Fusion Splicing Patents (Class 385/96)
  • Publication number: 20130044986
    Abstract: An apparatus comprises a first fiber segment having a core that transitions from a first core diameter at a first end to a second core diameter at a second end. The first core diameter is smaller than the second core diameter, and the second end is attached to a connector. The apparatus may further include a second fiber segment having a core with the first diameter, wherein the first end of the first fiber segment is spliced onto the second fiber segment. In one embodiment, the small diameter ends of two tapered fiber segments are core-aligned and fusion spliced to the ends of a length of a single-mode fiber and the large diameter ends of the two tapered fiber segments are attached to a connector.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: David Zhi Chen, Mark Anthony Ali
  • Publication number: 20130034330
    Abstract: A pigtail cable assembly comprising a fiber optic cable having a plurality of optical fibers, a mid-section, a first end section and a second end section is disclosed. The plurality of optical fibers are separated from the fiber optic cable at the first end section. One of the plurality of the optical fibers at the second end section is adapted to be connected to a single fiber splice at a second end when single fiber splicing is intended. A sever site is located on the mid-section. The second end section may be severed from the mid-section at the sever site when mass splicing is intended. When the second end section is separated from the mid-section at the sever site the mid-section of the fiber optic cable is adapted to be connected to a mass splice at the sever site.
    Type: Application
    Filed: September 5, 2012
    Publication date: February 7, 2013
    Inventors: David Lopez Barron, Gabriela Medellin Ramos Clamont, William Julius McPhil Giraud
  • Patent number: 8358890
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 22, 2013
    Assignees: Boston Scientific Scimed, Inc., Coherent, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8333519
    Abstract: The present disclosure relates to techniques for facilitating installing a fiber optic connector at the end of a fiber optic cable. One aspect of the disclosure involves splicing a first fiber optic cable to a second fiber optic cable. The second fiber optic cable may be pre-connectorized. In certain embodiments, a plurality of splice enclosure components are positioned to form a splice enclosure that encloses the portion of an optical fiber of the first cable that is spliced to an optical fiber of the second cable. The splice enclosure protects the optical fibers at the site of the splice and securely holds the strength members of the fiber optic cables. Furthermore, splice enclosure components are positioned to form a cable enclosure that encloses the splice enclosure and exposed portions of the fiber optic cables.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: December 18, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventors: Thomas Marcouiller, Tim Redmann
  • Patent number: 8282291
    Abstract: A method of aligning a non-circular fiber with another component is provided. A method of aligning a first D-fiber with a second D-fiber includes rotating the first D-fiber; obtaining a first image profile of an end of the first D-fiber; using the first image profile to measure a diameter of a cladding of the first D-fiber along a first direction; and repeating these operations until a minimum diameter of the cladding of the first D-fiber is aligned along the first direction. The method also includes rotating the second D-fiber; obtaining a second image profile of an end of the second D-fiber; using the second image profile to measure a diameter of a cladding of the second D-fiber along the first direction; and repeating these operations until a minimum diameter of the cladding of the second D-fiber is aligned along the first direction.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: October 9, 2012
    Assignee: AFL Telecommunications LLC
    Inventors: Wenxin Zheng, Toshiki Kubo, Bryan Malinsky, Yoshiharu Kanda, Doug Duke
  • Publication number: 20120251059
    Abstract: A method of coupling a spliceable optical fiber includes (A) providing the spliceable optical fiber, the spliceable optical fiber including (a) a core region; and (b) a microstructured cladding region. The cladding region surrounds the core region and includes (b1) an inner cladding region having a refractive index formed by inner cladding features arranged in an inner cladding background material with a refractive index n1, the inner cladding features including thermally collapsible holes or voids, and (b2) an outer cladding region with an outer cladding background material with a refractive index n2, the spliceable optical fiber having at least one end. (B) Collapsing the thermally collapsible holes or voids by heating the at least one end of the spliceable optical fiber thereby increasing the refractive index of the inner cladding providing an expanded core. And, (C) coupling the collapsed spliceable optical fiber end to the optical component.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Applicant: NKT PHOTONICS A/S
    Inventors: Jes Broeng, Rene Engel Kristiansen
  • Publication number: 20120243838
    Abstract: A reinforcing member of optical fiber fusion-splicing portion and a reinforcing method thereof are provided, in which plural coated optical fibers can be collectively reinforced in the high density, and a heating mechanism for collective reinforcement can be configured at a low cost. A reinforcing member 12 which reinforces collectively fusion-splicing portions 12a of plural coated optical fibers 11 includes a heat-shrinkable tube 13, a rod-shaped tensile strength member 14 arranged so that a part of its surface comes into contact with an inner surface of the heat-shrinkable tube, and plural tube-shaped heat-fusible adhesive members 15 arranged in the heat-shrinkable tube and into which the fusion-splicing portions of the single-core coated optical fibers are individually inserted. All of the plural tube-shaped heat-fusible adhesive members 15 are arranged in one of space portions formed between the tensile strength body 14 and the heat-shrinkable tube.
    Type: Application
    Filed: November 25, 2010
    Publication date: September 27, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichiro Sato, Hiroyasu Toyooka, Toshihiko Homma, Kiyotaka Murashima
  • Patent number: 8261441
    Abstract: In one aspect, a method to repair a cable jacket includes disposing a shrink tube on a damaged area of a cable jacket of a cable. The shrink tube includes a first end portion and a second end portion. The method also includes heating the shrink tube to seal the damaged area and tapering the first end portion of the shrink tube by cutting the shrink tube. Another aspect includes a device to taper end portions of a cable jacket shrink tube repair. A further aspect includes a device to dispose a tube on a cable.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 11, 2012
    Assignee: Raytheon Company
    Inventors: Curtis B. Carlsten, Robert E. Walsh
  • Publication number: 20120219258
    Abstract: The present disclosure provides for improved field termination optical fiber connector members and/or splicers for use in terminating or fusing optical fibers. More particularly, the present disclosure provides for convenient, low-cost, accurate, and effective methods for terminating or fusing optical fibers utilizing advantageous field termination optical fiber connector members and/or splicers. Improved apparatus and methods are provided for use in terminating or fusing a broad variety of optical fibers.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Applicant: ORTRONICS, INC.
    Inventors: Ryan J. Grandidge, Rudolph A. Montgelas, Adam Murano, William Dietz, Alex Richard, Jose Mozota
  • Patent number: 8254743
    Abstract: A holder capable of holding an optical fiber cable without breaking or damaging the cable includes a holder main body, a fiber holding portion, and a cable holding portion. The main body has a groove for receiving the optical fiber exposed from the cable sheath at an end part of the cable, and a portion for receiving the end part of the cable sheath. A positioning surface with which an end surface of the cable sheath can come in contact is provided at the boundary between the fiber receiving groove and the cable receiving part. A fiber holding portion for pressing and holding the optical fiber received by the fiber receiving groove, and a cable holding portion for pressing and holding the cable sheath received by the cable receiving part, are configured so that holding by the cable holding portion is released in conjunction with the release of holding by the fiber holding portion.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: August 28, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Ryuichiro Sato
  • Patent number: 8238701
    Abstract: An optical connector comprises a sleeve with a flange provided at one end face of a hollow cylinder, a collimator lens, which is press-fitted into or fitted by insertion into the sleeve to be thereafter adhered and fixed to the sleeve, and an optical fiber, which is fusion-bonded at the end face of the collimator lens on the opposite side to the flange side in such a state that the collimator lens is fixed into the sleeve, wherein the end face of the flange is machined to a plane perpendicular to an optical axis, and the collimator lens has a focal position at the end face on the opposite side to the flange side.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 7, 2012
    Assignee: Precise Gauges Co., Ltd.
    Inventor: Musubu Koishi
  • Publication number: 20120183266
    Abstract: A multi-stage fiber processing system comprises first and second fiber holders configured to hold respective portions of at least one fiber and a plurality of heat sources arranged between the first and second fiber holders and configured to provide a heat zone that axially extends about the at least on fiber. The first and second fiber holders can be configured to translate away from each other for tapering. The plurality of heat sources can include two 3 electrode heat sources that deliver an extended, substantially isothermic heat field axially about the fiber. All but one heat source can be turned off to splice the fiber. The two 3 electrode heat sources can generate 9 arcs to from the heat zone, wherein arcs between the two 3 electrode heat sources can be rotated about the at least one fiber.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 19, 2012
    Applicant: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Publication number: 20120183265
    Abstract: Provided is a thermal mechanical diffusion system and method. In accordance with the present invention, one end of a fiber under tension is vibrated while a portion of the fiber is heated. A push-pull action of one end of the fiber forces increased (or rapid) diffusion of dopants in the portion of the fiber that is in a heat zone, which receives the heat. By controlling the amplitude and frequency of the vibration, a diffusion profile of one or more fibers can be dictated with precision. Heat sources having narrower thermal profiles can enable greater precision in dictating the diffusion profile. As an example, this can be particularly useful for creating a diffusion taper within a fiber to be spliced, where the taper is a result of thermal expansion of the fiber core. Diffusion can occur much more rapidly than is typical.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 19, 2012
    Applicant: 3SAE TECHNOLOGIES, INC.
    Inventors: Robert G. Wiley, Brett Clark, John Lower
  • Patent number: 8217311
    Abstract: A method for instant splicing of an optical fiber to an optical waveguide or bulk material comprises forming a nanometric conductive layer at the interface between the optical fiber and the optical waveguide or bulk material to be spliced, and applying laser radiation to the interface through the fiber optical internally or through the bulk material externally, to produce an arc discharge due to the laser light electric field. The arc discharge melts and diffuses the conductive layer to produce a permanent splice having a low optical loss.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 10, 2012
    Assignee: KiloLambda Technologies Ltd.
    Inventors: Ram Oron, Ariela Donval, Doron Nevo, Moshe Oron
  • Publication number: 20120170898
    Abstract: A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: WELLDYNAMICS, B.V.
    Inventors: Paul D. RINGGENBERG, Neal G. SKINNER, John L. MAIDA, JR., David O. JOHNSON
  • Publication number: 20120148204
    Abstract: A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: WELLDYNAMICS, B.V.
    Inventors: Paul D. RINGGENBERG, Neal G. SKINNER, John L. MAIDA, JR., David O. JOHNSON
  • Publication number: 20120148203
    Abstract: A method of terminating a fiber optic cable includes removing a portion of an outer jacket from an end of a fiber optic cable to expose an end portion of an optical fiber so that an end of the optical fiber extends a first axial length from the outer jacket. A portion of the fiber optic cable is coiled about a spool so that the end of the optical fiber extends a second axial length from the outer jacket. The second axial length is greater than the first axial length. A second optical fiber is spliced to the optical fiber of the fiber optic cable. The portion of the fiber optic cable is uncoiled so that the optical fiber retracts into the outer jacket of the fiber optic cable.
    Type: Application
    Filed: September 9, 2011
    Publication date: June 14, 2012
    Applicant: ADC Telecommunications, Inc.
    Inventors: Yu Lu, Scott Carlson, Andy Schmidt
  • Patent number: 8116606
    Abstract: A fiber optic includes a plurality of fibers each including a core made of core glass for propagating light and a cladding for covering an outer periphery of the core and made of cladding glass lower in refractive index than the core glass and an absorber glass arranged between the plurality of fibers and for absorbing light leaking from the plurality of fibers. The plurality of fibers are bundled and integrated. The absorber glass contains Fe3O4 being iron oxide crystals.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 14, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takeo Sugawara, Akira Tominaga
  • Patent number: 8096712
    Abstract: A splicing method and splicing kit are suitable for creating a multimode mechanical splice. The splice may be used, for example, in Aircraft Battle Damage Repair operations. The splice utilizes two cylindrical inner crimp sleeves and an outer crimping assembly. The inner crimp sleeves are placed over prepared fiber cable ends, and the fiber core is cleaved. The cable ends are then inserted into an outer cannula of the outer crimping assembly. The cannula guides the inner crimp sleeves, and the cleaved fiber ends enter a glass ferrule in the cannula. The glass ferrule has a triangular bore containing an index matching gel. A window in the cannula and a magnifying viewer are provided to visually confirm the splice quality. The fibers may be cleaved by forming a circumferential score on the fiber.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 17, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Thomas Solomon, Donald Johnson, Steven Mersch
  • Patent number: 8094988
    Abstract: Apparatus and methods for verifying an acceptable splice termination include propagating light energy into the stub optical fiber of a fiber optic connector, detecting and collecting the amount of optical power emanating from the stub optical fiber at a termination area of the connector, converting the optical power to an electrical signal proportional to the amount of collected optical power, and displaying the electrical signal on a feedback monitor, such as an optical power meter, an LCD bar graph, or an LED. An initial (i.e., reference) value is obtained with the field optical fiber not in physical contact with the stub optical fiber. A final (i.e., terminated) value is obtained with the field optical fiber in physical contact with the stub optical fiber and terminated to the connector. The final value is compared to the initial value to determine whether the change (i.e., difference) is sufficient. Alternatively, the final value is compared to a predetermined limit or threshold.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, David W. Meek, Joshua D. Raker, Scott E. Semmler
  • Patent number: 8094986
    Abstract: A double clad fiber includes a core, a first cladding provided so as to cover the core, and a second cladding provided so as to cover the first cladding. The second cladding has a plurality of pores extending in a length direction and arranged so as to surround the first cladding. In at least one fiber end, the second cladding has been removed by mechanical processing so that the at least one fiber end is formed by the core and the first cladding.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 10, 2012
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Masatoshi Tanaka, Tetsuya Yamamoto
  • Patent number: 8075200
    Abstract: A connecting part (1) for an optical connection of a first optical fiber (2) to a second optical fiber (3) comprises a sleeve-like cable mount (4) having a first cable receiving section (5), in which the first optical fiber (2) can be housed, and a second cable receiving fiber section (6), in which the second optical fiber (3) can be housed. The optical fiber ends (23, 24) of the two optical fibers (2, 3) can be welded together. Therefore, the second cable receiving section (6) is designed along the median longitudinal axis (L) in such a way, that it can be assembled and comprises a casing part (10, 10?) pivotable about a hinge (1). The weld joint is located within the pivoting range of the casing part. The cable mount comprises a screw-on coupling sleeve (8) for covering and fixation.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: December 13, 2011
    Assignee: Diamond SA
    Inventor: Harry Uboldi
  • Patent number: 8070369
    Abstract: Techniques and systems suitable for performing low-loss fusion splicing of optical waveguide sections are provided. According to some embodiments, multiple laser beams (from one or more laser) may be utilized to uniformly heat a splice region including portions of the optical waveguide sections to be spliced, which may have different cross-sectional dimensions. According to some embodiments, the relative distance of the optical waveguide sections and/or the power of the multiple laser beams may be varied during splicing operations.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: December 6, 2011
    Assignee: Weatherford/LAMB, Inc.
    Inventors: Mark R. Fernald, Trevor W. MacDougall, Martin A. Putnam, Rebecca S. Bryant, Christopher J. Wright, Michael Arcand, Christopher T. Chipman
  • Patent number: 8073297
    Abstract: A side fire optical device comprises a cap member, a sleeve and a fiber optic segment. The cap member comprises a closed end section, a tube section having a bore, and a transmitting surface. The sleeve is received within the bore of the tube section. The sleeve includes a bore and an exterior surface that is fused to a surface of the bore of the cap member. The fiber optic segment comprises an exterior surface that is fused to a surface of the bore of the sleeve, and a beveled end surface that is positioned adjacent the transmitting surface of the cap member. The beveled end surface is angled relative to a longitudinal axis of the fiber optic segment such that electromagnetic radiation propagating along the longitudinal axis of the fiber optic segment is reflected by the beveled end surface at an angle that is transverse to the longitudinal axis and through the transmitting surface of the cap member.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: December 6, 2011
    Assignee: AMS Research Corporation
    Inventor: Stephen E. Griffin
  • Patent number: 8055110
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular hole-containing region that contains non-periodically disposed holes. The annular hole containing region is doped with at least one dopant selected from fluorine and chlorine. The optical fiber provides low bend loss as well as low heat-induced splice loss.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 8, 2011
    Assignee: Corning Incorporated
    Inventors: Jeffrey Coon, Lisa Larae Hepburn, Ming-Jun Li, Kevin Bryan Sparks
  • Patent number: 8047726
    Abstract: An optical connector in which the housing property into a cabinet or the like can be enhanced because of the compactification, and which can solve problems of the increase of the bending loss of an optical fiber, the breakage, and the like is obtained. In an optical connector which houses and holds a fusion spliced portion where a short optical fiber previously fitted to an optical connector ferrule is fusion-spliced with a coated optical fiber, one end of a protection sleeve which armors the fusion spliced portion is coupled to the optical connector ferrule. As a result, the length of the protection sleeve which covers the fusion spliced portion so that the fusion spliced portion is positioned at the middle can be set with reference to an end portion of the optical connector ferrule. Therefore, the protection sleeve can be shortened, and compactification of the optical connector can be realized.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshikyo Tamekuni, Yukihiro Yokomachi, Tsutomu Watanabe, Toshihiko Honma, Masahiro Shibata
  • Publication number: 20110262084
    Abstract: A fiber optic cable assembly includes a main fiber optic cable and a pre-connectorized fiber optic cable assembly. Optical fibers of the main fiber optic cable are mass fusion spliced to optical fibers of the pre-connectorized fiber optic cable assembly thereby forming a mass fusion splice. The mass fusion splice is positioned within an outer jacket of the main fiber optic cable. A reinforcing member and a protective transition member are applied to make the fiber optic cable assembly. A method of making the fiber optic cable assembly is also disclosed.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 27, 2011
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventor: Michael James Ott
  • Publication number: 20110235982
    Abstract: A method for connecting optical fibers and a connection structure of optical fibers capable of suppressing axial misalignment between cores in end-to-end connection of optical fibers at least one of which has a clad for a non-circular shape.
    Type: Application
    Filed: March 21, 2011
    Publication date: September 29, 2011
    Applicant: FUJIKURA LTD.
    Inventor: Hiroyuki Taya
  • Publication number: 20110226940
    Abstract: Exemplary embodiments of an article of manufacture and method according to the present disclosure are provided. For example, a first multi-clad fiber arrangement can be provided that comprises a first core and at least one first cladding which is structured to propagate at least one first electro-magnetic radiation therethrough. A second multi-clad fiber arrangement can also be provided that comprises a second core and at least one second cladding which is structured to propagate at least one second electro-magnetic radiation therethrough. Further, at least one portion can be provided in which the first and second claddings are fused to one another.
    Type: Application
    Filed: June 19, 2009
    Publication date: September 22, 2011
    Applicant: The General Hospital Corporation
    Inventor: Seok-Hyun Yun
  • Patent number: 8023785
    Abstract: A laser guide optical fiber (100) used for transmitting a laser beam includes an optical fiber body (110) including a core (111) and a clad (112), and a quartz chip (120) integrally provided at an end surface on the light entering side of the optical fiber body (110) and including an optical waveguide portion, where at least the optical waveguide portion of the quartz chip (120) is made of pure quartz. The quartz chip (120) includes a light entering surface subjected to surface fusion treatment.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 20, 2011
    Assignee: Mitsubishi Cable Industries, Ltd.
    Inventors: Takeshi Satake, Takeji Akutsu, Motohiko Yamasaki
  • Patent number: 8011835
    Abstract: A splicer comprises a positioning device, in which the fiber ends in general have a residual offset. A memory stores a predetermined relationship between the possible offset and a parameter which controls the application of heat. The parameter which controls the application of heat, for example the splicing time for a predetermined splicing current, is defined on the basis of an actual offset which can be recorded by means of cameras.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: September 6, 2011
    Assignee: CCS Technology, Inc.
    Inventor: Karsten Contag
  • Patent number: 8007186
    Abstract: Provided is a method of constructing a normal joint structure for connecting superconducting cables having a cable core and an optical fiber arranged along the cable core. With the method, which includes the steps of: pulling out an optical fiber from the end of each of two superconducting cables to be connected together and splicing the optical fibers thus pulled out; returning the excess length of the pulled-out optical fiber to a superconducting cable side upon the completion of splicing; and connecting the cable cores, it is possible to reduce the quantity of optical fiber housed in a joint box, and accordingly to downsize the joint box.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: August 30, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yuuichi Ashibe
  • Publication number: 20110206329
    Abstract: Disclosed is a fiber terminal box comprising: a panel having a front surface and a rear surface; a front cover for covering the front surface of the panel; and a case adapted to be embedded in a wall. An adapter and a fiber splicing member are mounted on the front surface of the panel, and the panel is adapted to be accommodated in the case and hence be embedded in the wall along with the case. The panel is provided with an optical cable inserting hole through which a lead-in end of an optical cable is led from the rear surface of the panel to the front surface of the panel and is connected to one end of the fiber splicing member. The panel is further provided with a fiber pigtail hole, one end of a fiber pigtail is connected to the terminal of the adapter, the other end of the fiber pigtail is led from the rear surface of the panel to the front surface of the panel through the fiber pigtail hole and is connected to the other end of the fiber splicing member.
    Type: Application
    Filed: October 21, 2009
    Publication date: August 25, 2011
    Inventor: Liming Wang
  • Patent number: 7991255
    Abstract: The invention relates to a pump coupler (2) and a manufacturing method. The pump coupler (2) comprises a least one signal fiber (50) for outputting optical energy, multiple pump fibers (31) for inputting optical energy into the signal fiber (50), and a coupling structure (40) for coupling the optical energy of the pump fibers (31) into the signal fiber (50). A signal feed-through fiber (32) goes through the coupling structure (40). In accordance with the invention the coupling structure (40) is a tapering capillary tube (40) having a first wide end (65) and a second narrow end (70), the pump fibers (31) are connected to the wide end of the capillary tube (40), and at least the narrow end (70) of the capillary tube (70) is collapsed around the signal fiber (32).
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 2, 2011
    Assignee: Corelase Oy
    Inventor: Arto Salokatve
  • Patent number: 7985029
    Abstract: A multi-electrode system includes a fiber holder that holds at least one optical fiber, a plurality of electrodes arranged to generate a heated field to heat the at least one optical fiber, and a vibration mechanism that causes at least one of the electrodes from the plurality of electrodes to vibrate. The electrodes can be disposed in at least a partial vacuum. The system can be used for processing many types of fibers, such processing including, as examples, stripping, splicing, annealing, tapering, and so on. Corresponding fiber processing methods are also provided.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 26, 2011
    Assignee: 3SAE Technologies, Inc.
    Inventors: Robert G. Wiley, Brett Clark, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 7985028
    Abstract: According to an optical fiber splicing technique in which optical fibers F11 and F12 respectively connected to optical members 3 and 4 of an optical member unit are connected by fusion splicing, the plurality of optical fibers F11 and F12 and a looped turn-around fiber F21 are positioned facing each other and connected by fusion splicing, to connect the plurality of optical fibers F11 and F12 with each other.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 26, 2011
    Assignee: Fujitsu Limited
    Inventor: Fumio Aoki
  • Publication number: 20110176767
    Abstract: An optical fiber connection structure reducing MPI is provided. An intervening optical fiber 30 having a normalized frequency less than 2.405 and a length greater than or equal to 2 mm and less than or equal to 30 mm is interposed between a single-mode fiber 10a and a second single-mode fiber 20, and the second single-mode fiber 20 and the intervening optical fiber 30 are fused together. While transmission light is input through the first single-mode fiber 10a to the second single-mode fiber 20, a higher order mode is not generated in the second single-mode fiber 20.
    Type: Application
    Filed: August 21, 2009
    Publication date: July 21, 2011
    Applicant: MITSUBISHI CABLE INDUSTRIES, LTD.
    Inventors: Masatoshi Tanaka, Masayoshi Hachiwaka, Haruo Ooizumi
  • Publication number: 20110142402
    Abstract: An optical fiber that permits, even when the cladding outer diameter thereof is smaller than 125 ?m, an eased splicing with other optical fiber using a general-purpose ferrule, is provided. The optical fiber comprises: a first optical fiber having a first core and a first cladding having a cladding outer diameter smaller than 125 ?m, wherein the first cladding has a plurality of air holes that extend longitudinally along the axis of the first core; a second optical fiber having a second core to be spliced to the first core, and a second cladding having a cladding outer diameter larger than the outer diameter of the first cladding, wherein the second cladding is to be spliced to the first cladding; and a fusion splice formed between the end of the first optical fiber and the end of the second optical fiber by fusion.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 16, 2011
    Applicant: HITACHI CABLE, LTD.
    Inventors: Masao TACHIKURA, Kazumasa OHSONO, Noribumi SHIINA, Yoshikazu NAMEKAWA
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7934874
    Abstract: A holder capable of protecting an optical connector ferrule from an external shock, or the like and executing a fusion-splice of a short optical fiber not to take out the optical connector ferrule from the holder is obtained. A holder for holding a connector plug equipped with an optical connector ferrule to which a short optical fiber is fitted and a plug frame for covering an outer periphery of the optical connector ferrule therein, wherein, when the short optical fiber together with the holder is fitted to a fusion splicing apparatus that fusion-splices the short optical fiber and other coated optical fiber, the short optical fiber extended from the plug frame is positioned in a fusion position.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: May 3, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshihiko Honma, Tsutomu Watanabe, Yukihiro Yokomachi, Yoshikyo Tamekuni
  • Patent number: 7922400
    Abstract: A multi-electrode system comprises a fiber support configured to hold at least one optical fiber and a set of electrodes disposed about the at least one optical fiber and configured to generate arcs between adjacent electrodes to generate a substantially uniform heated field to a circumferential outer surface of the at least one optical fiber. The electrodes can be disposed in at least a partial vacuum.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 12, 2011
    Assignee: 3SAE Technologies, Inc.
    Inventors: Brett Clark, Robert G. Wiley, Jared C. Meitzler, Clyde J. Troutman
  • Patent number: 7900480
    Abstract: A method of determining a heating amount adequate for fusion splicing is provided. In the method, the melting state of the end portions of optical fibers can be monitored on a real time basis so that fewer tests need to be performed. A method of fusion splicing and a fusion splicer are also provided. In the method of determining the heating amount, end portions of optical fibers that are placed opposite one another with a predetermined gap therebetween are heat-melted; an image of portions to be heat-melted is observed with an image-capturing device; and a luminance, a light emitting width, or a change in the luminance or the light emitting width is measured. In the method of fusion splicing, optical fibers are heat-melted with the heating amount that is determined using test fibers in advance, or determined using the optical fibers to be fusion spliced.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kazunari Hattori
  • Publication number: 20110038585
    Abstract: A method for operating an apparatus for connecting optical waveguides comprises preventing the apparatus to connect optical waveguides in response to a determination of a first state of contamination of an optical system and outputting an information signal in response to a determination of a second state of contamination, the second state representing less contamination than the first state.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Inventor: Christian Heidler
  • Patent number: 7874742
    Abstract: A splicing device for optical fibers comprises a programmable splicing apparatus which can be controlled by means of at least one program parameter, for connecting optical fibers, and a speech recognition unit. Spoken text is detected via the speech recognition unit, and a spoken command is determined from the detected spoken text. The at least one program parameter of the splicing apparatus is adjusted and/or the splicing apparatus is controlled as a function of the determined spoken command.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: January 25, 2011
    Assignee: Corning Cable Systems LLC
    Inventor: Rainer M. Kossat
  • Publication number: 20110002692
    Abstract: An optical waveguide and a bi-directional transceiver are provided. A single mode optical fiber has one end coupled to one end of a hollow optical fiber and an opposite end having a slope plane, thereby separating optical signals travelling in opposite directions from each other. Manual alignment for an optical system is easily realized without the need for additional optical elements, so that the light transmission/reception performance of the optical waveguide is improved and the structure of the optical waveguide is smaller.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sei-Hyoung LEE, Hyun-Seo KANG, Jai-Sang KOH
  • Publication number: 20100296157
    Abstract: [Object] An optical fiber coupler in which damage to an pumping light source can be suppressed even if signal light leaks and an optical fiber amplifier using the optical fiber coupler are provided. [Solving Means] An optical fiber coupler 100 includes: a first optical fiber 10 having a core 11 and a clad 13 coating the core 11; a second optical fiber 20 having a core 21; and a fusion-drawn portion 110 formed by arranging the first optical fiber 10 and the second optical fiber 20 so that their longitudinal directions are in the same direction and fusing the clad 13 of the first optical fiber 10 and the core 21 of the second optical fiber 20. The clad 13 of the first optical fiber 10 has a larger refractive index than the core 21 of the second optical fiber 20.
    Type: Application
    Filed: May 25, 2010
    Publication date: November 25, 2010
    Applicant: FUJIKURA LTD.
    Inventor: Minoru Takahashi
  • Publication number: 20100284653
    Abstract: An optical connector in which the housing property into a cabinet or the like can be enhanced because of the compacification, and which can solve problems of the increase of the bending loss of an optical fiber, the breakage, and the like is obtained. In an optical connector which houses and holds a fusion spliced portion where a short optical fiber previously fitted to an optical connector ferrule is fusion-spliced with a coated optical fiber, one end of a protection sleeve which armors the fusion spliced portion is coupled to the optical connector ferrule. As a result, the length of the protection sleeve which covers the fusion spliced portion so that the fusion spliced portion is positioned at the middle can be set with reference to an end portion of the optical connector ferrule. Therefore, the protection sleeve can be shortened, and compactification of the optical connector can be realized.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 11, 2010
    Inventors: Yoshikyo Tamekuni, Yukihiro Yokomachi, Tsutomu Watanabe, Toshihiko Honma, Masahiro Shibata
  • Publication number: 20100272405
    Abstract: An optical fiber fusion splicer (1) includes a body (10); a joining part (20) disposed on the top portion of the body (10) to join ends of two optical fibers (2); a heating part (30) disposed on the top portion of the body to fuse a sleeve pipe (3) to the optical fibers, which are joined to each other; a monitor (40) disposed on the top portion of the body to monitor the connection state of the optical fibers; an operating part (50) disposed in the body to operate the joining part, the heating part (30) and the monitor (40); and a fixing part (60) detachably disposed on the top surface of the body so as to be positioned on one portion of the joining part. The sleeve pipe (3), which will be fused to the optical fibers (2), is fitted on the fixing part (60).
    Type: Application
    Filed: June 20, 2008
    Publication date: October 28, 2010
    Applicant: ILSINTECH CO., LTD.
    Inventors: Jae Seop Song, Sang Chul Jun, Young Bae Seo
  • Publication number: 20100265514
    Abstract: A compact and stable interferometer is easily built only with fusion splices. The air-holes of a microstructured fiber are intentionally collapsed in the vicinity of the splices and this broadens the propagating optical mode, allowing coupling from core to cladding modes. The transmission spectrum is sinusoidal and of single frequency, indicating predominant interference between the fundamental core mode (7) and a cladding mode (6). A regular interference spectrum can be observed from 650 nm to 1600 nm with fringe visibility reaching 80%. The fringe spacing is inversely proportional to the distance between the splices. This behaviour has a significant impact in optical sensing and communications and so the interferometer can be applied for strain sensing. The device comprises two splices (5) of a microstructured optical fiber (1), said splices (5) determining two regions in which the air-holes (4) are collapsed, separated a length (L) along which said two modes are excited.
    Type: Application
    Filed: December 21, 2007
    Publication date: October 21, 2010
    Applicants: INSTITUT DE CIENCIES FOTONIQUES, FUNDACIO PRIVADA, INSTITUCIO CATALANA DE RECERCA I ESTUDIS AVANCATS
    Inventors: Agustin Joel Villatoro, Valerio Pruneri, Goncal Badenes
  • Patent number: 7815377
    Abstract: A fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Donald G. Doss, Daniel Leyva, Jr., Brandon Andrew Barnes