Including Splice Joint Reinforcement Patents (Class 385/99)
  • Publication number: 20090078020
    Abstract: An apparatus and method is provided for protecting control lines used with tool strings in a downhole environment. A control line protector assembly comprises a plurality of components formed into a unitary piece which includes a guard section having a first end section and a second end section, a slot on each of the first end section and the second end section, and a securing mechanism for coupling the guard section having the first end section and the second end section to the coupling. A control line protector assembly is formed using a metal stamping process.
    Type: Application
    Filed: September 25, 2007
    Publication date: March 26, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Iain Baxter
  • Patent number: 7503707
    Abstract: Methods for splicing optical fibers include coupling a first optical fiber cable to a longitudinally extending closure frame and coupling a second optical fiber cable to an adjustable guide member on the closure frame. The adjustable guide member is moved toward the first optical fiber cable to provide a distance between the first and second optical fiber cable less than an exposed length of the first and second optical fiber therebetween to provide a slack length of optical fiber. Cleaved exposed ends of a first optical fiber from the first optical fiber cable and a second optical fiber from the second optical fiber cable are positioned proximate each other in a splice station displaced from the closure frame utilizing the slack length of optical fiber. The first and second optical fibers are spliced in the splice station and the adjustable guide member is moved away the first optical fiber cable to remove the slack length and position the spliced optical fibers in the closure frame.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: March 17, 2009
    Assignee: Tyco Electronics Corporation
    Inventors: Craig Ray, Jackie Moore
  • Patent number: 7494289
    Abstract: An optical fiber splice protector is provided which includes a first tube being substantially hollow and being locatable along a portion of the length of at least one optical fiber, the portion including a bare optical fiber section of the optical fiber. A longitudinal support is also locatable along the portion of the length of the optical fiber that includes the bare optical fiber splice section of the optical fiber, the longitudinal support being enclosable by the first tube along the length of the optical fiber. The first tube is of high temperature resistant material that is resistant to temperatures above 125 degrees Celsius.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 24, 2009
    Assignee: Schlumberger Technology Corporation
    Inventor: Yuehua Chen
  • Publication number: 20090034917
    Abstract: An splice enclosure for supporting a splice between the ends of a pair of fiber optic drop cables includes at least one longitudinally-extending flexible support member extending across the splice, a cover member which covers the splice and which overlaps the jackets of the two cables, and at least one collar. Each collar has a central aperture through which the buffer tube of a cable can be passed, at least one aperture for receiving a strength member of one of the cables, and at least one aperture for receiving an end of a support member. The support members preferably have similar or identical dimensions, composition and flexibility as the strength members of the cables so as to substantially preserve the flexibility of the cable across the splice. Also disclosed are kits for forming enclosures for optical fiber splices and methods for enclosing optical fiber splices.
    Type: Application
    Filed: July 24, 2008
    Publication date: February 5, 2009
    Applicant: SHAWCOR LTD.
    Inventors: Doug Burwell, Ibrahim Basrawi, Glen Brehaut
  • Patent number: 7467899
    Abstract: A built-in optical fiber of a ferrule has one end of the built-in optical fiber matched with a splicing end surface, and the other end of the built-in optical fiber protruded from an end portion opposite to the splicing end surface and one end of a splicing optical fiber to be spliced are placed so as to be fusion-sliced with one another. After that, the ferrule is held by inserting a cylindrical portion of the ferrule into a holding unit of a ferrule holder from the splicing end surface. The ferrule is transferred while holding a stem extended on an opposite side of the holding unit of the ferrule holder and the splicing optical fiber.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: December 23, 2008
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Tomohiro Akiyama
  • Patent number: 7461983
    Abstract: A splice for connecting two segments of optical fiber cable, the splice comprising: (a) an elongated housing having a first end with a first opening, a second end with a second opening, and a central cavity, the housing being essentially seamless between the first and second ends; (b) a clamping mechanism disposed in the central cavity and comprising at least a platform defining a fiber-receiving channel open to both first and second openings, a first member adjacent to the fiber-receiving channel and having at least one cam surface, and a second member having a second cam surface, the first and second cam surfaces cooperating such that relative movement of the first and second members toward the first end causes the first member to move toward the fiber-receiving channel and an actuator to cause relative movement of the first and second members toward the first end; (c) a first buffer crimp disposed at the first opening; and (d) a second buffer crimp disposed at the second opening.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 9, 2008
    Assignee: Tyco Electronics Corporation
    Inventors: Michael Lawrence Gurreri, Lou Castagna, David Donald Erdman
  • Publication number: 20080292252
    Abstract: The present method and kit provide for effective and efficient patching of fiber optic cables. The kit comprises mechanical fiber optic splicers, a fiber optic patch, a splice housing, and a protective housing. The mechanical fiber optic splicers can be used to splice the fiber optic cable and the fiber optic patch. The mechanical fiber optic splicers, the fiber optic patch, and a portion of the fiber optic cable can be enclosed within the splice housing. The splice housing can then be enclosed within a protective housing.
    Type: Application
    Filed: May 27, 2008
    Publication date: November 27, 2008
    Inventors: Glen Edward Gould, Andrew Matulica, Dennis Joseph Byrne
  • Patent number: 7447414
    Abstract: A cable protector (for protecting e.g. optical cable) apparatus provides an elongated flexible body having a central longitudinal bore for holding the cable to be protected. The elongated body provides an outer surface, an inner surface, and a mass of flexible absorbent material in between the inner and outer surfaces. The mass of flexible material carries a plurality of longitudinally extending channels, each channel positioned generally in between the inner and outer surfaces. A slot extends between the inner and outer surfaces for enabling a user to expose the central longitudinal bore by spreading the slot apart so that the cable can be placed into the central bore via the slot.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: November 4, 2008
    Inventor: Wayne Camick
  • Patent number: 7410308
    Abstract: A new fiber optic cable splice for splicing optical fiber cables together and reconstructing fiber-optic cable that provide substantially enhanced reliability and broadened operating temperature range is disclosed. The disclosed cable splice offer reliable and user friendly solutions to applications in many harsh environments such as avionics, field vehicles, and defense related instrumentation. The cable splice consists of a preassembled one piece splice core and outer mechanical and thermal shielding layers. A simple splicing procedure and key fixtures are also disclosed.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: August 12, 2008
    Assignee: All Optronics, Inc.
    Inventors: Charles Qian, Katherine X. Liu
  • Patent number: 7403686
    Abstract: The invention is a staggered splice and method for making the same. The staggered splice is used to join two multi-fiber optic cables. Each opposing pair of optic fibers is cleaved such that they all have substantially the same combined length and provide fully operable communication. The light transmitting interfaces are staggered with respect to each other. The individual splices can be mechanical or fusion splices. The splices are typically bundled and protected with a sheath. The staggered splice is particularly applicable for connecting torpedo payout spools wound with the multi-fiber optic micro cable to the shipboard side wire.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 22, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Harry Zervas
  • Publication number: 20080169116
    Abstract: According to embodiments of the present invention, a cable sealing assembly for providing an environmental seal about a cable includes a housing, a flowable cable sealant and a compression feature. The housing includes first and second housing parts. The first housing part defines a cable passage to receive a cable having a lengthwise cable axis. The cable sealant is disposed in the cable passage. The compression feature forms at least a part of the second housing part and is movable in an installation direction between a ready position and an installed position. The compression feature is shaped and configured to force the cable sealant to flow about the cable in a direction transverse to the cable axis to circumferentially surround a portion of the cable when the compression feature is moved from the ready position to the installed position.
    Type: Application
    Filed: October 30, 2007
    Publication date: July 17, 2008
    Inventors: Julian Mullaney, James Bert Powell, William Alan Carrico, Christopher Alan Hastings
  • Patent number: 7393148
    Abstract: A splice enclosure assembly is provided for enclosing a splice between first and second fiber optic cables, the first and second fiber optic cables each having a jacket, an elongate optical fiber and at least one flexible, elongate strength member extending through the jacket. The splice enclosure assembly includes an elongate bridge member and an elongate cover member. The elongate bridge member has first and second opposed ends. The bridge member defines a channel extending axially between the first and second ends. The elongate bridge member includes an intermediate portion and first and second strain relief coupling structures. The intermediate portion is disposed between the first and second ends and has an intermediate portion of the channel defined therein. The bridge member is configured to receive the first and second fiber optic cables in the channel such that the splice is disposed in the intermediate portion of the channel.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: July 1, 2008
    Assignee: Tyco Electronics Corporation
    Inventors: Barry Wayne Allen, Erik David Bishop
  • Patent number: 7377703
    Abstract: The present invention is directed to a connector assembly for connecting optical fibers in optical communication systems, and particularly to flexible ferrule device for connecting optical fibers for such use. The present invention further relates to a method of connecting optical fiber using such device and to a tool for the use thereof. The invention relates to an optical fiber connection device that allows for the end-to-end alignment of two optical fibers in a way such as to permit a light signal to pass from one fiber to the other fiber with minimal attenuation and reflection losses. This device also makes it possible to reduce any air layer between the ends of the two fibers in contact by maintaining pressure on their ends.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: May 27, 2008
    Assignee: 9134-9001 Quebec Inc.
    Inventor: Eric Weynant
  • Publication number: 20080112675
    Abstract: A fiber optic cable assembly including a mid-span access location, a cable having at least fiber therein, and a tether attached and spliced to at least one fiber of the cable. The access location and portions of the cables are substantially encapsulated within a flexible body having dimensions sufficient to accommodate a slack coil or loop of bend performance optical fiber therein. A method for making a fiber optic cable assembly including an access location, distribution cable, tether and slack coil of optical fiber maintained within a flexible overmolded body while providing an assembly having a cross-sectional diameter less than about 1.25 inches.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Christopher Paul Lewallen, Robert B. Elkins, James P. Luther, Costa Saravanos, Elli Makrides Saravanos
  • Patent number: 7369738
    Abstract: An optical connector for terminating an optical fiber comprises a housing configured to mate with a receptacle and a collar body disposed in the housing. The collar body includes a fiber stub disposed in a first portion of the collar body, the fiber stub including a first optical fiber mounted in a ferrule and having a first end proximate to an end face of the ferrule and a second end. The collar body also includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The collar body also includes a buffer clamp configured within a third portion of the collar body, the buffer clamp configured to clamp at least a portion of a buffer cladding of the second fiber upon actuation. A fiber distribution unit is also provided.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 6, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Paul N. Winberg, Wesley A. Raider, Chansool Park, Wai-Fung Mak, James B. Carpenter, Frank J. Glatzl
  • Patent number: 7364375
    Abstract: A method for splicing fiber optic cables to each other utilizes a splice tube of a glass material having a passage extending through it. A technician inserts ends of each optical fiber into the glass tube and abuts the ends of the fibers against each other. The technician applies a vacuum to the passage and heat to the glass tube. The heat softens the glass tube, and the reduced pressure in the passage draws the side walls of the glass tube tightly around the optical fiber ends.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 29, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Richard C Jones
  • Patent number: 7349616
    Abstract: There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 25, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Guy Castonguay, Terry Dean Cox, Thomas Shaw Liggett, Selena Strickland
  • Patent number: 7343077
    Abstract: The present invention features a system and method for securely holding a fiber optic drop cable splice in place and for creating a watertight splice by encapsulating two or more fiber optic cables having one or more spliced fiber optic strands in an enclosure with an encapsulant to create a permanent, watertight fiber-optic splicing system and method.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: March 11, 2008
    Assignee: Uraseal, Inc.
    Inventors: William H. Mann, John K. Burnham, Michael H. Bubak, Pamela K. LaRoche, Kevin D. Scott, Duston W. Shost, Joseph E. Bradley, James J. Decknick
  • Patent number: 7333709
    Abstract: A splice holder device includes a tray mountable in a telecommunications closure, the tray including a splice mounting mechanism configured to receive a splice device. The splice holder device also includes first and second fiber clamps disposed on the tray, wherein the first and second fiber clamps are each configured to releasably secure a buffered portion of an optical fiber. The tray can include a single splice device, such as a mechanical splice, mounted therein or can include a plurality of splice devices mounted therein. The splice holder device can be configured to be securedly mounted in a telecommunications enclosure.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: James B. Carpenter, Douglas P. Hills, Chansool Park, Donald K. Larson, Paul N. Winberg
  • Patent number: 7327943
    Abstract: An installation closure having fiber management apparatus includes an outer shell and at least one cable centralizer disposed within the outer shell at a factory-assembled access location on a fiber optic distribution cable. The cable centralizer has a central channel for retaining the distribution cable and at least one routing slot for routing an optical fiber preterminated from the distribution cable at the access location. At least a portion of the outer shell is removed following deployment of the distribution cable and replaced with a conventional closure. An optical connector may be mounted upon the end of the preterminated optical fiber and the installation closure may further include an end centralizer having a central channel for retaining the distribution cable and at least one connector slot for retaining the connector. The replacement closure includes at least one connector port for receiving the connector from the inside of the installation closure.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: February 5, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: Chanh C. Vo, Anthony R. Board, Guy Castonguay, Brad N. Grunwald, James O. Little
  • Patent number: 7316513
    Abstract: A portable optical-fiber cutter is used to slice a first optical-fiber at an advantageous angle to control reflections and at a suitable length to mate with a similar second optical-fiber that was pre-sliced at a complementary angle in the factory and configured as a receptacle for the first optical-fiber. This technique avoids the need for installation of two-ended, factory pre-connectorized optical-fiber cable and permits usage of a narrow-diameter protective “microduct” to enclose the optical fiber cable rather than requiring large-diameter protective duct to allow passage of a pre-connectorized connector there-through. Space is saved, particularly in large multi-unit apartment buildings where available space may be at a premium for large bundles of multiple optical cables. This technique also results in saving large amounts of technician-installer time when compared with the current time-consuming technique of fusion splicing.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: January 8, 2008
    Assignee: Verizon Corporate Services Group Inc.
    Inventor: James P. Dacey
  • Patent number: 7313303
    Abstract: An optical cable having an optical core with a strength member and optical fibers embedded in a thermoplastic material. The optical core has a joint section having substantially the same diameter as the one of the optical core. The joint section has a jointed strength member and a plurality of spliced optical fibers, the jointed portion of the strength member and the spliced portion of the optical fibers being embedded into a cured polymeric material. A method for manufacturing an optical core is also disclosed.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: December 25, 2007
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Feliciano Cecchi, Alessandro Ginocchio, Nunzio Romanini, Giovanni Brandi
  • Patent number: 7309168
    Abstract: An optical fiber cable, comprising a cable main unit with an optical fiber covered by a sheath and terminal units mounted on end portions of the cable main unit, wherein each of the terminal units has a transparent cover member with a refractive index approximately equal to the optical fiber, the cover member of at least one of the terminal units and the optical fiber are welded under such condition that the cover member is brought closer to or into contact with the optical fiber, and the cover member and the optical fiber are integrated with each other.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: December 18, 2007
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Masayuki Momiuchi, Shinya Ikoma, Shigenori Nagano, Akira Takada
  • Patent number: 7306382
    Abstract: An fiber optic splice having substantially enhanced reliability and broadened operating temperature range uses a light-cured index matching fluid to splice the facing ends of the optical fibers in between two metallic tubes forming a leak-tight, thermally insulating, and mechanically robust outer package.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: December 11, 2007
    Assignee: All Optronics, Inc.
    Inventors: Charles X. W. Qian, Katherine X. Liu
  • Patent number: 7296940
    Abstract: An optical apparatus of the invention has a fusion splice portion where respective ends of two optical fibers each having a core, a cladding, and a UV coat portion provided on the outside of the cladding are fusion spliced, and a re-coat portion which re-coats a portion where the UV coat portion is removed in the vicinity of the fusion splice portion is formed using a material capable of absorbing light radiated from the fusion splice portion. As a result light which is radiated from the fusion splice portion can be reliably prevented from coupling into another optical fiber adjacent to an outside of the re-coat portion.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: November 20, 2007
    Assignee: Fujitsu Limited
    Inventors: Norifumi Shukunami, Hiroyuki Furukawa, Keiko Sasaki
  • Patent number: 7274852
    Abstract: A splice tray arranged to manage and store both stranded fiber optic cables and ribbon fiber optic cables. The tray includes a splice holding arrangement that accommodates both stranded splice components and ribbon splice components. The tray also includes a storage arrangement having radius limiting arrangements that define a number of storage or routing pathways that accommodate varying lengths of both stranded fiber optic cables and ribbon fiber optic cables.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: September 25, 2007
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark Smrha, Chad Sjodin
  • Patent number: 7264410
    Abstract: A fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 4, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Donald G. Doss, Daniel Leyva, Jr., Brandon Andrew Barnes
  • Patent number: 7242841
    Abstract: A flexible cross-connect apparatus for cross-connecting fiber optic cables includes a transition strength member, at least one cable clamp assembly, at least one fiber storage device, and a cover for protecting the cross-connect apparatus. The cross-connect apparatus is flexible about a preferential bending plane because the transition strength member includes a preferential bending plane for influencing bending. The at least one cable clamp assembly is used for securing one or more cables with the transition strength member at the ends. In one embodiment, a splice carriage is removably attached to the transition strength member for aiding the craftsman to work at a splicing station.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: July 10, 2007
    Assignee: Corning Cable Systems, LLC
    Inventors: Jody L. Greenwood, Kenneth D. Temple, Jr., David L. Dean, Jr., Keith H. Lail
  • Patent number: 7234881
    Abstract: A molding die 1 is constituted by an upper die 1a and a lower die 1b which are made of a material transparent to an ultraviolet light, and has a cavity 3 constituted by grooves 2c, 2d, whereas a resin injection gate 4 and a resin exit gate 7 are provided so as to communicate with the cavity 3. A junction of an optical fiber 10 is inserted into the cavity 3. A UV-curable resin is injected into the cavity 3 surrounding an exposing portion of the glass optical fiber 11 from the resin injection gate 4 positioned at one of coating ends of the optical fiber 10, whereas a part thereof is discharged from the resin exit gate 7 positioned at the other coating end. The ultraviolet light is emitted through the lower die 1b so as to cure the resin, thereby forming a reinforcement resin coating. As a consequence, bubbles can be prevented from occurring due to the residual air within the reinforcement resin coating in the junction of the optical fiber 10.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: June 26, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Rei Koike, Kenji Io, Tatsuo Saito, Tomomi Moriya, Yukio Nomura, Yoshiji Sato, Katsuichi Omori, Yoshiharu Meguro, Kazumasa Oishi, Keiji Osaka
  • Patent number: 7220067
    Abstract: The present invention provides a protector assembly and process for protecting a downhole connection of a line (e.g., fiber optic or electrical) from the wellbore environment. Inside the housing that provides protection from the wellbore environment is a subassembly that provides anchoring to prevent movement of the cables' internal components that may damage the spliced connection.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 22, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Scott A. Rubinstein, Ben A. Donnell
  • Patent number: 7221832
    Abstract: A thermal protection device for a fiber optic cable includes a loop formed on the cable and a plurality of sub-units within the cable removed from an outer jacket. A circumferential cut is made through an outer jacket of each sub-unit. A tube is placed about the cut in each sub-unit. A carrier is positioned about each of the tubes and each sub-unit including a circumferential cut. A fiber optic system includes a thermal protection device for sub-units of a fiber optic cable within a frame. A method of providing thermal protection for a fiber optic cable. A kit for providing thermal protection to telecommunications cables.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: May 22, 2007
    Assignee: ADC Telecommunications, Inc.
    Inventor: Thomas Tinucci
  • Patent number: 7207732
    Abstract: The present invention provides materials suitable for use as secondary coatings of optical fibers or the re-coating of spliced optical fiber junctions. With regard to the latter use, the coating materials a preferably characterized by a Young's modulus that is at least about 1200 MPa, and an interfacial strength as measured by the rod and tube method of greater than 25 MPa.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 24, 2007
    Assignee: Corning Incorporated
    Inventors: Michelle D. Fabian, Edward J. Fewkes, Gregory S. Glaesemann
  • Patent number: 7140787
    Abstract: An optical fiber splicing member can hold optical fiber buffer coatings stably in a simple structure as compared with conventional art and enables use of an existing splicing tool. There are provided a joint element 110, a jacket 120, buffer retainers 131 and a cap 140. By setting and pressing the cap to the jacket, it becomes possible to splice bare fibers of optical fibers 190 with each other by the joint element and to press the buffer coatings 192 by the buffer retainers. Assembling the splicing member is thus facilitated while the existing optical fiber splicing tool is utilizable as it is. The buffer coatings can be held stably because the holding is achieved through the pressing.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Takaya Yamauchi, Akihiko Yazaki
  • Patent number: 7128478
    Abstract: In an optical fiber fusion reinforcing device, a distance from an end face 723 to a mid point C6 of a reinforcing device 7 is set equal to a distance from a fusion splicing point M to an end face of a fusion splicing device 6 where optical fibers 3, 3 are inserted. The fusion splicing device 7 includes: positioning member 72 for aligning a mid point C7 of a heat shrinkable reinforcing member 13, which is slidably mounted on the fusion spliced optical fibers, and the fusion splicing point M of the optical fibers 3, 3 with each other; housing portion for housing the optical fibers 3, 3 and the heat shrinkable reinforcing member 13 so that the fusion splicing point M and the mid point of the heat shrinkable reinforcing member 13 are aligned, and heater for melting the heat shrinkable reinforcing member 13 in the housing portion.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 31, 2006
    Assignee: Fujikura Ltd.
    Inventors: Kenji Takahashi, Noriyuki Kawanishi, Manabu Fujisawa
  • Patent number: 7104706
    Abstract: The present invention relates to a heating device having at least a first heating element 102 for heating at least one protective sleeve 105, 602 arranged around at least a first uncoated optical fiber section 501, 603. Said sleeve 105, 602 being arranged to shrink when exposed to heat to form a protecting member tightly enclosing said uncoated optical fiber section 501, 603. The at least first heating element is flexible, and arranged to take at least a first open state and a second substantially closed state. Said first open state is suitable for inserting and removing said protecting sleeve and fiber into and out off said heating device. Said heating element, in said second state, substantially surrounds said sleeve to form an enclosure around said sleeve, so that said heating element radiates heat around substantially the complete circumference of said sleeve.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: September 12, 2006
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Dag Bergstrsöm, Hans Johansson, Moshen Janbakhsh, Torsten Lund
  • Patent number: 7058267
    Abstract: Method for manufacturing of an optical fiber with a decoupling interface for scattered light to monitor the power of light guided through the optical fiber, where the optical fiber has a core having a first refractive index and a cladding surrounding the core, the cladding having a second refractive index smaller than the first refractive index, and where a portion of the optical fiber is substantially straightly aligned in the region of the decoupling interface, in which method the optical fiber is electro-thermally treated at an intermediate position within the substantially straightly aligned portion such that a partial mixture of core material and cladding material and, thereby, formation of scattering centers occurs in an interface region between the core and said the cladding, thereby forming the decoupling interface for scattered light from the modified intermediate position.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: June 6, 2006
    Assignee: Toptica Photonics AG
    Inventors: Rudolf Neuhaus, Frederik Popp, Harald Rossmeier
  • Patent number: 7040818
    Abstract: A device for reinforcing an optical fiber fusion spliced part a heating mechanism for heating a protective member and optical fiber clamping mechanisms which are arranged at both sides of the heating mechanism. Relative height positions of the heating mechanism and the optical fiber clamping mechanisms are configured to be changeable.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: May 9, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Ryuichiro Sato
  • Patent number: 7021842
    Abstract: In an optical fiber array, an optical fiber, a bundle of optical fibers or an optical fiber ribbon is mounted on an array substrate with a V-groove or V-grooves. A bare fiber portion in which a fiber coating is removed is placed in the V-groove, pressed by a presser member 6 and bonded by adhesives. At the front end, the fiber(s) is/are accurately positioned to connect to optical components or PLCs. The bare fiber portion contains a spliced portion of the dissimilar optical fibers having different mode field diameters and a mode field converting portion. The spliced portion of the dissimilar optical fibers is mounted on the array substrate. A flexible protection member is provided in the fiber coating portion extending over a rear edge of the array substrate. The optical fiber is bonded onto the array substrate, employing three kinds of adhesives that are different in the Young's modulus after hardening and the viscosity before hardening.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 4, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eiichiro Yamada, Kazuhito Saito, Mitsuaki Tamura
  • Patent number: 7014372
    Abstract: A method of splicing optical fibers includes affixing a first fiber to a first keying element having a particular radial orientation, inserting the keying element in a support which receives the keying element only in a specific radial orientation, cleaving the fiber affixed to the inserted keying element at a predetermined angle (?) relative to the support to form an angled fiber end face, removing the keying element from the support, inserting the keying element into a splicing body which receives the keying element only in a specific radial orientation such that the angled fiber end face has a predictable radial orientation with respect to the splice body, and repeating the above operations for a second fiber and a second keying element, whereby the first angled fiber end face and the second angled fiber end face abut in a substantially parallel orientation.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: March 21, 2006
    Assignee: Tyco Electronics Raychem NV
    Inventors: Jan Watte, Daniel Daems, Jacco Elenbaas, Twan Hultermans, Ton Bolhaar
  • Patent number: 6993220
    Abstract: A temperature-compensated optical fiber component for use in high-density WDM optical communication includes an optical fiber which has a Bragg grating serving as a monochromatic filter, an inner package which supports the optical fiber and causes the Bragg grating to have a temperature-compensating capability, and an outer package arranged outside the inner package. A clearance having a heat insulating function is provided between the outer package and the inner package.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: January 31, 2006
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Shinozaki, Shigehito Yodo, Toshihiko Ota
  • Patent number: 6985667
    Abstract: This invention provides an optical fiber wiring board having excellent optical property, high reliability and high mounting property. This invention relates to an optical fiber component for connection having a substrate on which a plurality of optical fibers being wired, wherein a foam polymer layer is provided on a surface of the substrate wiring the optical fibers, or both on a surface of the substrate wiring the optical fibers and on a surface opposite to the surface of the substrate wiring the optical fibers, or so that whole of substrate is covered. The optical fiber component of the present invention may be further provided with a protective layer and may be filled with a filler. This invention provides also a manufacturing method of the optical fiber component for connection.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: January 10, 2006
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Koichi Arishima, Takashi Yoshida, Mamoru Hirayama, Shin Sumida
  • Patent number: 6985666
    Abstract: A method for coupling plastic optical fibers and a plastic optical fiber unit are provided by providing a holder, which includes a groove for holding plastic optical fibers in a longitudinal direction; and abutting and coupling opposed end faces of the plastic optical fibers together while causing the holder to apply a lateral pressure to the plastic optical fibers therein to sandwich the plastic optical fibers.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: January 10, 2006
    Assignee: Asahi Glass Company, Limited
    Inventor: Yoshinobu Takano
  • Patent number: 6981802
    Abstract: The invention provides a connection structure of optical fibers and a process for connecting optical fibers, by which the optical fibers are prevented from being damaged, the working time required for the connection is shortened, yield is improved, and efficiency of connection working is improved. The connection structure of optical fibers comprises 2 connecting members and brought face to face with each other and each having a through-hole and 2 optical fibers inserted into the respective through-holes of the connecting members. The 2 optical fibers are connected within the through-hole of one connecting member.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: January 3, 2006
    Assignee: Tomoegawa Paper Co., Ltd.
    Inventors: Kyoichi Sasaki, Ritsu Kawase, Masayoshi Suzuki, Tatsushi Kobayashi
  • Patent number: 6976192
    Abstract: A data marker (20) for use in connection with one or more signal carrying members, such as a fiber optic cables (12-18) includes a carrier (21) that mounts a data storage device (24) that includes a non-volatile memory (26). The memory (26) stores status information about the signal carrying member and any status updates. In a preferred embodiment, the data marker (20) is mounted inside or outside of a splice case (10) to store status information about splices between fibers to enable an outside plant technician to accurately provision service, and to easily update such status information.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: December 13, 2005
    Assignee: AT&T Corp
    Inventors: Hossein Eslambolchi, John Sinclair Huffman
  • Patent number: 6959131
    Abstract: An achromatic power splitter is formed from multiple optical fibers. The achromatic power splitter operates single mode, which permits the power splitter to operate substantially insensitive to changes in wavelength of the input light, to changes in the polarization of the input light, to changes in the temperature of the device, and to exposure to ionizing radiation.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: October 25, 2005
    Assignee: Charles Stark Draper Laboratory, Inc.
    Inventor: Reinhardt L. Willig
  • Patent number: 6947644
    Abstract: The present invention includes a sheet material, a first optical fiber, a second optical fiber optically coupled to the first optical fiber in portions thereof, and an optical fiber coupler constituted in the portions where the two optical fibers are coupled, and those of the first and second optical fibers, and the optical fiber coupler are integrally held in the sheet material.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: September 20, 2005
    Assignees: Mitsubishi Cable Industries, Ltd., NEC Corporation
    Inventors: Katsuaki Kondo, Kazuo Imamura, Minoru Yoshida, Yasuhide Sudo, Yoshiyuki Imada, Tatsuhiro Kawamura, Takashi Okuyama, Hideki Okuno, Atsushi Toyohara
  • Patent number: 6942399
    Abstract: An optical fiber coupler reinforcing member comprises an approximately rectangular member formed by a hard material, and has a flat surface along the longitudinal direction thereof. In addition, the shape thereof in cross-section is a hexagonal shape which inscribes a cylindrical member. Furthermore, a recess having a U-shaped cross-section is formed in the longitudinal direction of the above-mentioned approximately rectangular member and houses coupling section. The coupling section housed within the recess is fixed at both ends of the recess by an adhesive or the like. In addition, both ends of the inner wall surface of the recess have been given bevel sections. As a result, the optical fiber coupler reinforcing member having high reliability at low cost, with which the strength with respect to external force is improved and with which processability and the assembly operations of the optical fiber coupler are easy, are provided.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: September 13, 2005
    Assignees: Yamaha Corporation, Richstone Limited
    Inventors: Nanayuki Takeuchi, Toshiharu Hoshi, Kenzaburou Iijima, Hidetoshi Yasutake, Yoshikazu Ishii, Satoru Tomaru, BooSeok Hwang
  • Patent number: 6908236
    Abstract: In a method for molding an optical fiber fusion spliced portion, a mold coating is formed on a bare fiber portion of a fusion spliced portion of the optical fibers, using a resin compound having the characteristics where in a cured state, the tensile elongation is 70% or more and the tensile strength is 20MPa or more.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: June 21, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazumasa Oishi, Rei Koike
  • Patent number: 6899471
    Abstract: A kit and a method for splicing together porous sleeves are disclosed. The kit includes a release liner in the form of a non-porous membrane, preferably in the shape of an elongated tube. Adhesive and an adhesive applicator may also be included. The method includes the steps of inserting the release liner within an end of a first sleeve and then inserting that sleeve end into the end of a second sleeve. The outer surface of the first sleeve engages the inner surface of the second sleeve and defines an engagement zone having a predetermined length. The release liner extends along the engagement zone. Adhesive is applied to the outer surface of the second sleeve. The adhesive penetrates the second sleeve and bonds it to the first sleeve. The release liner acts as a barrier preventing the adhesive from bonding the first sleeve closed at the splice.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: May 31, 2005
    Assignee: Federal-Mogul World Wide, Inc.
    Inventors: Eric K. Staudt, Benjamin B. James
  • Patent number: 6899470
    Abstract: Systems and techniques are described for fabricating a low-loss, high-strength optical transmission line. In one described technique, a first fiber is spliced to a second fiber at a splice point. The spliced fibers are loaded into a heat treatment station, where a gas torch flame is used to thermally treat a splice region including the splice point, with the thermal treatment reducing splice loss between the first and second fibers. While heating the splice region, a dry gas is purged around the torch flame during the heat treatment process to avoid water at the surface of the spliced fibers. According to further described techniques, a purging gas is fed to the torch flame to purge dust particles from the flame, and after the heat treatment has been completed, the torch flame is used to restore the glass surface of the spliced fibers. Additionally described are torch assemblies for fabricating low-loss, high-strength optical fiber transmission lines.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: May 31, 2005
    Assignee: Fitel USA Corp.
    Inventors: David John DiGiovanni, Torben E. Veng