged near the optical waveguide. The optical sensor can reliably detect malfunction of the plug-in connector module in good time. Also disclosed is a method for detecting signal losses during signal transmission in an optical plug-in connector module, in which an optical signal is guided through at least one optical waveguide of the plug-in connector module, and the optical signal is scattered in the event of a structural defect of the optical waveguide or dirt on the front surface of the optical waveguide, the scattered light reaching a photodiode and a current or a voltage being produced thereby on the photodiode. If a threshold value of the current or the voltage on the photodiode is exceeded, an interference signal is generated by an electronic evaluation system.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 2, 2021
    Inventors: Christian Vollmer, Lutz Troeger, Markus Friesen
  • Patent number: 10101540
    Abstract: A portion of a core of an optical fiber may be positioned eccentrically in a bore of a ferrule. The portion of the core may be part of an asymmetric cross-sectional region of the optical fiber, and the asymmetric cross-sectional region may include an asymmetric outer surface. The asymmetric outer surface may include an inclined portion spaced outwardly from the portion of the core in a first direction. There may be contact between the inclined portion and the ferrule, so that a lengthwise axis of the portion of the core is spaced apart from a lengthwise axis of the bore in a second direction, and the first and second directions extend substantially opposite from one another.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 16, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Steven Joseph Gregorski
  • Patent number: 9753231
    Abstract: An optical connector cleaning tool includes a cylindrical connecting portion to which an optical connector is connected, a cleaning unit configured to guide a cleaning thread to a coupling end face of an optical connector plug, and an optical unit having an optical path reaching the optical connector plug. The optical unit includes a lens arranged in a position facing the coupling end face to form one end portion of an optical system, and having a missing portion extending in an optical-axis direction, and an image sensor positioned at the other end of the optical system. The cleaning unit includes a rod-like cleaning tip having a thread passage through which the cleaning thread passes. The cleaning tip is inserted into a hollow portion of the lens having the missing portion extending in the optical-axis direction, such that the cleaning tip is movable in a longitudinal direction thereof.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 5, 2017
    Assignees: NTT ADVANCED TECHNOLOGY CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toru Miura, Masayuki Murakami, Masaru Kobayashi, Yuichi Higuchi, Joji Yamaguchi
  • Patent number: 9497016
    Abstract: A duplex LC communication light detecting adapter includes an adapter main body to form two parallel optical transmission lines therein when a duplex LC connector is inserted, the adapter main body including a side in which a light extraction hole is formed, the light extraction hole being located at a vertex of a isosceles triangle having a base that is a line segment connecting centers of the two optical transmission lines in a cross section and opened in a direction perpendicular to the line segment, and a sleeve holder formed integrally with the adapter main body to hold a sleeve that houses a ferrule of the duplex LC connector. The sleeve holder includes an opening section that is opened toward the light extraction hole in a range of more than 30 degrees to less than 120 degrees relative to the line segment in a cross section.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: November 15, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Kanako Suzuki, Takao Nishikawa, Toshiyuki Suzuki
  • Patent number: 8845206
    Abstract: An apparatus is provided and includes a housing, a block formed to define an array of holes corresponding to an array of plugs into which connectors with spring loaded sleeves are pluggable such that the block engages with a respective sleeve of each connector, the block being supportively disposed within the housing to be movable with respect to the housing between first and second block positions at which the sleeves are extended and retracted, respectively and a cam lever supported on the housing and coupled to the block, which selectively occupies first and second lever positions at which the cam lever causes the block to assume the first and second block positions, respectively.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Y. Chan, Dennis Denizard, Michael J. Fisher, Gilles G. Labbe, James E. Tersigni
  • Patent number: 8636422
    Abstract: Device for the coaxial connection of fiber-optic cables, comprising a single-piece coupling housing (10) and a single-piece sleeve mount (20), the sleeve mount (20) being designed with at least one latching nose (21) and the coupling housing (10) being designed with at least one latching mount which complements the at least one latching nose (21), wherein the latching mount is designed with at least one latching hook (14) and at least one stop (15).
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 28, 2014
    Assignee: ADC GmbH
    Inventors: Eberhard Kahle, Anne Kramer, Jorg Adomeit
  • Patent number: 8480310
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 9, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8469602
    Abstract: An optical fiber connecting part has a ferrule, and a guide bore penetrating through the ferrule and configured to guide an optical fiber to be inserted. The guide bore has a first bore provided at one end of the ferrule, through which the optical fiber is inserted into the ferrule, a second bore provided at another end of the ferrule, the second bore having an inner diameter smaller than an inner diameter of the first bore, and an intermediate bore provided between the first bore and the second bore to directly connect between the first bore and the second bore. A center axis of the second bore is shifted from a center axis of the first bore.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki, Mikio Ohkoshi, Yoshikazu Namekawa
  • Patent number: 8256970
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 4, 2012
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7903912
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding includes a beat shrinkable tube, a cable insertion tube disposed in the heat shrinkable tube for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching resin disposed between the beat shrinkable tube and the cable insertion tube, and a resin supply hole formed in the cable insertion tube for supplying the uncured refractive index matching resin to an inside of the cable insertion tube.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Patent number: 7883275
    Abstract: A three rod bundle confined inside a sleeve is constructed as a light guiding fiber mechanical splicing device which is stiff, strong and precise, with no moving parts. The design also applies to splicing fibers to pre-polished optical connectors through a built-in model of this innovative mechanical splicer. Applying the Soddy circles formula and using a bin approach assists in deriving the exact rod sizes needed and sleeve bore size to accommodate the three-rod bundle, so that this apparatus can be properly designed to guide any size of light guide fibers and studs with minimum clearance. Rods of varying diameters are sorted into bins and chosen based upon the aperture desired, thus eliminating the need for tight tolerance of the diameters of the three rods. This unique design allows for construction of a precision virtual hole of very long depth, which enables two optical fiber studs to butt against each other with a core to core misalignment of less than 1 um for single mode fiber optics cables.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 8, 2011
    Inventor: Wei-Min Wang
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Patent number: 7806600
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Patent number: 7771128
    Abstract: In an embodiment of the invention, an optical connector for optically coupling respective end faces of two optical fiber cables including an optical fiber composed of a core and a cladding and a covering layer covering the optical fiber includes a protection sleeve, a cable insertion tube disposed in the protection sleeve for inserting thereinto and butting the respective end faces of the two optical fiber cables, an uncured refractive index matching material disposed between the protection sleeve and the cable insertion tube, and a supply hole formed in the cable insertion tube for supplying the uncured refractive index matching material to an inside of the cable insertion tube. The cable insertion tube includes a cable receiving room for receiving an end of the two optical fiber cables inserted, a fiber receiving room for receiving the optical fiber, and a covering removal member formed at a boundary of the cable receiving room and the fiber receiving room for removing the covering layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 10, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Seiji Kojima, Kanako Suzuki
  • Patent number: 7773844
    Abstract: A communications coupling for a low bandwidth fiber optic cable and a high bandwidth fiber optic cable, includes: a guiding ferrule adapted for coupling to a surrogate fiber optic cable comprised of one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable, the guiding ferrule including at least one mounting feature for aligning the guiding ferrule with an optical axis of the surrogate cable; the guiding ferrule further including at least one guiding feature for aligning the optical axis of the surrogate fiber optic cable with an optical axis of a connecting fiber optic cable, the connecting fiber optic cable comprised of the other one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable. A method and a communications infrastructure are provided.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Harry H. Bagheri, Lawrence Jacobowitz, Kenneth A. Scea
  • Patent number: 7680377
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 16, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7674047
    Abstract: A casing includes a solid sleeve and a split sleeve in combination to provide a connection between a fiber stub and a ferrule containing an optical fiber. The arrangement prevents wiggle of the ferrule, and also does so without the tight tolerances that would otherwise be required in solid sleeve systems.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 9, 2010
    Assignee: Opnext, Inc.
    Inventors: Jianyao Chen, Frank Yashar
  • Patent number: 7665901
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: February 23, 2010
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7648285
    Abstract: An optical waveguide connecter includes a socket part having a first waveguide contact placed in a channel of the socket part, and a plug part with a second waveguide contact placed in a channel of the plug part. The plug part channel is sealed with a piston displaceable counter to the force of a spring. The socket part has a pivotable cap for sealing an interface surface of the first waveguide contact. The plug part has a path for receiving the piston, with a section of the path being inclined to the axis of the second waveguide contact. During a plugging process, the cap displaced the spring-loaded piston, frees the first waveguide contact of socket part, frees the second waveguide contact in the plug part channel and is guided through the path.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 19, 2010
    Assignee: GISMA Steckverbinder GmbH
    Inventors: Manfred Maletzky, Oliver Hirsch
  • Patent number: 7594765
    Abstract: Various embodiments of arrangements for optically coupling an optical waveguide to an optical unit of an optical module are provided. One embodiment is an optical module for optically coupling an optical waveguide to an optical unit. One such optical module comprises: a reference structure having a reference geometry that defines a first axis of symmetry; an optical unit having an optical axis along which light is transmitted or received, the optical unit positioned relative to the reference structure with an offset between the first axis of symmetry and the optical axis; and a coupling element that couples the optical unit to an optical waveguide, the coupling element having an eccentric hole which functions as a fiber guide and a structural geometry adapted to compensate for the offset between the first axis of symmetry and the optical axis.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: September 29, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Hans-Ludwig Althaus, Hans Hurt, Stephan Prucker, Tobias Stäber, Frank Weberpals, Josef Wittl
  • Patent number: 7572064
    Abstract: An optical fiber mechanical splice connector including a connector body having a fiber alignment mechanism and a cavity, and a ferrule including a stub fiber, wherein an end of the stub fiber extends from the ferrule through the cavity of the connector body and into the fiber alignment mechanism, and wherein the stub fiber buckles within the cavity when a field fiber is introduced into the connector body and contacts the distal end of the stub fiber. A mechanical splicing method including inserting a field fiber into a splice connector such that an end of the field fiber contacts an end of the stub fiber within an alignment mechanism of the splice connector, and applying axial force to the field fiber so as to cause the stub fiber to buckle within a cavity defined by the splice connector.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 11, 2009
    Assignee: Corning Cable Systems LLC
    Inventor: Michael deJong
  • Patent number: 7563034
    Abstract: A casing includes a solid sleeve and a split sleeve in combination to provide a connection between a fiber stub and a ferrule containing an optical fiber. The arrangement prevents wiggle of the ferrule, and also does so without the tight tolerances that would otherwise be required in solid sleeve systems.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 21, 2009
    Assignee: Opnext, Inc.
    Inventors: Jianyao Chen, Frank Yashar
  • Patent number: 7494285
    Abstract: The present invention relates to an optical fibre connector, and in particular to an optical port having a connector receptacle for receiving an optical fibre plug, and to an optical fibre connector assembly for transmitting and/or receiving an optical signal formed by an optical fibre connector and an optical fibre plug when these are joined together. The optical fibre connector assembly comprises an optical fibre connector and an optical fibre plug. The optical fibre plug includes a projecting ferrule and along an axis of this ferrule a first optical fibre. The optical connector including a hollow sleeve and within the sleeve a recessed ferrule and along an axis of this ferrule a second optical fibre.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: February 24, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Mark Jeffrey Dunn, Martyn Robert Owen, David Healy
  • Patent number: 7330546
    Abstract: A multimedia patching box including a generally rectangular housing. The housing includes a first wall positioned opposite from a second wall. The housing also includes opposing third and fourth walls that extend between the first and second walls. A panel is mounted adjacent the front of the housing. The panel is mounted to pivot about a pivot axis between an open position and a closed position. The pivot axis is located adjacent to the third wall of the housing and extends generally along the third wall of the housing. A plurality of multimedia connectors are mounted on the panel. The housing defines at least one cable access opening defined through at least one of the first and second walls at a location adjacent the third wall. A cable management structure is connected to the back side of the panel. The cable management structure defines a cable guiding channel that extends generally along the pivot axis of the panel and generally aligns with the at least one cable access opening.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: February 12, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Bradley Scott Kessler, Jeffrey Scott Hartzler, Cory Lee Grabinger
  • Patent number: 7322751
    Abstract: The invention relates to an apparatus and method for orienting an optical waveguide in relation to an optical unit arranged in or on an optical module. The optical module has a reference geometry which defines a first axis of symmetry. An offset between the optical axis of the optical unit and the axis of symmetry of the reference geometry is determined. A coupling element such as a sleeve is provided that serves to receive an optical waveguide that is to be oriented in relation to the optical unit. The sleeve has a hole defined by an internal contour thereof that defines a second axis of symmetry. The coupling element is arranged in relation to the optical module in such a way that the second axis of symmetry coincides with the optical axis of the optical unit.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 29, 2008
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Hans Hurt
  • Patent number: 7264403
    Abstract: An optical ferrule is provided with a ferrule body having a front face and at least one covering applied to the front face to protect the front face of the ferrule from a laser beam used during a trimming process. The optical ferrule may also have a second covering disposed between the front face of the ferrule and the first covering to assist in adhering the first covering to the optical ferrule. A method is also provided for applying the first covering or the first covering and the second covering to the front face of the ferrule. A method is also provided for trimming, and in particular, ablating portions of one or more optical fibers that protrude beyond the front face of the ferrule.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: September 4, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Jeffrey D. Danley, Paul A. Sachenlk, Robert S. Wagner
  • Patent number: 7255485
    Abstract: An optical plug-in connection including: an optical plug-in connector; a coupling configured to receive the plug-in connector; and locking means for locking the plug-in connector in the coupling when the plug-in connector is inserted into the coupling, wherein the locking means are designed to prevent unintentional unlocking when in a locked state.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 14, 2007
    Assignee: Huber+Suhner AG
    Inventors: Willi Thäler, David Vollenweider, Michael Columbus
  • Patent number: 7066656
    Abstract: The invention is directed to a connector (10) for connecting optic fibers (12, 13). The connector has a longitudinally extending body (14). The body has a first end and a second end. The body has a pass-conduit (20) extending from the first end to the second end. The body is divided into a plurality of fingers (22, 26) formed by slots (28) that extend longitudinally at each of the first and second ends and many be circumferentially offset from each other by any angel. The connector may be made from material that has a shape memory.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 27, 2006
    Assignee: Le Berger du Savoir Inc.
    Inventors: Daniel Demissy, Eric Weynant
  • Patent number: 7021832
    Abstract: In addition to the optically passive alignment between the optical fiber and the semiconductor device using a V-groove provided on a substrate made of silicon single crystal, the active alignment therebetween may be carried out for enhancing the optical coupling efficiency. According to the present invention, the optical module provides a coupling member including a center waveguide and a sheath member covering the center waveguide. The outer shape of the sheath member is an elliptic so that the center position of the center waveguide may move as the coupling member rotates in the V-groove such that the outer surface thereof touches two sides of the V-groove. Accordingly, the optical coupling efficiency with the semiconductor device may be varied. The ellipticity of the elliptic outer shape is preferably greater than unity and not greater than 2, and the bottom angle of the V-groove is preferably not smaller than 60° and not greater than 120°, in particular, the angle is preferably a right angle in substance.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: April 4, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takashi Fukuoka
  • Patent number: 7013073
    Abstract: The invention relates to an apparatus for fixing a fiber at the center of a ferrule comprising a heating stage, a temperature controller, at least one charge-coupled device, a first moving stage, a processor unit and a solder material feeder. The heating stage is used for mounting and heating the ferrule. The charge-coupled devices are used for monitoring the position of the fiber in the ferrule, and one of the charge-coupled devices is connected to the processor unit so as to measure the eccentric offset of the fiber in the ferrule. The first moving stage is used for mounting the fiber and adjusted the position of the fiber so that one end of the fiber is disposed near a inlet of the ferrule and inserting the fiber into the ferrule after alignment. The solder material feeder is used for sealing the ferrule with the solder material. The present invention also relates to a method for fixing a fiber at the center of a ferrule.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: March 14, 2006
    Assignee: National Sun Yat-Sen University
    Inventors: Wood-Hi Cheng, Maw-Tyan Sheen, Chia-Ming Chang
  • Patent number: 6935791
    Abstract: A fiber optic module according to the invention includes a housing, a light source, a positioning device, and an optical fiber. The housing defines interior and exterior regions of the module. The housing has a source receiving aperture and a fiber receiving aperture. Each aperture extends from the exterior region of the module to the interior region thereof. The light source is attached to the housing and extends at least partially into the interior region of the module through the source receiving aperture. The positioning device is attached to the housing and extends at least partially into the interior region of the module through the fiber receiving aperture. The positioning device has a central axis, an outer diameter that is substantially equal to the diameter of the fiber receiving aperture, and a bore extending through at least a portion thereof. The bore has an axis that is eccentric with respect to the central axis.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: August 30, 2005
    Assignee: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin
  • Patent number: 6901186
    Abstract: An optical fiber collimator using a gradient index rod lens for securing a required long opposing distance and easy handling. The collimator includes a single mode fiber and a gradient index rod lens for receiving an incident light from the single mode fiber and converting the incident light into a collimated light, or condensing an incident light and coupling the condensed incident light to the single mode fiber. A meandering period (pitch) of a ray determined by a refractive index distribution of the rod lens is decided. The gradient index rod lens has a lens length larger by 0.5 meandering periods than a minimum lens length required to obtain a predetermined opposing distance between a pair of the rod lenses.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: May 31, 2005
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventor: Takashi Fukuzawa
  • Patent number: 6805490
    Abstract: A planar substrate having a first diffractive element for coupling light waves of different colors into the substrate and guiding the light waves by successive internal reflections. A second diffractive element, disposed on the substrate, causes the guided light waves to be partially transmitted out of the substrate where the light waves encounter the second diffractive element. Because light waves of each color are reflected at different reflection angles, the light waves with smaller reflection angles encounter the second diffractive element at more locations than those with larger reflection angles, resulting in color non-uniformity in the light transmitted out from the substrate surface. One or more interfaces are provided between the surfaces of the substrate to selectively reflect the light waves having larger reflection angles toward the second diffraction element, so that light waves of different colors encounter the second diffraction element substantially at the same number of locations.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: October 19, 2004
    Assignee: Nokia Corporation
    Inventor: Tapani Levola
  • Patent number: 6742936
    Abstract: A method for assembling a population of ferrules to minimize the eccentricity of the fibers typically includes the steps of selecting a set of ferrules, determining the eccentricity of the ferrules, selecting a fiber, inserting the fiber within the ferrule bore, orienting the fiber within the ferrule, and securing the fiber in place. The result is a population of ferrules that can be mated with little or no insertion loss.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: June 1, 2004
    Assignee: Corning Cable Systems LLC
    Inventors: Dennis M. Knecht, James P. Luther, Otto I. Szentesi
  • Patent number: 6731853
    Abstract: An optical fiber clamp that precisely aligns and clamps multiple optical fibers in multi-channel freespace optical systems, eliminates multiple parts and simplifies assembly. Multiple wafers each having an array of holes passing therethrough, are aligned with respect to each other. Optical fibers are passed through the holes, and at least one of the wafers is moved laterally with respect to the other wafers, so that sidewalls of the holes clamp the optical fibers into a desired location.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: May 4, 2004
    Assignee: Corning Incorporarted
    Inventors: Robert A. Boudreau, Chris P. Brophy, Lawrence Charles Hughes, Jr., Mark F. Krol, Deepukumar M. Nair, Songsheng Tan, Aniruddha S. Weling
  • Patent number: 6715932
    Abstract: An eccentric optical fiber connector ferrule according to the present invention comprises an optical fiber in which a coating at an end thereof is removed to expose the end of the fiber, a metallic coating bonded to a part of a side face at the end of the optical fiber in an axial direction, and a ferrule receiving the end of the optical fiber, to which the metallic coating is bonded, in a central hole, for supporting it while applying a specified eccentricity. By recessing the optical fiber end face of the eccentric optical fiber connector ferrule from the ferrule end face by 0.2 to 2.0 &mgr;m, the damage at the end of the optical fiber can be prevented.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: April 6, 2004
    Assignee: Seikoh Giken Co., Ltd.
    Inventors: Toshiaki Kuroha, Naotoshi Shiokawa
  • Patent number: 6655849
    Abstract: The invention concerns an optical fibre connector (15, 18) for high pressure (P) environments. Said connector comprises means for maintaining (1, 2, 19b) the respective ends of the fibres, facing one another. The invention is characterised in that it further comprises a sleeve (3) enclosing the fibre ends, and a translucent gel (4), provided in the sleeve to soak the space (4b) separating the fibre ends (15, 18). Moreover, by maintaining itself by capillary action in said space (4b) the gel seals off the connection with environment. The ambient pressure (P) then acts on one free end of the sleeve (3) while maintaining the gel (4) in the sleeve.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: December 2, 2003
    Assignee: Alliance Technique Industrielle
    Inventors: Francois-Louis Malavieille, Fadhel Rezgui
  • Publication number: 20030142947
    Abstract: A variable attenuation device for optical signal transmission has first and second ferrules or plugs having abutting end faces, one of the ferrules being rotatable with respect to the other while axial alignment therebetween is maintained. Each ferrule or plug has an axial bore aligned with the other and contains the end of an optical fiber, with a fiber having a smaller diameter than the diameter of the bore in which it is contained so that the fibers may have decreased engagement with each other when there is relative rotation of the ferrules although the ferrule bores remain aligned.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Ryan Robert Holman, David Nolan Ridgway
  • Patent number: 6546182
    Abstract: Angled fiber terminations and methods of making the angled fiber terminations. One aspect relates to an optical fiber support assembly. The assembly comprises a substrate with a hole formed in the substrate. The hole comprises at least one non-circular opening. The hole is configured to receive a tip of a fiber such that an angle between an axis of the fiber tip and a normal of a surface of the substrate is greater than zero.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: April 8, 2003
    Assignee: Siwave, Inc.
    Inventors: Robert John Calvet, Stephen Eric Vargo, Roman Carlos Gutierrez
  • Publication number: 20030012515
    Abstract: A method and apparatus for aligning eccentricities in optical fibers arrayed in a fiber optic bundle is disclosed. The optical fibers are initially constrained from movement in a lateral or longitudinal direction. A light meter is used to detect the orientation of the eccentricity in the core of at least one optical fiber. The orientations of the optical fibers can be aligned such that all optical fiber cores have the same orientation relative to the fiber optic bundle.
    Type: Application
    Filed: September 9, 2002
    Publication date: January 16, 2003
    Inventor: Douglas E. Crafts
  • Patent number: 6470120
    Abstract: Apparatus and associated method for aligning optical components including lenses, filters, lasers, fiber optics, etc. The apparatus aligns a first optic element and a second optic element and includes a frame and a sleeve. The frame defines a frame bore along a longitudinal axis thereof. The sleeve defines an eccentric bore configured to contain the first optic element or the second optic element. The sleeve is rotatably coupled in the frame bore to align the first optic element with the second optic element in a plane intersected by the longitudinal axis.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 22, 2002
    Assignee: New Focus, Inc.
    Inventors: Evan D. H. Green, Manish Sharma
  • Publication number: 20020131728
    Abstract: An optical subsystem includes a passive optical element having a lens element eccentric therein. The passive optical element is provided adjacent to an optical element on a submount and orthogonal to the submount. The alignment of the passive optical element and the optical element on the submount may be realized by rotating the passive optical element. The alignment may be further enhanced by translating the passive optical element and the optical element on the submount relative to one another. Once desired alignment is achieved, the passive optical element is secured to the submount.
    Type: Application
    Filed: August 31, 2001
    Publication date: September 19, 2002
    Inventor: Joseph S. Kovalchick
  • Publication number: 20020094163
    Abstract: An optical fiber collimator having a lens (10), and an optical fiber chip (14) disposed at a distance from the lens, the optical fiber chip holding an end portion of an optical fiber (12) and having an end surface treated to be inclined. The optical axis of the optical fiber is made eccentric with respect to the center of the lens to set the eccentric quantity of the optical fiber so that the center of the lens substantially coincides with the center of a light beam incident on the lens. The kind of the lens is optional. The lens may be an inexpensive spherical lens or may be a gradient index rod lens. When a gradient index rod lens is used, a lens in which a surface facing to the optical fiber chip is treated to be inclined is used as the gradient index rod lens.
    Type: Application
    Filed: December 26, 2001
    Publication date: July 18, 2002
    Inventors: Ikuto Ooyama, Takashi Fukuzawa, Seiji Kai
  • Patent number: 6402392
    Abstract: To provide a ferrule tubular body and a ferrule which is free from a fear that the end face of the ferrule may be roughened, which can eliminate an eccentric adjustment process performed after an optical fiber is fixed, and which can attain the optical connection less in insertion loss. An indicator section 1d, 3a, 1e or 3b making it possible to observe an eccentric direction of a though-hole to which an exposed optical fiber end portion is inserted to be held is provided on the outer surface of a ferrule tubular body 1A, 1B, 1C, 1D and/or the outer surface of a flanged member 3A, 3B, 3C, 3D securely fixed to the rear end of the ferrule tubular body 1A, 1B, 1C, 1D.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: June 11, 2002
    Assignee: Seiko Instruments Inc.
    Inventors: Mitsuo Yarita, Tomohiro Shimada
  • Patent number: 6379054
    Abstract: A multifiber connector is provided according to one embodiment which includes a multifiber ferrule, splice components and a crimp tube that defines a lengthwise extending passageway having a lateral cross-sectional shape that is generally oval for receiving and maintaining a plurality of optical fibers in a lateral side-by-side relationship. The crimp tube therefore provides the optical fibers to the splice components in an aligned and properly spaced manner for alignment and optical interconnection with respective optical fiber stubs. According to another embodiment, a fiber optic connector is provided that includes a ferrule, mechanical splice components, an associated cam member for actuating the mechanical splice components and means for controlling the position of the cam member relative to the mechanical splice components such that the cam member can be precisely moved from a first unactuated position to a second actuated position.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: April 30, 2002
    Assignee: Corning Cable Systems LLC
    Inventors: Rodney A. Throckmorton, Jeffrey D. Palmer, Mark W. Spriggle, Michael de Jong
  • Patent number: 6371658
    Abstract: A tuned multiple fiber optical connector and a method for tuning same is disclosed. A first connector housing retains each of a first plurality of optical fiber ends in a predetermined location. The first connector housing has a first key element. A core of each of the first plurality of optical fiber ends is oriented in a predetermined fashion with respect to the first key element. A second connector housing retains each of a second plurality of optical fiber ends in a predetermined location. The second connector housing comprises a second key element. A core of each of the second plurality of optical fiber ends is oriented in a predetermined fashion with respect to the second key element. The first and the second connector housings are coupled such that the key elements are disposed in a predetermined relation one to the other.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: April 16, 2002
    Assignee: JDS Fitel Inc.
    Inventor: Nyuen Chong
  • Publication number: 20020025124
    Abstract: The current invention provides a method and apparatus for aligning optical components including lenses, filters, lasers, fiber optics, etc. It may be used with particular advantage for the alignment of a fiber optic with active or passive optical components. It is inexpensive to fabricate. It does away with the need for expensive setup equipment. It allows optical components to be aligned with a high degree of accuracy and permanence. It has a small form factor.
    Type: Application
    Filed: December 13, 2000
    Publication date: February 28, 2002
    Inventors: Evan D.H. Green, Manish Sharma
  • Patent number: 6302593
    Abstract: A fiber optic connector and an associated fabrication method where the connector has a connector housing having a base side, a and pair of sidewalls upstanding from the base side that are spaced apart in relation to each other, and each of the housing sidewalls define at least one aperture through which optical signals can be transmitted into and out of the housing by an input optical fiber and an output optical fiber, respectively, located in fixed positions outside the housing, and a pair of optical lens elements are contained within the housing which collimate optical signals transmitted via the respective optical fibers. The lens elements are precisely aligned with respective optical fibers within submicron tolerances using internally-housed micro-aligners. As a result, the fiber optic connector of the present invention can provide efficient coupling between optical fibers, such as optical fibers in two spliced composite parts.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: October 16, 2001
    Assignee: McDonnell Douglas Corporation
    Inventor: John M. Haake