Including Pumping Patents (Class 398/157)
  • Patent number: 11621779
    Abstract: An optical transmission system (10) includes a plurality of transmission devices such as transponders (TPs) and optical cross-connects (OXCs) installed in each of stations (11-15) connected via a communication network, a control device (20), and a substitute OXC (502) serving as a substitute transmission device. The control device 20 is installed in a control station (14) of the stations. The control device (20) controls the transmission devices of the stations (11-15) in a centralized manner in accordance with physical network (NW) configuration information (20D) stored in a DB (21) and including config information. When a transmission device is replaced with a new OXC (5o3) serving as a new transmission device, the substitute OXC (5o2) operates as a substitute for the new OXC (5o3) to communicate with the control device (20) until config setting necessary for the new OXC (5o3) is completed.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 4, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Ken Ito, Masaaki Inami, Hideki Maeda
  • Patent number: 11190292
    Abstract: An optical transmission device includes a first wavelength multiplexer, a second wavelength multiplexer, a wavelength converter and a third wavelength multiplexer. The first wavelength multiplexer multiplexes optical signals in a first wavelength band to generate first wavelength multiplexed light. The second wavelength multiplexer multiplexes optical signals in the first wavelength band to generate second wavelength multiplexed light in a first polarization. The wavelength converter converts a wavelength of the second wavelength multiplexed light from the first wavelength band into a second wavelength band by a cross phase modulation among the second wavelength multiplexed light, first pump light in a second polarization and second pump light in the second polarization. The second polarization is orthogonal to the first polarization.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: November 30, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Tomoyuki Kato, Shigeki Watanabe, Takeshi Hoshida
  • Patent number: 10778340
    Abstract: A skew adjustment method and a digital coherent receiver which can achieve skew adjustment without using a fixed pattern for skew detection are provided. A digital coherent receiver (100) includes: a chromatic dispersion adder (103) that adds chromatic dispersion to the optical multiplexed signal; a skew adjuster (201) that sets a quantity of skew adjustment for each of the plurality of channel signals obtained by detecting the optical multiplexed signal; and a skew controller (204) that is configured to, while monitoring signal quality of a reception signal obtained from the plurality of channel signals skew-adjusted, search for a quantity of skew adjustment at which the signal quality is made better.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 15, 2020
    Assignee: NEC CORPORATION
    Inventor: Masao Morie
  • Patent number: 10666360
    Abstract: A transceiver having an improved transmitter optical signal to noise ratio, and methods of making and using the same.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: May 26, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Guido Saathoff, Matthew Akio Streshinsky, Robert Palmer, Torsten Wuth
  • Patent number: 9319257
    Abstract: A multiple-input multiple-output (MIMO) capable system is contemplated. The communication system may include a signal processor configured to separate an input stream into multiple signal paths to facilitate simultaneous transport through a communication medium. The capability to simultaneously transmit multiples signal paths may be beneficial in order to maximize throughput and/or minimize expense.
    Type: Grant
    Filed: February 15, 2014
    Date of Patent: April 19, 2016
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Jennifer Andreoli-Fang, Joey Padden
  • Patent number: 9312660
    Abstract: An optical power beam transmission systems, with a directional light transmitter and receiver. The transmitter contains an amplifying laser medium, and this together with a retroreflector in the receiver, forms a laser resonator. When lasing sets in, the receiver can extract optical power through an output coupler and convert it to electrical power. The gain medium may be a disc having a thickness substantially smaller than its lateral dimensions. The laser resonator is operated as a stable resonator to ensure safe operation. This is achieved by use of an adaptive optical element, for reducing the diameter of the energy beam impinging on the gain medium, thereby increasing the overlap between the energy beam and the gain medium. As the transmitter-receiver distance is changed, such as by movement of the receiver, the adaptive optical element focal length changes to ensure that the cavity remains within its stability zone.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: April 12, 2016
    Assignee: WI-CHARGE LTD.
    Inventors: Ortal Alpert, Rudiger Paschotta
  • Patent number: 9225140
    Abstract: A distributed resonator laser system using retro-reflecting elements, in which spatially separated retroreflecting elements define respectively a power transmitting and a power receiving unit. The retroreflectors have no point of inversion, so that an incident beam is reflected back along a path essentially coincident with that of the incident beam. This enables the distributed laser to operate with the beams in a co-linear mode, instead of the ring mode described in the prior art. This feature allows the simple inclusion of elements having optical power within the distributed cavity, enabling such functions as focusing/defocusing, increasing the field of view of the system, and changing the Rayleigh length of the beam. The optical system can advantageously be constructed as a pupil imaging system, with the advantage that optical components, such as the gain medium or a photo-voltaic converter, can be positioned at such a pupil without physical limitations.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: December 29, 2015
    Assignee: WI-CHARGE LTD.
    Inventors: Refael Della-Pergola, Ortal Alpert, Omer Nahmias, Victor Vaisleib
  • Patent number: 9020348
    Abstract: A light source package is disclosed for a Raman amplifier node having a primary optical fiber for carrying an optical signal and a secondary optical fiber for carrying the optical signal when the signal is rerouted from the primary optical fiber. The light source package includes a primary light source for emitting light into the primary optical fiber when the optical signal is carried by the primary optical fiber to induce Raman gain of the optical signal, and a secondary light source for emitting light into the secondary optical fiber when the optical signal is carried by the secondary optical fiber to induce Raman gain of the optical signal.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: April 28, 2015
    Assignee: II-VI Incorporated
    Inventors: Peter Wigley, Ian Peter McClean
  • Patent number: 8965201
    Abstract: An optical transmission device includes a first power monitor to monitor a first signal into which second signals with respectively different wavelengths are multiplexed so as to measure received power of the first signal; an amplifier to amplify the first signal, to generate a third signal; a driver to drive the amplifier; a demultiplexer to separate the third signal into fourth signals with the different respectively wavelengths; second power monitors each to monitor each of the fourth signals so as to measure received power of each of the fourth signals; a memory to store therein data related to gain in the amplifier, the data corresponding to each of wavelengths of the second signals, with respect to parameters which are the received power measured by the first power monitor and driving condition; and a processor to calculate power of each of the second signals.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 24, 2015
    Assignee: Fujitsu Optical Components Limited
    Inventors: Naoki Kuwata, Koji Otsubo
  • Patent number: 8909063
    Abstract: A method for regenerating and amplifying optical signals includes determining a source optical signal, adding a first pump optical signal and a second pump optical signal to the source optical signal to yield an intermediate optical signal, duplicating the intermediate optical signal to yield a first duplicate signal and a second duplicate signal, phase-shifting the first duplicate signal, passing the phase-shifted first duplicate signal and the second duplicate signal bi-directionally through a nonlinear optical element, and performing degenerate phase-sensitive amplification on the phase-shifted first duplicate signal and the second duplicate signal.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 9, 2014
    Assignee: Fujitsu Limited
    Inventors: Jeng-Yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Inwoong Kim
  • Patent number: 8903249
    Abstract: A method and apparatus for suppressing pump-mode optical beat interference noise in a Raman amplified fiber link of an optical network, wherein a wavelength of a laser beam generated by a first pump laser and a wavelength of a laser beam generated by a second pump laser of a pair of polarization multiplexed pump lasers are detuned with respect to each other to suppress the optical beat interference, OBI, noise in the Raman amplified fiber link of said optical network.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: December 2, 2014
    Assignee: ADVA Optical Networking SE
    Inventor: Dogan Atlas
  • Patent number: 8897649
    Abstract: In one embodiment, the optical transport system has an optical transmitter, an optical receiver, and one or more phase-sensitive amplifiers (PSAs) disposed within an optical link that connects the optical transmitter and receiver. The optical transmitter employs a first nonlinear optical process to generate a two-carrier signal in a manner that makes this signal suitable for phase-sensitive amplification. The PSAs employ a second nonlinear optical process to optically amplify the two-carrier signal in a phase-sensitive manner to counteract the attenuation imposed onto the two-carrier signal by lossy components of the optical link. The optical receiver employs a third nonlinear optical process in a manner that enables the receiver to beneficially use redundancies in the two-carrier signal, e.g., for an SNR gain.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Alcatel Lucent
    Inventor: Colin J. McKinstrie
  • Patent number: 8792784
    Abstract: An optical communication system comprising an optical fiber connected to a first signal regeneration node located at a first end of the optical fiber and a second signal regeneration node located at a second end of the optical fiber; intermediary nodes located between the first and second signal regeneration nodes, wherein one or more pairs of adjacent intermediary nodes each define a span distance along the optical fiber; and one or more Raman amplifiers located within each span distance along the optical fiber, wherein at least one of the one or more Raman amplifiers comprises a case that encases one or more lasers and a temperature controller comprising a temperature sensor to monitor a temperature of the one or more lasers; and a temperature regulator to control a temperature of the one or more lasers.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 29, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8599051
    Abstract: A time-interleaved A/D converter apparatus has a primary signal A/D converter circuit group that is time-interleaved with a combination of N A/D converter circuits, a correction signal generation part operable to receive the input analog signal and a 1/m-sampling signal having a speed that is 1/m of a rate of the sampling signal inputted to the primary signal A/D converter circuit group, to extract a dispersion of a transmission line that is immanent in the input analog signal, and to output the dispersion as a dispersion compensation control signal used for digital signal compensation, and a signal processing part operable to convert the N digital signals into one digital signal based upon the dispersion compensation control signal and to compensate a dispersion included in the converted digital signal.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 3, 2013
    Assignee: NEC Corporation
    Inventors: Nobuhide Yoshida, Hidemi Noguchi
  • Patent number: 8600240
    Abstract: The invention relates to an optical network element (100; 300?), particularly optical line terminal, OLT, or remote node, RN, for transmitting and/or receiving data via an optical network (200) that comprises at least one optical fiber link (210), wherein said optical network element (100; 300?) has a primary optical interface (110; 310) configured to be connected with said optical fiber link (210) to transmit and/or receive data to/from said optical network (200). The inventive optical network element (100) is characterized by at least one secondary optical interface (120a, 120b; 320a, 320b) configured to provide optical pump power (PPa, PPb) to at least one further network element (RN5, RN10; RNa, RNr) via a further optical fiber link (220a, 220b; 220g, 220h), preferably a dedicated pump fiber link, thus enabling true scalability of the optical network (200) regarding network size, particularly link length and the number of remote nodes.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 3, 2013
    Assignee: ADVA AG Optical Networking
    Inventor: Klaus Grobe
  • Patent number: 8594502
    Abstract: A bidirectional optical communications network comprises an optical transmission fiber for carrying a downstream signal at a first wavelength and a multiplicity of upstream signals at a second, different wavelength. The fiber is characterized by distributed Raman gain over at least an extended portion of its length. A first terminal, optically coupled to one end of the fiber, includes a first transmitter for generating the downstream signal, a first receiver for detecting the upstream signals, and at least one pump source for generating pump light that provides Raman amplification to either the downstream signal or the upstream signal or both. A multiplicity of second terminals, optically coupled to another end of the fiber, each includes a second transmitter for generating one of the upstream signals, and a second receiver for detecting a downstream sub-signal.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 26, 2013
    Assignee: OFS Fitel, LLC
    Inventor: Benyuan Zhu
  • Patent number: 8554083
    Abstract: A method for producing an electromagnetic carrier wave in the frequency range between 0.1 and 10 terahertz that is suitable for the wireless transmission of data includes generating, by an electromagnetic pump wave, at least two mixing waves with a defined frequency difference, the pump wave being configured to constitute one of the mixing waves; and producing an electromagnetic carrier wave by frequency mixing the mixing waves.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 8, 2013
    Assignee: Deutsche Telekom AG
    Inventors: Ingo Breunig, Karsten Buse, Jens Kiessling, Bastian Knabe, Rosita Sowade
  • Patent number: 8391723
    Abstract: A system includes an optical transmitter portion, an optical fiber, an optical receiver portion, a laser portion and a combiner portion. Optical signals may be launched by the optical transmitter portion at very low power levels to avoid Raman-induced interactions between the co-propagating signals along the optical fiber. The laser portion and the combiner portion may apply a back-pumped laser signal to the optical fiber. The back-pumped laser signal provides a Raman gain that amplifies the co-propagating signals to a minimum power level such that the optical receiver portion can detect the co-propagating signals within a predetermined acceptable carrier-to-noise ratio.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: March 5, 2013
    Assignee: General Instrument Corporation
    Inventor: Kerry I. Litvin
  • Patent number: 8364043
    Abstract: A method and apparatus for controlling a reflective semiconductor optical amplifier (RSOA) are provided. The RSOA control apparatus sets a threshold current at which a light source starts to oscillate to be constant regardless of a wavelength of seed light by controlling a driving temperature for driving a RSOA, and adjusts an optical characteristic which is differently output for each wavelength of seed light to be constant by controlling a driving current.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jie-hyun Lee, Seung-hyun Cho, Byoungi-whi Kim, Jea-hoon Yu, Jai-sang Koh
  • Publication number: 20120294619
    Abstract: An undersea repeaterless optical transmission system is disclosed including first and second stations connected by a communication link which may comprise one or more optical fibers. The system further includes a dedicated Raman pumping path originating from a third intermediate station and interacting with the communication link at an undersea body positioned between the first and second stations. This dedicated Raman pumping path may comprise one or more optical fibers. Communications signals are propagated only between the first and second stations, while the third intermediate station provides only Raman pumping via the pumping path which is used to boost signal power in the communication link between the first and second stations. By limiting this pumping path to Raman pumping only substantially more pumping power can be provided through the path since power is not limited by the equation of a communications signal.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: Tyco Electronics Subsea Communications LLC
    Inventors: Lee John Richardson, Ekaterina A. Golovchenko
  • Patent number: 8301031
    Abstract: Optoelectrical conversion of the received optical service signal (OSS), bandpass filtering and subsequent squaring produce a spectral line at the clock frequency (fT). This clock line (TL) is selected by means of narrowband filtering and rectified. The service signal voltage (VTLM) obtained in this manner is used to switch on a Raman pump laser (11).
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: October 30, 2012
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Guido Gentner, Gerhard Thanhäuser
  • Publication number: 20120237215
    Abstract: An optical communication system comprising an optical fiber connected to a first signal regeneration node located at a first end of the optical fiber and a second signal regeneration node located at a second end of the optical fiber; intermediary nodes located between the first and second signal regeneration nodes, wherein one or more pairs of adjacent intermediary nodes each define a span distance along the optical fiber; and one or more Raman amplifiers located within each span distance along the optical fiber, wherein at least one of the one or more Raman amplifiers comprises a case that encases one or more lasers and a temperature controller comprising a temperature sensor to monitor a temperature of the one or more lasers; and a temperature regulator to control a temperature of the one or more lasers.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 8233808
    Abstract: An optical transmission system based on four-wave mixing and configured in a WDM-PON topology where a signal light between an optical line terminal and each of optical network units is multiplexed and demultiplexed at a WDM. The optical line terminal transmits downlink signal light having wavelengths ?d1, . . . , ?dN and pumping lights having wavelengths ?p1, . . . , ?pN which are different by a predetermined wavelength difference ?? from the wavelengths of the downlink signal lights. Each of the optical network units demultiplexes the downlink signal lights to receive a portion of the downlink signal lights, generates an uplink signal light to be transmitted from each of the optical network unit to the optical line terminal by using a portion of the downlink signal lights and the four-wave mixing from the pumping lights, and outputs a modulated uplink signal light.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 31, 2012
    Assignees: Fujikura Ltd., Shibaura Institute of Technology
    Inventor: Norio Kashima
  • Publication number: 20120093519
    Abstract: Systems and methods are provided for ultrafast optical waveform sampling based on temporal stretching of an input signal waveform. Temporal stretching is performed using a time lens based on four-wave mixing in a nonlinear medium. The signal is passed through an input dispersive element. The dispersed signal is sent into the time lens, which comprises a chirped pump pulse and a nonlinear medium. The chirped pump pulse is combined with the signal. The four-wave mixing process occurs in the nonlinear device or medium, which results in the generation of a signal at a new optical frequency (idler). The idler is spectrally separated from the signal and pump pulse using a bandpass filter and sent into an output dispersive element. The output dis persive element is longer than the input dispersive element and the temporal stretching factor is given by the ratio between the dispersions of these two elements.
    Type: Application
    Filed: February 4, 2010
    Publication date: April 19, 2012
    Inventors: Michal Lipson, Alexander Gaeta, Reza Salem, Mark Foster, David Geraghty, Amy Foster
  • Patent number: 8139951
    Abstract: An ultra-long fiber-optic transmission system is configured in accordance with the current telecom standards and particularly advantageous for transmission data at a long distance which may exceed 400 km between adjacent nodes. The disclosed system has at least one intermediate amplifying node provided with a supervisory optical channel (SOC) which carries information between spaced nodes about the multi-wavelength optical signal as well as remote conditions at the optical terminal or regeneration site. The SOC comprises a transponder operative to select the direction in which an optical supervisory signal OSS, carrying information about the fiber break and malfunction of WDM channels, is transmitted along the SOC. The transponder further includes a receiver operative to measure the power of incoming OSS signal, which is indicative of the power of the transmitted and amplified WDM signal, and a Raman controller.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 20, 2012
    Inventors: Igor Samartsev, Vladimir Antonenko
  • Patent number: 8111453
    Abstract: A submarine optical repeater that shares optical pump power in multiple gain stages such that approximately the same wavelengths of optical pump is provided to each of the gain stages. Also, tilt control mechanism may adjust gain dependency on wavelength by adjusting the amount of optical pump power delivered to the optical gain stages. Residual optical pump power from both forward and backward Raman amplification may be used to power corresponding optically pumped amplifiers.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 7, 2012
    Assignee: Xtera Communications, Inc.
    Inventors: Wayne S. Pelouch, Do-Il Chang
  • Patent number: 8095018
    Abstract: In a quaternary phase modulator including two phase modulators disposed in parallel and a phase adjuster that adjusts a phase difference when the outputs of the two phase modulators are combined, there are provided a second light source that introduces light propagated in a backward direction, a first controller that controls the bias of the two phase modulators so that the intensity of the backward light is a minimum on the input side of the quaternary phase modulator, and a second controller that controls the bias of the phase adjuster so that a result monitored by a photodiode having a bandwidth not exceeding the bit rate on the output side of the quaternary phase modulator is a minimum, the first controller being implemented after the second controller is implemented.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 10, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki
  • Patent number: 8081880
    Abstract: A new transmission link configuration with remote Er post- and pre-amplifiers where pump power is shared between a pair of fibers carrying traffic in opposite directions is proposed. A budget increase of >4 dB is demonstrated.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: December 20, 2011
    Assignee: MPB Communications Inc.
    Inventor: Serguei Papernyi
  • Patent number: 8027588
    Abstract: In one embodiment a system and method pertain to generating a pump from a received optical signal, inputting the generated pump into a phase-sensitive oscillator, and amplifying a carrier component of the pump to generate an optical carrier having the same phase and polarity of an optical carrier of the received optical signal.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 27, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Inwoong Kim, Guifang Li
  • Patent number: 7991291
    Abstract: Low-cost FP lasers can be implemented in the upstream links of a WDM PON system by configuring them for single-mode operation. In a typical embodiment, an FP laser at a subscriber unit is injection seeded with CW seed light from a DFB laser or an ASE source at a central office to enable single-mode operation of the FP laser. The FP laser is directly modulated and the resulting optical data signal is transmitted upstream to the central office. At the central office, an optical spectrum reshaper/bandpass optical filter is positioned in front of an optical receiver to enhance the extinction ratio of the optical data signal and generate a vestigial sideband. A wavelength locker can also be implemented at the central office to stabilize the wavelength of the master DFB laser and the injection-seeded FP laser.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 2, 2011
    Assignee: Finisar Corporation
    Inventors: Yasuhiro Matsui, Kevin McCallion
  • Patent number: 7970286
    Abstract: In a wavelength-division multiplexing communications system including a plurality of optical transmission devices having an optical amplifier, downstream optical transmission devices transmit gain wavelength characteristic information of an optical amplifier in each of the downstream optical transmission devices to an upstream optical transmission device. The upstream optical transmission device controls gain wavelength characteristics on the basis of the received gain wavelength characteristic information.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Limited
    Inventor: Taizo Maeda
  • Patent number: 7899334
    Abstract: The present invention provides a signal distribution module for use in a directionless reconfigurable optical add/drop multiplexer application, including: a multi-cast switch having a plurality of input ports and a plurality of output ports; a plurality of optical amplifiers coupled to the plurality of input ports of the multi-cast switch, wherein the plurality of optical amplifiers form an optical amplifier array; a tunable optical splitter coupled to the plurality of optical amplifiers; and a pump laser coupled to the tunable optical splitter.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: March 1, 2011
    Assignee: Ciena Corporation
    Inventors: Shan Zhong, Jun Bao
  • Patent number: 7881620
    Abstract: An arrangement for generating beat notes with a relatively high signal-to-noise ratio (SNR) utilizes a pulsed laser source coupled into a section of post-processed highly-nonlinear optical fiber (HNLF) to generate a frequency comb having one or more regions of enhanced spectral power. A second laser signal source is overlapped with the frequency comb to form one or more “beat notes” at difference frequencies(y) between the second source and the continuum comb. By virtue of the post-processing, areas of spectral enhancement are formed along the comb, and are positioned to interact with the second laser signal to generate optical beat notes. The second laser signal may be from an external source (forming beat notes from a signal “outside” of the comb), or may be a frequency-multiplied version of the generated supercontinuum (forming beat notes from a signal “within” the comb).
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 1, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Paul S. Westbrook
  • Patent number: 7792430
    Abstract: The present invention provides an automatic power restoring method capable of reliably detecting continuity by the dissolution of a line fault, to restore the optical power, even in a structure including an optical amplification medium on an optical transmission path and an optical communication system using the method. To this end, in an optical communication system to which the automatic power restoring method of the invention is applied, a pilot signal having a low transmission rate, a wavelength of which is set based on loss wavelength characteristics obtained by combining loss wavelength characteristics of an optical fiber used for the optical transmission path and loss wavelength characteristics of the optical amplification medium on the optical transmission path, is transmitted and received between an optical transmitting station and an optical receiving station when a line fault occurs, and a detection of continuity is thus performed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: September 7, 2010
    Assignees: Fujitsu Limited, Nippon Telegraph & Telephone Corporation
    Inventors: Hiroyuki Deguchi, Shinichirou Harasawa, Hideki Maeda, Akira Naka, Gentaro Funatsu
  • Patent number: 7751720
    Abstract: System and method for dispersion compensation tuning for a WDM optical transmission system. A tunable dispersion compensation module (4) is located at or substantially close to a transmitting end of the optical transmission line (2) and at least one distributed Raman amplifier having an Raman pump (1) is coupled to the transmission line 2. The dispersion compensation is controlled by means of a signal derived from the Raman pump (1) which is fed through a control loop (3) to the tunable dispersion compensation module (4).
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: July 6, 2010
    Assignee: Alcatel Lucent
    Inventors: Eric Brandon, Laurent Labrunie, Philippe Bousselet
  • Publication number: 20100150574
    Abstract: A method and apparatus for controlling a reflective semiconductor optical amplifier (RSOA) are provided. The RSOA control apparatus sets a threshold current at which a light source starts to oscillate to be constant regardless of a wavelength of seed light by controlling a driving temperature for driving a RSOA, and adjusts an optical characteristic which is differently output for each wavelength of seed light to be constant by controlling a driving current.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 17, 2010
    Inventors: Jie-hyun LEE, Seung-hyun Cho, Byoungi-whi Kim, Jea-hoon Yu, Jai-sang Koh
  • Patent number: 7734180
    Abstract: The present invention provides a single fiber bidirectional optical transmission system capable of realizing the extension of a single fiber bidirectional long distance at a moderate price. An optical signal outputted from a second optical transmitter is incident on an optical amplifying portion passing through an optical circulator, a single fiber bidirectional transmission path, an optical circulator and an optical Blue/Red filter. The optical signal outputted from a first optical transmitter is incident on the optical amplifying portion passing through a dispersion compensator and the optical Blue/Red filter.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: June 8, 2010
    Assignee: NEC Corporation
    Inventors: Wakako Maeda, Akio Tajima
  • Patent number: 7725032
    Abstract: An optical transmission apparatus includes an optical add drop multiplexer (OADM) that adds/drops an optical signal to/from a transmission path. The optical transmission apparatus further includes a pump light multiplexer and a dispersion compensation fiber that are located downstream of the OADM on the transmission path. The optical transmission apparatus is configured to house a pump light source connectable to the pump light multiplexer to Raman amplify an optical signal in the dispersion compensation fiber.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: May 25, 2010
    Assignee: Fujitsu Limited
    Inventors: Miki Onaka, Yasushi Sugaya, Hiroki Ooi
  • Patent number: 7664392
    Abstract: The present invention provides an automatic power restoring method capable of reliably detecting continuity by the dissolution of a line fault, to restore the optical power, even in a structure including an optical amplification medium on an optical transmission path and an optical communication system using the method. To this end, in an optical communication system to which the automatic power restoring method of the invention is applied, a pilot signal having a low transmission rate, a wavelength of which is set based on loss wavelength characteristics obtained by combining loss wavelength characteristics of an optical fiber used for the optical transmission path and loss wavelength characteristics of the optical amplification medium on the optical transmission path, is transmitted and received between an optical transmitting station and an optical receiving station when a line fault occurs, and a detection of continuity is thus performed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 16, 2010
    Assignees: Fujitsu Limited, Nippon Telegraph and Telephone Corporation
    Inventors: Hiroyuki Deguchi, Shinichirou Harasawa, Hideki Maeda, Akira Naka, Gentaro Funatsu
  • Patent number: 7522842
    Abstract: A commercially viable All-Raman system, is implemented by removing the dispersion compensating Fiber (DCF) and two stage amplifier at each span, and including a transmission path dispersion compensator which performs dispersion compensation on a transmission path basis. For example, by pre-compensating for the accumulated dispersion in the electrical domain at the transmitter, the gain of the Raman pumps at each span amplifier need only compensate for the loss within the span, without needing to compensate for the loss of a DCF. In addition there is provided a low-cost method for implementing a bidirectional Service Channel by modulating/demodulating low-rate data on the Raman pump. For example, a Raman amplifier can include an information source for producing a service channel signal which includes information to be communicated; and a modulator for modulating the Raman pump signal with the service channel signal.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 21, 2009
    Assignee: Nortel Networks Limited
    Inventors: John McNicol, Kuang Tsan Wu
  • Patent number: 7483639
    Abstract: A method and system for transmitting information in an optical communication system includes modulating a non-intensity characteristic of an optical carrier signal with a data signal to generate an optical information signal. The optical information signal is transmitted over an optical link. The optical information signal is amplified over a length of the optical link with a co-launched amplification signal traveling in the optical link in a same direction as the optical information signal.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: January 27, 2009
    Assignees: Fujitsu Limited, Fujitsu Network Communications, Inc.
    Inventors: Takeshi Hoshida, Hiroshi Onaka, Takafumi Terahara
  • Patent number: 7471900
    Abstract: Provided are a passive optical network system and a method of transmitting a broadcasting signal in the same system. A central office (CO) generates a broadcasting signal and a downstream optical data signal using a coding method guaranteeing a run-length, multiplexes the downstream optical data signal and the broadcasting signal, and transmits the multiplexed downstream optical data signal and broadcasting signal. A remote node (RN) transmits the multiplexed downstream optical data signal and broadcasting signal received from the CO to one or more optical network units (ONUs). A gain medium, which is located on a transmission line between the CO and the RN, amplifies the broadcasting signal using the downstream optical data signal as a pump light source. Accordingly, a high gain can be obtained by amplifying the broadcasting signal using the gain medium located on the transmission line without a separate pump light source.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 30, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Seop Lee, Byung Tak Lee, Hyun Seo Kang, Jai Sang Koh
  • Patent number: 7418204
    Abstract: A passive optical network system is disclosed that simultaneously provides both broadcasting service and data service. The passive optical network (PON) amplifies the optical signals for the broadcasting service in an optical amplifier media of the local office by pumping optical signals generated from the central office and provides the optical signals for the broadcasting service to the subscriber terminals. Therefore, the present invention can simultaneously provide broadcasting service and data service for more subscribers without reducing the number of subscribers to the PON. Also, the present invention uses a plurality of optical sources for the data service and the broadcasting service and receives the optical signals generated from the optical sources by using a plurality of optical receivers in the subscriber terminals, and thus can provide a greater amount and variety of data services and broadcasting services.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Kwang Jung, Byung-Chang Kang, Yun-Je Oh, Tae-Sung Park
  • Patent number: 7400830
    Abstract: The present invention has an object to provide a technology for monitoring the quality of a WDM signal light, capable of quickly and accurately judging an occurrence of quality deterioration of signal light and a deterioration factor thereof. To this end, according to a quality monitoring apparatus of WDM signal light of the present invention, a part of the WDM signal light being propagated through an optical transmission path is branched as a monitor light, a signal light of one wavelength contained in the monitor light is selected as a channel to be measured.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: July 15, 2008
    Assignee: Fujitsu Limited
    Inventors: Kenichi Torii, Takao Naito, Hiroshi Nakamoto, Toru Katagiri
  • Patent number: 7394995
    Abstract: An optical receiver is disclosed comprising an erbium-doped fiber amplifier (EDFA) that is coupled to a photodiode and transimpedance amplifier without filtering output light signal in the EDFA. Optionally, a clock/data regenerator can be coupled to the electrical output of the transimpedance amplifier for compensating for noise distortion and timing jitter for affecting the control loop feeding back for adjusting the electrical current into a pump laser of an optical pre-amplifier. Furthermore, the optical receiver of the present invention can also be implemented in a transponder.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: July 1, 2008
    Assignee: Avanex Corporation
    Inventors: Emmanuel Audic, Franck Deblock, Elisabeth Leclerc, Gilles Sorhouetgary, Alexandre Sherr, Henri Jean Egger
  • Publication number: 20080152352
    Abstract: A new transmission link configuration with remote Er post- and pre-amplifiers where pump power is shared between a pair of fibers carrying traffic in opposite directions is proposed. A budget increase of >4 dB is demonstrated.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 26, 2008
    Applicant: MPB Communications Inc.
    Inventor: Serguei Papernyi
  • Patent number: 7379677
    Abstract: The wavelength converter comprises (1) an optical multiplexer for multiplexing an amplitude-modulated first light and reference light, which is continuous light having a wavelength different from the wavelength of the first light, (2) an optical fiber for propagating the multiplexed light therethrough to generate a third light by a non-linear optical phenomenon, and (3) an optical filter having a pass wavelength range set such that a pulse time width of the third light is 20% or more narrower than a pulse time width of the first light after the third light has passed through the optical filter, or (3?) an optical filter having a pass wavelength range set such that a cross point of an eye pattern of the third light is lower than a cross point of an eye pattern of the first light after the third light has passed through the optical filter.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: May 27, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshiaki Okuno
  • Patent number: 7366416
    Abstract: A hub for use in a passive optical network (PON) includes a transmission fiber on which an information-bearing optical signal is received, a double-cladded, rare-earth doped fiber located along the transmission fiber for imparting gain to the information-bearing optical signal, and a combiner having an output coupled to the transmission fiber and a plurality of inputs. The output is coupled to the transmission fiber such that optical energy at pump energy wavelengths but not signal wavelengths are communicated therebetween. At least one pump source is optically coupled to one of the inputs of the combiner for providing optical pump energy to the double-cladded, rare-earth doped fiber. An optical splitter is also provided. The optical splitter has an input coupled to the transmission fiber for receiving an amplified, information-bearing optical signal and a plurality of outputs for directing portions of the amplified, information-bearing optical signal to remote nodes in the PON.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: April 29, 2008
    Assignee: General Instrument Corporation
    Inventors: Mani Ramachandran, Chandra Sekhar Jasti
  • Patent number: 7346280
    Abstract: A bi-directional configuration is employed to implement a hybrid ultra long haul (ULH)/long haul (LH) optical transmission system. The link carries ULH channels and LH channels in opposite directions in different bands. Raman amplification is employed for the ULH band while Erbium-doped fiber amplification (EDFA) is used for both the LH and ULH bands. Optical circulators are employed for multiplexing and demultiplexing. This solution does not incur the ripple penalty of prior art solutions based on interferential filters while providing excellent isolation between the ULH and LH channels and bi-directional communication within a single fiber.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: March 18, 2008
    Assignee: Cisco Technology, Inc.
    Inventors: Alessandro Sguazzotti, Fransisco Martinez Rodriguez, Marco Mazzini
  • Patent number: 7315696
    Abstract: Gain setting of a receiving amplifier, is performed by detecting the necessity of gain setting when a receiving amplifier is turned on, requesting WDM transmission equipment in a preceding station to output ASE light; in a WDM transmission equipment of the preceding station, shutting off both passing-through light and added light, and outputting the ASE light corresponding to a predetermined number of wavelengths of signal light; in the receiving amplifier of the WDM transmission equipment in the station of interest, performing the gain setting by use of the ASE light; and on completion of the gain setting, the WDM transmission equipment of the station of interest, requesting the WDM transmission eouipment of the preceding station to halt the ASE light output, and the WDM transmission equipment of the preceding station, halting the ASE light output upon receiving the request and switching the output to an optical signal output.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 1, 2008
    Assignee: Fujitsu Limited
    Inventors: Manabu Suzuki, Miwa Taniguchi, Toshihiro Suzuki, Shingo Hara