Including Optical Waveguide Patents (Class 398/200)
  • Patent number: 6871023
    Abstract: A spread polarization transmitter for transmitting at least one light signal comprises a spread-spectrum communication apparatus and a polarization modulator. The spread-spectrum communication apparatus modulates the at least one light signal according to a spread-spectrum modulation technique. The polarization modulator comprises a polarizer and a magnetic bubble waveguide. The polarizer is capable of polarizing the at least one spread-spectrum modulated light signal in a polarized direction. And the magnetic bubble waveguide, which is configured in accordance with a pseudo-random polarization code sequence such that the plurality of magnetic bubble domains assume a time varying position representative of the pseudo-random polarization code sequence, is capable of receiving at least one polarized, spread-spectrum modulated light signal.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 22, 2005
    Assignee: The Boeing Company
    Inventors: Robert J. Atmur, Jeffrey H. Hunt
  • Patent number: 6868236
    Abstract: An apparatus and method for combining multiple optical beams into mode-scrambled optical signals. In one embodiment, the apparatus includes a plurality of laser beam sources, each to produce a modulated optical beam. A plurality of input fiber segments, each comprising a multimode optical fiber core, are operatively coupled at one end to a respective laser source to receive a respective modulated optical beam. A multimode optical beam combiner is used to operatively couple the output ends of the input fiber segments to the input end of an output fiber segment having a multimode optical fiber core. The modulated optical beams produced by the laser beam sources are combined into a single mode-scrambled optical signal. The apparatus enables multiple optical beams having similar wavelengths to be combined to increase optical signal strength. It also enables multiple optical beams having different wavelengths to be combined to form a wavelength division multiplexed signal.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: March 15, 2005
    Assignee: Terabeam Corporation
    Inventors: Thomas J. Wiltsey, David L. Rollins, Robert M. Pierce
  • Patent number: 6834134
    Abstract: A method and apparatus are provided for generating short (e.g., picosecond) pulses using a 2 section 1553 nm DBR laser without gain switching nor external modulation. The center wavelength of the DBR section is modulated at 0.5 GHz to generate a constant amplitude frequency modulated optical wave Large group velocity dispersion is then applied with a chirped fiber Bragg grating to convert the FM signal to a pulse stream.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: December 21, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: James F. Brennan, III, Patrick C. Chou, Harry L. T. Lee, Rajeev J. Ram, Hermann A. Haus, Erich P. Ippen
  • Patent number: 6832047
    Abstract: A detector outputs a detection signal indicating amplitude variation of an input frequency-multiplexed signal. An amplitude controller adjusts the amplitude of the frequency-multiplexed signal by referring to the detection signal. A modulator modulates the amplitude-adjusted frequency-multiplexed signal to produce a predetermined modulated signal. A second multiplexer multiplexes the modulated signal and the detection signal to produce a multiplexed signal. An optical transmitter converts the multiplexed signal into an optical signal, and then sends it out to an optical transmission path. An optical receiver converts the received optical signal into an electrical signal. A separator separates the modulated and detection signals from the electrical signal. A demodulator demodulates the modulated signal to output the frequency-multiplexed signal. An amplitude adjuster adjusts the amplitude of the frequency-multiplexed signal by referring to the detection signal to reproduce the original amplitude variation.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: December 14, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Masaru Fuse
  • Patent number: 6823145
    Abstract: In order to obtain an optical transmitter module for converting an input electric signal to a light signal with fidelity and outputting it therefrom, a terminal resistor Rt and an optical modulator MD are connected in parallel within a package including a laser diode with a monolithically integrated optical modulator for obtaining the light signal according to the electric signal. One thereof is grounded and the other thereof is connected to a wire inductance (L1) and an impedance matching resistor Rd in series with this parallel connection. Further, a high frequency transmission line (micro-strip line) MSL for the transmission of the electric signal is connected to the other end of the impedance matching resistor Rd.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: November 23, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masataka Shirai, Minoru Fujita
  • Patent number: 6819877
    Abstract: An optical link is operative for transmitting a microwave signal in modulated optical form over an optical fiber. The optical link has a transmitter and a receiver. The transmitter splits and converts the microwave signal into two separate optical signals, each of which represents either the positive varying part of the microwave signal or the negative varying part of the microwave signal. The receiver combines the two separate optical signals and converts them back into the microwave signal.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: November 16, 2004
    Assignee: Bookham Technology PLC
    Inventors: Andrew C Carter, Colin Edge
  • Patent number: 6819876
    Abstract: An optical transmission system is provided, which permits high-precision optical transmission of a signal even if the signal has a high accurate timing, an indefinite period, and a DC component. The transmitting side is provided with a rise edge detecting circuit 1 for detecting the rise edge of a transmitting signal waveform, a transmitting pulse generating circuit 2 for generating a transmitting pulse signal (b) constituted by a pair of opposite-polarity pulses inverting their polarities at the detected timing, and a light intensity modulation circuit 3 for generating a light intensity modulated signal (c) based on the pulse signal (b). The receiving side is provided with an AC-coupled receiving circuit 4 for receiving the light intensity modulated signal (c) and extracting therefrom only an AC component, and a discrimination circuit 5 for discriminating the rise timing from the received signal.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: November 16, 2004
    Assignee: Advantest Corporation
    Inventors: Toshiyuki Okayasu, Nobuhito Kishi
  • Patent number: 6813448
    Abstract: A transmitter that performs stimulated Brillouin scattering suppression is provided. The transmitter includes a non-linear device having an optical input adapted to receive an optical signal, an amplitude modulation input adapted to receive an amplitude modulation signal, a phase modulation input and an output. The transmitter also includes a stimulated Brillouin scattering (SBS) oscillator/driver having first and second oscillators coupled to the phase modulation input of the non-linear device and an amplifier coupled to the output of the non-linear device. The transmitter further includes a laser coupled to the optical input of the non-linear device.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: November 2, 2004
    Assignee: ADC Telecommunications, Inc.
    Inventor: Joseph F. Chiappetta
  • Patent number: 6804471
    Abstract: A method and apparatus for pulse frequency modulation for analog optical communication. A train of optical pulses is generated. The spectrum of the optical pulses in the train of optical pulses can be broadened to provide a train of broad spectrum optical pulses. The broadening can be provided by self-phase modulation. Alternatively, broad spectrum optical pulses can be provided by merely having the optical pulses be less than 1 ps duration. A desired optical frequency slice from the train of spectrum broadened optical pulses is selected by a tunable Fabry-Perot filter. A desired optical frequency slice from the broad spectrum optical pulses is selected by a tunable Fabry-Perot filter. The tunable Fabry-Perot filter has a pair of Distributed Bragg Reflectors separated by an electro-refractive section.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: October 12, 2004
    Assignee: HRL Laboratories LLC
    Inventors: Stanislav I. Ionov, Robert R. Hayes
  • Patent number: 6804466
    Abstract: An optical coding system is provided for a data transmission device with at least one laser transmitter and at least one laser receiver. The laser transmitter has a laser device and a code generator, and the laser receiver a detector device and an evaluation circuit. The detector device is designed for detecting a burst sequence (B1, B2, B3, . . . ), wherein the length d of the pulses of a burst is greater than 400 ns, and the length D of a burst consisting of a number b of pulses is less than 1000 &mgr;s.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: October 12, 2004
    Assignee: Contraves Space AG
    Inventors: Moreno Gazzetta, Roger Scherrer, Dietrich Peter Stauffacher
  • Publication number: 20040184820
    Abstract: An ASE light source offers high outputs even in a wavelength band of 1,490 to 1,525 nm. The ASE light source outputs spontaneous emission light generated from Tm-doped optical fibers. Then, the ASE light source outputs amplified light obtained by using Er-doped optical fibers to amplify the output from the Tm-doped optical fibers and spontaneous emission light generated from the Er-doped optical fibers so that the amplified light and the spontaneous emission light are superimposed on each other.
    Type: Application
    Filed: March 25, 2004
    Publication date: September 23, 2004
    Inventors: Yasutake Ohishi, Koichi Nakagawa, Terutoshi Kanamori, Yousuke Hiraki
  • Patent number: 6791734
    Abstract: A method and apparatus for information modulation for impulse radios are presented in both single-tone and pulse stream configurations. The modulation techniques include combinations of amplitude and phase modulation. The modulation techniques include both digital and analog schemes, including baseband on/off keying modulation, wavelet on/off keying modulation, pulse-position modulation, and FM modulation. Techniques for varying the modulation rate are also provided. Additionally, harmonics impulse ratio configurations are presented to take advantage of the modulation techniques.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: September 14, 2004
    Assignee: HRL Laboratories, LLC
    Inventor: Hossein Izadpanah
  • Patent number: 6785476
    Abstract: A transmission configuration includes a plurality of individual lasers which are included in a two-dimensional laser array and emit radiation elements with coupled phases upon stimulation. The radiation elements enter a light-conducting core of a multimode optical conductor together.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: August 31, 2004
    Assignee: Infineon Technologies AG
    Inventor: Jörg-Reinhart Kropp
  • Patent number: 6778783
    Abstract: An optical transmission system is provided, which permits high-precision optical transmission of a signal even if the signal has a high accurate timing, an indefinite period, and a DC component. The transmitting side is provided with a rise edge detecting circuit 1 for detecting the rise edge of a transmitting signal waveform, a transmitting pulse generating circuit 2 for generating a transmitting pulse signal (b) constituted by a pair of opposite-polarity pulses inverting their polarities at the detected timing, and a light intensity modulation circuit 3 for generating a light intensity modulated signal (c) based on the pulse signal (b). The receiving side is provided with an AC-coupled receiving circuit 4 for receiving the light intensity modulated signal (c) and extracting therefrom only an AC component, and a discrimination circuit 5 for discriminating the rise timing from the received signal.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: August 17, 2004
    Assignee: Advantest Corporation
    Inventors: Toshiyuki Okayasu, Nobuhito Kishi
  • Patent number: 6775482
    Abstract: Because the phase comparison of the light signal data row and the light clock signal, and the coding of the light signal by the light signal, are simultaneously conducted, the influence of the phase variation in the signal path is not affected in principle, and the optimum phase condition is automatically established/maintained, and thereby, the present invention operates as an all-light type light receiver by which the light data and light clock are reproduced. Further, because the electric signal used herein exists in the range from the DC to the frequency of the difference between the light signal data row and the light clock signal, problems peculiar to the high speed electric signal can be avoided.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: August 10, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenkichi Shimomura, Katsuhiro Shimizu
  • Patent number: 6775483
    Abstract: A wavelength-division multiplex optical transmission system is provided with: preliminary optical modulators 111 to 11n for outputting optical signals having different wavelengths from each other after being modulated by communications signals 11 to 1n that are signals to be supplied to specific optical receiving parts; an optical fiber 510 for transmitting the multiplexed optical signal; a subsequent optical modulator 210 for collectively modulating the transmitted optical signal so as to collectively modulate the optical signals being multiplexed by a broadcast signal 20 that is to be supplied equally to all optical receiving parts; and an optical fiber 520 for transmitting the modulated optical signal. A frequency band for the broadcast signal 20 is set not to overlap with any of those of the communications signals 11 to 1n.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: August 10, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tsuyoshi Ikushima, Hiroyuki Sasai, Masaru Fuse
  • Patent number: 6768871
    Abstract: An optical signaling header technique applicable to optical networks wherein packet routing information is embedded in the same channel or wavelength as the data payload so that both the header and data payload propagate through network elements with the same path and the associated delays. The technique effects survivability and security of the optical networks by encompassing conventional electronic security with an optical security layer by generating replicated versions of the input data payload at the input node, and the transmission of each of the replicated versions over a corresponding one of the plurality of links. Moreover, each of the links is composed of multiple wavelengths to propagate optical signals or optical packets, and each of the replicated versions of the data payload may be propagated over a selected one of the wavelengths in each corresponding one of the plurality of links.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of California
    Inventors: Gee-Kung Chang, Arshad M. Chowdhury, Georgios Ellinas
  • Patent number: 6744989
    Abstract: An object of this invention is to improve transmission characteristics in WDM transmission. An optical transmitter (10) wavelength-multiplexes signal lights of wavelengths &lgr;1 through &lgr;n and outputs them onto an optical transmission line (12). Optical powers of the signal lights of the respective wavelength &lgr;1 through &lgr;n are identical or become smaller proportional to the wavelength. One repeater span of the optical transmission line (12) is composed of an optical fibers (20, 22) and an optical amplifier (24), and a gain equalizer (26) is dispersed every several repeater spans. The optical amplifier (24) in the repeater span amplifies each signal light so that optical power of a signal on the shorter wavelength side becomes smaller than that of a signal on the longer wavelength side. The gain equalizer (26) equalizes optical powers of the respective signal lights.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: June 1, 2004
    Assignees: KDDI Corporation, KDD Submarine Cable Systems, Inc.
    Inventors: Takehiro Tsuritani, Yuichi Yamada, Noboru Edagawa, Masatoshi Suzuki
  • Patent number: 6731880
    Abstract: An optical communications network includes a terminal which can simultaneously receive and modulate an optical signal. The terminal includes an optical modulator which is controlled by varying the bias voltage applied to it.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: May 4, 2004
    Assignee: Microwave Photonics, Inc.
    Inventors: Leslie D Westbrook, David G Moodie
  • Patent number: 6721506
    Abstract: A method and system deliver multiple-band broadcast services in a network such as a wavelength division multiplexed passive optical network. In the transmitter and/or receiver of such a system, filters are cascaded to stack data corresponding to different services within different free spectral frequency ranges of an optical transmission signal. Each filter is used to select a portion of a free spectral frequency range to be delivered to a user node. Each transmitter filter confines the output from spontaneous emission sources to a desired spectral region. The cascaded filters can also combine multiple spectra and/or separate combined broadcast spectrum. The method can also be used to partition the output from a broadband spectral source into different portions in the spectral domain.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: April 13, 2004
    Assignee: AT&T Corp.
    Inventor: Cederic Fung Lam
  • Publication number: 20040067065
    Abstract: An optical transmitter for compensating signal distortion, the optical transmitter includes an input for accepting a signal, a laser driver for amplifying and/or reshaping the signal, a distributed feedback laser diode coupled to the laser driver for signal modulation, a nonlinear material coupled to the distributed feedback laser diode for compensating signal distortions caused by the laser diode, and an output for sending the signal to the transmission link.
    Type: Application
    Filed: November 20, 2002
    Publication date: April 8, 2004
    Applicant: Innovation Core SEI, Inc.
    Inventor: Katsumi Uesaka
  • Publication number: 20040067066
    Abstract: An optical transmission system comprising an input for accepting a signal, a laser diode within an optical transmitter for signal modulation and/or for signal amplification, a nonlinear material for compensating signal distortions, a transmission fiber for signal transmission, and an optical receiver for receiving the signal. The optical transmission system may include a multiple of input signals, each input signal fed into one of a multiple of optical transmitters. Each of the multiple of optical transmitters is coupled to a nonlinear material. The output of each nonlinear material is coupled to an optical multiplexer for multiplexing the multiple of input signals into a multiplexed signal for transmission through a transmission fiber. The multiplexed signal is then de-multiplexed into a multiple of de-multiplexed signals, each de-multiplexed signal corresponding to each of the multiple of input signals, and each de-multiplexed signal is received by one of a multiple of receivers.
    Type: Application
    Filed: November 25, 2002
    Publication date: April 8, 2004
    Applicant: Innovation Core SEI, Inc.
    Inventor: Katsumi Uesaka
  • Patent number: 6694103
    Abstract: The invention concerns the area of nonlinear fiber and integrated optics, to be exact the area of completely optical switches, modulators and optical transistors, in which solitons are used. The technical problem of the invention is the diminution of pump energy fed into optical waveguide, and also increase of sharpness and depth of switching, and gain of optical transistor, and switching speed as well. One variant of the method consists in that into input of tunnel-coupled waveguides having cubic nonlinearity and the second-order dispersion, they feed radiation as fundamental solitons or pulses close to them in amplitude and in shape with various maximum intensity, which is in limits from 0.6IMup to 1.4IM, where IM is the critical intensity. In other variants of the method additionally into the input of the same or other waveguide they feed radiation, which intensity is much less comparable with the soliton's intensity. In particular, this radiation can be as solitons.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: February 17, 2004
    Assignee: Cleomen Ltd.
    Inventor: Alexandr Alexandrovich Maier
  • Patent number: 6694102
    Abstract: An optical configuration includes a Mach-Zehnder interferometer and a directional coupler. Both the Mach-Zehnder interferometer and the directional coupler have a first arm and a second arm. The Mach-Zehnder interferometer and the directional coupler share a common arm. A transceiving module for bidirectional optical data transmission, in particular for WDM systems with at least three wavelengths, includes two separate detection devices, an input/output optical waveguide, and an optical configuration as described above. The input/output optical waveguide receives and emits signals. The Mach-Zehnder interferometer separates signals of two wavelengths and feeds them to the separate detection devices.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: February 17, 2004
    Assignee: Infineon Technologies AG
    Inventors: Ingo Baumann, Zhan Gao
  • Publication number: 20040018022
    Abstract: Multiple Bragg gratings are fabricated in a single planar lightwave circuit platform. The gratings have nominally identical grating spacing but different center wavelengths, which are produced using controlled photolithographic processes and/or controlled doping to control the effective refractive index of the gratings. The gratings may be spaced closer together than the height of the UV light pattern used to write the gratings.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 29, 2004
    Inventors: Anders Grunnet-Jepsen, Alan E. Johnson, John N. Sweetser
  • Patent number: 6668140
    Abstract: In a module for optical communication comprising an optical fiber including an axial-end surface, and an optical element including an optical surface facing to the axial-end surface in such a manner that a light is transmitted between the optical surface and the axial-end surface, a synthetic resin is arranged between the optical surface and the axial-end surface so that the light is transmitted through the synthetic resin between the optical surface and the axial-end surface.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 23, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kimio Tatsuno, Kouji Yoshida, Takeshi Kato, Toshinori Hirataka, Norihiro Yazaki, Shoichi Takahashi, Hiroshi Naka
  • Patent number: 6643468
    Abstract: The invention provides an optical communication system, an optical transmitting apparatus, an optical receiving apparatus, an optical communication method, and a storage medium, in which a large-capacity transmission can be performed at high speed and multiplexing efficiency can be improved. The optical communication system includes an optical transmitting apparatus and an optical receiving apparatus connected via a transmitting medium having anomalous dispersion characteristics. In this system, the optical transmitting apparatus converts a plurality of information signals output from a plurality of signal sources into light signals having amplitudes different according to the respective information signals to output the light signals LP, by providing an individual specified optical intensity capable of performing an optical soliton transmission.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: November 4, 2003
    Assignee: Sony Corporation
    Inventor: Kuninori Shino
  • Patent number: 6643471
    Abstract: An optical communication system is provided. The optical communication system includes an optical fiber, an optical transmitter, and an optical receiver. The optical transmitter is coupled to the optical fiber. The optical transmitter is adapted to encode a pulse amplitude modulated optical signal based on at least two, independent input signals. The optical receiver is coupled to the optical fiber. The optical receiver is adapted to decode the pulse amplitude modulated optical signal to reproduce the at least two, independent input signals as output signals.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: November 4, 2003
    Assignee: ADC Telecommunications, Inc.
    Inventors: Aravanan Gurusami, Joseph F. Chiappetta
  • Publication number: 20030202801
    Abstract: A method and apparatus for information modulation for impulse radios are presented in both single-tone and pulse stream configurations. The modulation techniques include combinations of amplitude and phase modulation. The modulation techniques include both digital and analog schemes, including baseband on/off keying modulation, wavelet on/off keying modulation, pulse-position modulation, and FM modulation. Techniques for varying the modulation rate are also provided. Additionally, harmonics impulse ratio configurations are presented to take advantage of the modulation techniques.
    Type: Application
    Filed: November 12, 2002
    Publication date: October 30, 2003
    Inventor: Hossein Izadpanah
  • Publication number: 20030202800
    Abstract: A transmission line with a bending portion is provided, which line comprises any one of a coplanar line, another coplanar waveguide line formed on the dielectric substrate under which a ground layer is provided and a coplanar strip line. A chamfered portion is provided on the outer angular portion of the bending portion of the signal wiring conductor and a triangular conductor is disposed to an inner angular portion thereof. Given that length of the chamfered portion is defined as a, and length of the wiring edge side of the triangular conductor is defined as b and width of the signal wiring conductor is defined as c, it is arranged such that a is greater than b+c×square root of 2. Thereby, a transmission line or an optical module of smaller reflection loss at the bending portion thereof and of improved high-frequency characteristics is provided.
    Type: Application
    Filed: August 16, 2002
    Publication date: October 30, 2003
    Applicant: OpNext Japan, Inc.
    Inventors: Naoki Matsushima, Kazumi Kawamoto, Hideyuki Kuwano, Yoshiaki Niwa, Tetsuya Kato
  • Patent number: 6632033
    Abstract: An ultra-short-reach optical transceiver is described. The ultra-short-reach optical transceiver comprises an optical transmitter, an optical receiver, and a clock and data recovery unit. The optical transmitter is configured to transmit a first signal. Additionally, the optical transmitter is nominally designed to transmit data at a designed transmit bit rate of between about 0.9 Gbps and about 1.25 Gbps. The first signal has a bit rate of between about 2 Gbps and about 3 Gbps, and exhibits an eye opening of at least about 50%. The optical receiver is configured to receive a second signal and is nominally designed to receive data at a designed receive bit rate of between about 0.9 Gbps and about 1.25 Gbps. The second signal has a bit rate of between about 2 Gbps and about 3 Gbps. The clock and data recovery unit is coupled to the optical receiver.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: October 14, 2003
    Assignee: Cisco Technology, Inc.
    Inventors: Ali Najib Saleh, Matthew Lee Heston
  • Patent number: 6619866
    Abstract: A dynamic range extender for optical transmitters comprises a bipolar distortion compensator for increasing drive signal gain as the absolute level of an input signal increases beyond a selected input voltage threshold, a signal coupler for dividing the input signal into complementary signals, a unipolar distortion compensator for increasing drive signal gain of each complementary signal beyond a selected forward current threshold, a signal clipper for pre-clipping each complementary signal below a selected clipping threshold, and complementary driver outputs to drive each of a pair of laser diodes in a complementary push-pull arrangement. The pre-clipping prevents the laser diodes from being driven below their threshold current level, and the distortion compensation suppresses second and third order harmonic distortion when the complementary signals generated by the laser diodes are combined by differential photodiodes.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: September 16, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Chen-Kuo Sun, Stephen A. Pappert
  • Publication number: 20030118346
    Abstract: Four optical interferometers are arranged in parallel. Optical path length differences of the optical interferometers are set to L, r×L, r×r×L, and r×r×r×L, respectively, where L is a unit optical path length difference (constant). A coefficient r by which the unit optical path length difference L is multiplied is any non-integer real number for example an irrational number. An irrational number is for example a surd ({square root}2, {square root}3, etc.), ratio of circumference D, or base e of a natural logarithm. When such optical path length differences are set in such a manner, a chaotic dynamical system, an addition theorem, and a chaotic map are not satisfied with respect to the intensities of light which is output from the optical interferometers. In other words, a thoroughly unpredictable sequence can be generated. The sequence is spectrum spread as spread codes.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 26, 2003
    Applicant: Communications Research Laboratory Independent Administrative Institution
    Inventors: Ken Umeno, Wataru Chujo
  • Publication number: 20030103771
    Abstract: A spread polarization transmitter for transmitting at least one light signal comprises a spread-spectrum communication apparatus and a polarization modulator. The spread-spectrum communication apparatus modulates the at least one light signal according to a spread-spectrum modulation technique. The polarization modulator comprises a polarizer and a magnetic bubble waveguide. The polarizer is capable of polarizing the at least one spread-spectrum modulated light signal in a polarized direction. And the magnetic bubble waveguide, which is configured in accordance with a pseudo-random polarization code sequence such that the plurality of magnetic bubble domains assume a time varying position representative of the pseudo-random polarization code sequence, is capable of receiving at least one polarized, spread-spectrum modulated light signal.
    Type: Application
    Filed: December 3, 2001
    Publication date: June 5, 2003
    Applicant: The Boeing Company
    Inventors: Robert J. Atmur, Jeffrey H. Hunt