Coupling Between Waveguides Patents (Class 385/9)
  • Patent number: 11899252
    Abstract: An optical device has a light path for guiding a light beam along a circular arc. The light path has at least one light path segment having a number of light path elements arranged tangentially along the light path. Each of the light path elements is at least partially limited in a radial direction by a first interface. The first interfaces of a respective light path segment are each configured to reflect at least light incident from the light path at an angle of incidence greater than a predetermined angle onto the respective first interface to keep a light beam propagating along the light path in a direction of travel predetermined for the respective light path segment on the light path. A first tangential end of the first interfaces is spaced radially further apart from the center of the circular arc than a second tangential end.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: February 13, 2024
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventor: Tobias Schneider
  • Patent number: 11874538
    Abstract: A directional coupler is configured to receive a continuous light waveform and split the waveform into two carrier signals. Ring modulators are configured to receive the carrier signals and binary data and modulate the carrier signals based on the binary data. A combiner is configured to combine the modulated carrier signals into a four-level pulse amplitude modulation (PAM4) signal.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chih-Chang Lin, Chan-Hong Chern
  • Patent number: 11824590
    Abstract: Integrated circuit chips may be optically interconnected using microLEDs. Some interconnections may be vertically-launched parallel optical links. Some interconnections may be planar-launched parallel optical links.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: November 21, 2023
    Assignee: AvicenaTech Corp.
    Inventors: Robert Kalman, Bardia Pezeshki, Alexander Tselikov, Cameron Danesh
  • Patent number: 11796738
    Abstract: The present invention provides a temperature-insensitive Mach-Zehnder interferometer, including: a first mode converter; a second mode converter, located on one side of the first mode converter and with a distance from the first mode converter; and a connecting arm, located between the first mode converter and the second mode converter, one end of the connecting arm is connected with the first mode converter, and the other end is connected with the second mode converter. The connecting arm includes a straight waveguide connecting arm. The temperature-insensitive Mach-Zehnder interferometer of the present invention can be configured to be insensitive to temperature by adjusting parameters such as the width and thickness of the connecting arm.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 24, 2023
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Chao Qiu, Yingxuan Zhao, Fuwan Gan, Aimin Wu, Zhen Sheng, Wei Li
  • Patent number: 11789288
    Abstract: Devices utilizing holographic 4D plenoptic capture and display technologies to generate a light field function to provide glasses-less vision correction for observers with imperfect vision, and to project an image according to the generated light field function, and methods for calibrating a four-dimensional light field for a user with an uncorrected visual acuity.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: October 17, 2023
    Assignee: Light Field Lab, Inc.
    Inventors: Jonathan Sean Karafin, Brendan Elwood Bevensee
  • Patent number: 11774675
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 11765818
    Abstract: A method for manufacturing a circuit board comprising: providing an inner circuit substrate board comprising a first transmission area, a bendable area, and a second transmission area which are connected in an order, wherein the inner circuit substrate board further comprises a substrate layer and an inner circuit layer on the substrate layer, the inner circuit layer comprises a first signal circuit; pressing a first outer circuit substrate board on the inner circuit layer; wherein the first outer circuit substrate board comprises a first dielectric layer formed on the inner circuit layer and a first outer circuit layer formed on the first dielectric layer; the first dielectric layer is located in the first transmission area and the second transmission area; two ends of the first signal circuit are electrically connected to the first outer circuit layer.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: September 19, 2023
    Assignees: Avary Holding (Shenzhen) Co., Limited., QING DING PRECISION ELECTRONICS (HUAIAN) CO., LTD
    Inventors: Fu-Yun Shen, Wen-Zhu Wei, Ming-Jaan Ho
  • Patent number: 11487060
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 11480817
    Abstract: Various embodiments of a coplanar waveguide (CPW) transmission line as well as a silicon-based electro-optic (E-O) modulator comprising the CPW transmission line are described. The CPW transmission line has a curved or winding shape. The silicon-based E-O modulator includes a rib optical waveguide, a beam splitter, a beam combiner, and a CPW transmission line that exhibits the winding shape. At least one of the two optical arms of the rib optical waveguide alternately and periodically extends through a first groove and a second groove of the CPW transmission line. The plurality of active sections of the rib optical waveguide are evenly distributed on both sides of the CPW transmission line to suppress undesired transmission modes. An increased length of transmission path of the rib optical waveguide is also avoided or minimized, thereby reducing the transmission speed mismatch of the E-O modulator, which is essential for achieving high-speed operation.
    Type: Grant
    Filed: March 6, 2021
    Date of Patent: October 25, 2022
    Inventors: Yadong Liu, Pengfei Cai, Tzung-I Su, Dong Pan
  • Patent number: 11418264
    Abstract: An optical modulation system comprises a signal source configured to generate an amplitude modulated electrical signal having a bandwidth and divided into frequency components comprising at least a first frequency component covering a first portion of the bandwidth and a second frequency component covering a second portion of the bandwidth; and an electro-optic modulator for receiving an input optical signal, the modulator having a first optical path and a second optical path, the input optical signal being divided between the first optical path and the second optical path and recombined after propagation along the first optical path and the second optical path to produce an output optical signal, and at least one of the first optical path and the second optical path comprising a phase shifter comprising a pair of electrodes in which each electrode is configured to receive a driving signal; wherein the or each phase shifter is coupled to the signal source to receive at least one of said frequency components a
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: August 16, 2022
    Assignee: University of Southampton
    Inventors: Graham Trevor Reed, Ke Li, Sheghao Liu, David John Thomson
  • Patent number: 11099456
    Abstract: A photonic device (100) comprising: an optical waveguide (101), and a modulating element (102) that is evanescently coupled to the waveguide (101); wherein the modulating element (102) modifies a transmission, reflection or absorption characteristic of the waveguide (101) dependant on its state, and the state of the modulating element (102) is switchable by an optical switching signal (125) carried by the waveguide (101), or by an electrical signal that heats the modulating element (102).
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 24, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LTD.
    Inventors: Carlos Rios, Harish Bhaskaran, Wolfram Pernice, Matthias Stegmaier
  • Patent number: 10400842
    Abstract: Branched hierarchical micro-truss structures may be incorporated into energy-absorbing structures to exhibit a tailored multi-stage buckling response to a range of different compressive loads. Branched hierarchical micro-truss structures may also be configured to function as vascular systems to deliver fluid for thermal load management or altering the aerodynamic properties of a vehicle or structure into which the branched hierarchical micro-truss structure is incorporated. The branched hierarchical micro-truss structure includes a first layer having a series of interconnected struts and a second layer having a series of struts branching outward from an end of each of the struts in the first layer.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 3, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Sophia S. Yang, Jie Jiang, Zak C. Eckel, Christopher S. Roper
  • Patent number: 9915785
    Abstract: A device includes a substrate, a pedestal extending from the substrate, and a ring resonator disposed on the pedestal above the substrate. The ring resonator has a resonance wavelength greater than 1.5 ?m and includes at least one of silicon and chalcogenide glass. The device can be used as a ring resonator sensor or a light source. The ring resonator is substantially transparent to mid-infrared radiation to reduce optical losses. The pedestal has a narrower width compared to the ring resonator to generate improved interaction between evanescent fields of light in the ring resonator and analytes nearby the ring resonator, thereby increasing sensing sensitivity. In addition, fabrication of the device is compatible with complementary metal-oxide-semiconductor (CMOS) processes and hence is amenable to large scale manufacturing.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: March 13, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Pao Tai Lin, Jurgen Michel, Anuradha Murthy Agarwal
  • Patent number: 9002143
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Harris Corporation
    Inventors: Richard Desalvo, Charles Franklin Middleton, IV
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8849075
    Abstract: The present disclosure describes an integrated opto-mechanical and electro-mechanical system. The opto-mechanical and electro-mechanical system can be made of photonic crystals configured to move based on electrical voltages and/or back action effects from electromagnetic waves, thus changing the resonance of the system.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: September 30, 2014
    Assignee: California Institute of Technology
    Inventors: Oskar Painter, Martin Winger, Qiang Lin, Amir Safavi-Naeini, Thiago Alegre, Timothy Dobson Blasius, Alexander Grey Krause
  • Patent number: 8842945
    Abstract: Three dimensionally integrated semiconductor systems include a photoactive device operationally coupled with a current/voltage converter on a semiconductor-on-insulator (SeOI) substrate. An optical interconnect is operatively coupled to the photoactive device. A semiconductor device is bonded over the SeOI substrate, and an electrical pathway extends between the current/voltage converter and the semiconductor device bonded over the SeOI substrate. Methods of forming such systems include forming a photoactive device on an SeOI substrate, and operatively coupling a waveguide with the photoactive device. A current/voltage converter may be formed over the SeOI substrate, and the photoactive device and the current/voltage converter may be operatively coupled with one another. A semiconductor device may be bonded over the SeOI substrate and operatively coupled with the current/voltage converter.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: September 23, 2014
    Assignee: Soitec
    Inventors: Bich-Yen Nguyen, Mariam Sadaka
  • Publication number: 20140199015
    Abstract: Embodiments of the present disclosure describe techniques and configurations for decreasing optical loss in a wave-guide of a modulator device. In one embodiment, an apparatus includes a substrate, and a waveguide of a modulator device formed on the substrate, the waveguide having a first portion that is configured to receive light for propagation along the waveguide, a second portion that includes two slots formed in the waveguide that merge into a single slot, the second portion being coupled with the first portion, a third portion that includes the single slot formed in the waveguide, the third portion being coupled with the second portion, a fourth portion that includes another two slots formed in the waveguide, the another two slots branching from the single slot, the fourth portion being coupled with the third portion, and a fifth portion that is configured to output the propagated light, the fifth portion being coupled with the fourth portion. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 17, 2014
    Inventors: Peter L. Chang, Jia-Hung Tseng
  • Patent number: 8766092
    Abstract: An energy collection system is provided. The system can include an energy collection device and an energy concentration device disposed proximate at least a portion of the energy collection device. The energy concentration device includes a non-periodic, sub-wavelength, dielectric grating.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 1, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhen Peng, Marco Fiorentino, David A. Fattal, Nathaniel J. Quitoriano
  • Publication number: 20140169724
    Abstract: Thermally stabilised resonant electro-optic modulator (1), wherein the temperature control unit (8) is provided for separately determining the first and the second intensities measured by the light sensor (6) at the first voltages and the second voltages respectively in function of time.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: IMEC
    Inventor: Mark Maria Albert Ingels
  • Publication number: 20140099054
    Abstract: An apparatus and corresponding method in which the apparatus includes a dielectric waveguide and a metallic waveguide. The dielectric waveguide has an effective mode index and a longitudinal dimension. The metallic waveguide has a longitudinal dimension and supports a surface plasmonic mode of propagation for a wavelength lambda. The metallic waveguide and the dielectric waveguide are adjacent to each other and overlap each other by a length along the longitudinal dimensions of both the dielectric waveguide and the metallic waveguide, wherein the length is greater than the wavelength lambda in the metallic waveguide. The metallic waveguide is coupled to the dielectric waveguide where the metallic waveguide and the dielectric waveguide overlap each other.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Applicant: Carnegie Mellon University
    Inventors: Eric J. Black, James A. Bain, Stephen P. Powell, Tuviah E. Schlesinger
  • Patent number: 8682161
    Abstract: An optical data transmission system for transmitting optical data in a flight vehicle, including a head end, optical splitter, N units of terminals that process optical data received from the optical splitter to display such as video, plural optical cables connected between the head end and the optical splitter and between the optical splitter and the terminals, and a seat group including N sets of passenger seats that transmit two-way optical data and are placed close to one another. The N units of terminals are placed in association with the respective N sets of seats. The optical splitter is placed in association with the seat group; sends optical data from the head end to the N units of terminals; and reversely unifies N-series optical data, different from one another, from the N units of terminals into one series and sends it to the head end.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaaki Higashida, Satoshi Ohyama
  • Patent number: 8660387
    Abstract: An athermal ring optical modulator includes a first clad layer, a ring optical resonator, a second clad layer, an input-output optical waveguide, a first conduction type region, and a second conduction type region. The ring optical resonator has a rib optical waveguide with a convex portion formed on a semiconductor slab layer. The semiconductor slab layer is formed on the first clad layer. The second clad layer covers an upper side of the rib optical waveguide. The input-output optical waveguide couples optically with the ring optical resonator. The first and second conduction type regions are formed in the semiconductor slab layer inside and outside the ring optical resonator, respectively. In addition, the second clad layer includes a material having a negative thermo-optical coefficient. The semiconductor slab layer outside the convex portion is thinner than the semiconductor slab layer inside the convex portion.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuo Suzuki, Mizunori Ezaki
  • Publication number: 20140036361
    Abstract: Disclosed is a light guiding valve apparatus comprising an optical valve, a two dimensional light source array and a focusing optic for providing large area collimated illumination from localized light sources. A stepped waveguide may be a stepped structure, in which the steps may be extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. A two dimensional array of viewing windows may be produced. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays with wide viewing freedom and low cross talk and near-eye displays that are substantially transparent.
    Type: Application
    Filed: May 17, 2013
    Publication date: February 6, 2014
    Applicant: REALD INC.
    Inventors: Graham J. Woodgate, Michael G. Robinson, Jonathan Harrold, Miller H. Schuck
  • Patent number: 8644649
    Abstract: A silicon optical waveguide for transmitting an optical signal input to the optical waveguide with a first frequency. The optical waveguide includes a plurality of modulator circuits configured along a silicon optical transmission channel. Each modulator circuit includes at least one resonant structure that resonates at the first frequency when the modulator circuit that includes the at least one resonant structure is at a resonant temperature. Each modulator circuit has a different resonant temperature.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Roy Meade, Gurtej Sandhu
  • Patent number: 8634680
    Abstract: The wavelength control device comprises a first Mach-Zehnder filter which receives a first optical signal and outputs an optical signal having a predetermined wavelength, a second Mach-Zehnder filter which receives a second optical signal and outputs an optical signal having a predetermined wavelength, a heating unit heating respective parts of either one of the waveguides of the first and second Mach-Zehnder filters, a first wavelength detecting unit which receives an optical signal from the first Mach-Zehnder filter and detects a wavelength thereof, a second wavelength detecting unit which receives an optical signal from the second Mach-Zehnder filter and detects a wavelength thereof, a power control unit which controls power supplied to the heating unit based on the wavelength received from the first wavelength detecting unit, and an output unit which outputs a wavelength value based on the wavelength received from the second wavelength detecting unit.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 21, 2014
    Assignee: NEC Corporation
    Inventor: Noriyoshi Oku
  • Patent number: 8559769
    Abstract: A device includes a semiconductor waveguide and a control signal waveguide formed along a planar surface of a substrate. The control signal waveguide includes a segment located along and proximate a segment of the semiconductor waveguide. The control signal waveguide is configured to photo-excite charge carriers in said semiconductor waveguide.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 15, 2013
    Assignee: Alcatel Lucent
    Inventor: Mahmoud Rasras
  • Patent number: 8477409
    Abstract: Disclosed are a PLC-type delay demodulation circuit and a PLC-type optical interferometer capable of reducing the size of a PLC chip with respect to the arrangement of various kinds of light output waveguides. In a PLC-type delay demodulation circuit, arm waveguides of a first MZI and arm waveguides of a second MZI are formed so as to overlap each other in the same region of a planar lightwave circuit. The optical paths of the MZIs are arranged such that the propagation directions of two DQPSK signals branched by a Y-branch waveguide are opposite to each other.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 2, 2013
    Assignees: Furakawa Electric Co., Ltd., Fujitsu Optical Components Limited
    Inventors: Hiroshi Kawashima, Kazutaka Nara, Kohei Shibata
  • Patent number: 8472107
    Abstract: It is an object of the present invention to provide an apparatus that can obtain a multiplied harmonic signal fast and with ease, and the method using the apparatus. The object is attained by the method for obtaining a multiple harmonic signal comprises, suppressing a different parity optical signal having parity different from fundamental optical signals; suppressing residual optical signals using an optical filter after suppressing the different parity optical signal; and obtaining the frequency difference component using the fundamental optical signals, and the device realizing the method.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: June 25, 2013
    Assignee: National Institute Of Information And Communications Technology
    Inventors: Tetsuya Kawanishi, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 8467121
    Abstract: An optical signal processor may include an optical waveguide loop, and first and second phase modulator loops. Each of the first and second phase modulator loops may be in optical communication with the optical waveguide loop. The first and second phase modulator loops may include respective control signal input ports to control phase modulation applied by the first and second phase modulation loops. The optical waveguide loop may include two input ports to direct input signals in opposite directions in the optical waveguide loop and may further include an output port to output resulting signals.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 18, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Antonella Bogoni, Luca Poti, Emma Lazzeri, Gianluca Meloni, Filippo Ponzini
  • Patent number: 8451872
    Abstract: A wavelength tunable filter and a wavelength tunable laser module are a codirectional coupler type whose characteristics do not vary significantly with a process error. They are structured so as to include a semiconductor substrate which has a first optical waveguide and a second optical waveguide. The first and the second optical waveguides are extended from a first side of the semiconductor substrate to an opposing second side thereof. The first optical waveguide includes a first core layer, which has a planar layout having periodic convexes and concaves, and a pair of electrodes, which vertically sandwich the first core layer. The second optical waveguide includes a second core layer, which has a lower refractive index than the first core layer. Further, a layer having the same composition and film thickness as the second core layer is placed under the first core layer.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: May 28, 2013
    Assignee: Oclaro Japan, Inc.
    Inventors: Hideo Arimoto, Masahiro Aoki
  • Patent number: 8441717
    Abstract: The PLC-type delay demodulation circuit includes a planar lightwave circuit that is provided on one PLC chip and demodulates a DQPSK signal. The planar lightwave circuit includes a Y-branch waveguide that branches a DQPSK-modulated optical signal into two optical signals and first and second MZIs that delay the branched optical signals by one bit. A wave plate is provided in central portions of first and second arm waveguides of the first MZI and first and second arm waveguides of the second MZI in such a manner that the wave plate intersects all of the four arm waveguides, the four arm waveguides being close to one another in a portion where the wave plate is provided.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: May 14, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kawashima, Kazutaka Nara
  • Patent number: 8422118
    Abstract: A PLC-type delay demodulation circuit includes a planar lightwave circuit that is provided on one PLC chip and demodulates a DQPSK signal. The planar lightwave circuit includes a Y-branch waveguide that branches a DQPSK-modulated optical signal into two optical signals and first and second MZIs that delay the branched optical signals by one bit. The length of a short arm waveguide of the first MZI is different from the length of a short arm waveguide of the second MZI, and the length of an optical path from the Y-branch waveguide to output ports of the first MZI through the short arm waveguide of the first MZI is equal to that of an optical path from the Y-branch waveguide to output ports of the second MZI through the short arm waveguide of the second MZI.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 16, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kawashima, Kazutaka Nara
  • Patent number: 8422834
    Abstract: Provided is a semiconductor integrated circuit. The semiconductor integrated circuit includes a semiconductor pattern disposed on a substrate and including an optical waveguide part and a pair of recessed portions. The optical waveguide part has a thickness ranging from about 0.05 ?m to about 0.5 ?m. The recessed portions are disposed on both sides of the optical waveguide part and have a thinner thickness than the optical waveguide part. A first doped region and a second doped region are disposed in the recessed portions, respectively. The first and second doped regions are doped with a first conductive type dopant and a second conductive type dopant, respectively. An intrinsic region is formed in at least the optical waveguide part to contact the first and second doped regions.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: April 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong-Woo Park, Gyung-Ock Kim, Mi-Ran Park, Jong-Bum You
  • Patent number: 8380015
    Abstract: The present invention relates to an optical control device capable of achieving an accurate match of modulation timing and modulation intensity between optical waves propagating through optical waveguides disposed between a plurality of signal electrodes in an optical control device using an anisotropic dielectric substrate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yuhki Kinpara, Masayuki Ichioka, Junichiro Ichikawa, Satoshi Oikawa, Yasuhiro Ishikawa
  • Patent number: 8380023
    Abstract: A waveguide-type optical circuit comprises an optical coupler being an optical branch coupler constructed from waveguide cores which are closely arranged to each other, and dummy patterns that lay along sides of the waveguide cores in the optical coupler for preventing optical major axes of the waveguide cores from inclining.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: February 19, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Noritaka Matsubara, Kazutaka Nara
  • Patent number: 8380018
    Abstract: A conductive polymer and a semiconducting carbon nanotube material are combined to form a highly conductive composite. The composite can be used for EMI shielding, optical sensing, optical switching, and other uses.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 19, 2013
    Inventor: John W. Pettit
  • Patent number: 8369659
    Abstract: An electromagnetically responsive element includes sets of arrangements of self-resonant bodies, such as atoms or quantum dots that form an effective dielectric constant, typically at or near a resonance.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: February 5, 2013
    Inventors: W. Daniel Hillis, Roderick A. Hyde, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 8358881
    Abstract: An electromagnetically responsive element includes sets of arrangements of self-resonant bodies, such as atoms or quantum dots that form an effective dielectric constant, typically at or near a resonance.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: January 22, 2013
    Inventors: W. Daniel Hillis, Roderick A. Hyde, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20120301071
    Abstract: In some embodiments, an optical coupler comprises a substrate, and first and second optical waveguides positioned on the substrate. The second optical waveguide extends adjacent to and parallel with the first optical waveguide for at least one effective coupling length, the at least one length having a first end and a second end. The coupler further comprises a first phase shift section forming a portion of the first optical waveguide and located at a first predetermined distance from the first end of the length, and a second phase shift section forming a portion of the second optical waveguide and located at a second predetermined distance from the second end of the length, wherein the first predetermined distance is approximately equal to the second predetermined distance, and wherein the second optical waveguide does not have a phase shift section located at the first predetermined distance from the first end of the length.
    Type: Application
    Filed: January 27, 2011
    Publication date: November 29, 2012
    Applicant: K G TECHNOLOGY ASSOCIATES, INC.
    Inventors: Silas Kung, Anand Gopinath, Jaesang Oh
  • Patent number: 8306375
    Abstract: A first exemplary aspect of the present invention is a wavelength-tunable optical transmitter including: a semiconductor substrate (101); a wavelength-tunable light source that is formed on the semiconductor substrate (101) and includes at least a first reflector (102) of a wavelength-tunable type and a gain region (104); a semiconductor optical modulator formed on the semiconductor substrate (101); a first semiconductor optical waveguide (105c) that is formed on the semiconductor substrate (101) and smoothly connected to the wavelength-tunable light source; a second semiconductor optical waveguide (105d) that is formed on the semiconductor substrate and smoothly connected to the semiconductor optical modulator; a waveguide coupling region (108) in which the first and second semiconductor optical waveguides are collinearly coupled with a length LC that is not equal to m/2 (m: integer) times a complete coupling length LC0; and a second reflector (113) formed at an end of the waveguide coupling region (108).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 6, 2012
    Assignee: NEC Corporation
    Inventor: Tomoaki Kato
  • Patent number: 8306372
    Abstract: The waveguide-type polarizer includes: a Z-cut lithium niobate substrate; an optical waveguide having a ridge structure and formed on the substrate; a low refractive index film formed with a thickness satisfying 0?n·t/??0.3742 (where n is a refractive index, t (?m) is the thickness of the film, and ? (?m) is the wavelength of a light wave) on the side of the ridge structure; and a high refractive index film formed with a thickness satisfying 0.089?n·/? on the low refractive index film. The width of the ridge structure is a ridge width where the distribution of ordinary light of the light waves propagated through the optical waveguide changes and the distribution of extraordinary light of the light waves does not change, the angle of the ridge structure is less than 90°, and the waveguide-type polarizer has a function of transmitting extraordinary light.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 6, 2012
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Katsutoshi Kondou, Masanao Kurihara, Toru Sugamata
  • Patent number: 8295655
    Abstract: An optical modulator includes a ring resonator with a waveguide adjacent to and optically coupled to the micro-ring resonator. A p-i-n junction is formed about the ring resonator. An optional additional doped region may be formed opposite the waveguide from the ring resonator and when combined with the p-i-n junction forms a nearly closed p-i-n junction about the ring resonator. The ring resonator may be a silicon micro-ring resonator. Multiple different resonant frequency resonators may be coupled to the waveguide along with different detectors to multiplex light on the waveguide. The spectrum of the resonator may be controlled by an applied voltage. A prepulsing device may be used to enhance electrical transitions to enhance the speed of the modulator.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 23, 2012
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Sasikanth Manipatruni, Qianfan Xu, Michal Lipson
  • Patent number: 8270780
    Abstract: It is an object of the present invention to provide an optical switch system using optical interference. An optical switch system (1) comprises an input part (2) of an optical signal, a branching part (3) of the signal, a main Mach-Zehnder waveguide (MZC) (7), a first intensity modulator (9) provided on a first arm (4) for controlling an amplitude of an optical signal propagating through the first arm (4), a second intensity modulator (10) provided on a second arm (5) for controlling an amplitude of an optical signal propagating through the second arm (5), and a combining part (6) of the signals outputted from the first arm and the second arm, wherein one or both of the branching part (3) and the combining part (6) are X-branched.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: September 18, 2012
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 8270778
    Abstract: A single-photon absorption all-optical signal-processing device, systems employing the same, and methods of making and using the same. Illustrative examples are provided based on silicon semiconductor technology that employs rectangular waveguides fabricated on SOI wafers. In some embodiments, it is observed that the waveguides have surface state density, ?, of not less than 1.5×1018 cm?1s?1mW?1 to provide a single-photon absorption operation mode. In some embodiments, some portion of the ridge waveguide structure has a surface to volume ratio of at least 18 ?m?1, computed using a unit length of 1 ?m of the waveguide, with the width and depth dimensions of the waveguide being measured in units of microns.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 18, 2012
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Michael J. Hochberg, Thomas W. Baehr-Jones
  • Patent number: 8260093
    Abstract: Fibre substrates act as a conduit for light along which response signals are transmitted to a controller in the form of an electronic device associated with a component. The processed signals are stored in a local memory to provide a component history and a prediction of future performance and life. Service and repair history may be added to the component device memory to enable a complete history to be stored with the component. A controller may transmit data to an external controller or display through typically a wireless connection. Power to the component electronics may be provided by an induction loop or transformer.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 4, 2012
    Assignee: Rolls-Royce, PLC
    Inventor: Ian C. D. Care
  • Patent number: 8244077
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8204347
    Abstract: In a conventional optical signal processing device, a confocal optical system is configured in which a focusing lens is positioned at a substantially-intermediate point of a free space optical path. Thus, the free space optical system had a long length. It has been difficult to reduce the size of the entire device. The optical signal processing device of the present invention uses a lens layout configuration different from the confocal optical system to thereby significantly reduce the length of the system. The optical signal processing device consists of the first focusing lens positioned in the close vicinity of a signal processing device, and the second focusing lens positioned in the vicinity of a dispersing element. A distance between the dispersing element and the signal processing device is approximately a focal length of the first focusing lens. Compared with the conventional technique, the length of the optical path can be halved.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 19, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Ooba, Kenya Suzuki, Motohaya Ishii, Shinji Mino, Atsushi Aratake
  • Patent number: 8179931
    Abstract: A wavelength tunable filter and a wavelength tunable laser module are a codirectional coupler type whose characteristics do not vary significantly with a process error. They are structured so as to include a semiconductor substrate which has a first optical waveguide and a second optical waveguide. The first and the second optical waveguides are extended from a first side of the semiconductor substrate to an opposing second side thereof. The first optical waveguide includes a first core layer, which has a planar layout having periodic convexes and concaves, and a pair of electrodes, which vertically sandwich the first core layer. The second optical waveguide includes a second core layer, which has a lower refractive index than the first core layer. Further, a layer having the same composition and film thickness as the second core layer is placed under the first core layer.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 15, 2012
    Assignee: Opnext Japan, Inc.
    Inventors: Hideo Arimoto, Masahiro Aoki