Time And Wavelength Patents (Class 398/47)
  • Patent number: 11784739
    Abstract: A pluggable electric connector can communicate a communication data signal and a control signal with an optical communication device. An optical signal output unit is configured to be capable of selectively output a wavelength of an optical signal. An optical power adjustment unit-can adjust optical power of the optical signal. A pluggable optical receptor can output the optical signal to an optical fiber. A control unit controls a wavelength change operation according to the control signal. The control unit according to a wavelength change command, commands the optical power adjustment unit to block output of the optical signal, commands the light signal output unit to change the wavelength of the optical signal after the optical signal is blocked, and commands the light signal output unit and the optical power adjustment unit to output the optical signal after the wavelength change operation.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: October 10, 2023
    Assignee: NEC CORPORATION
    Inventor: Rintaro Nomura
  • Patent number: 11652546
    Abstract: If wavelength defragmentation is performed during the operation of an optical network, an instantaneous interruption of a network arises; consequently, data are lost; therefore, an optical network control method according to an exemplary aspect of the present invention includes monitoring a data volume of a client signal to be transmitted using a plurality of optical subcarriers; and performing synchronously, depending on a variation in the data volume, an optical subcarrier changing process of changing an active optical subcarrier, of the plurality of optical subcarriers, to be used for transmitting the client signal, and a remapping process of remapping the client signal onto an active optical subcarrier after having been changed.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: May 16, 2023
    Assignee: NEC CORPORATION
    Inventors: Tomoyuki Hino, Akio Tajima, Hitoshi Takeshita, Shinsuke Fujisawa
  • Patent number: 11637647
    Abstract: A transfer device includes: a frame information acquisition unit configured to monitor downstream frames between host devices and OLTs and calculate a statistical value of the downstream frames per a fixed cycle; a frame storage unit configured to store the downstream frames in a plurality of queues; a frame sorting unit configured to input the downstream frames to the queues; and a distribution control unit configured to determine the number of frames to be sequentially input to the queues and increase the number of distributed frames of at least one of the host devices input to an OLT, the OLT having a smaller value of a total number of frames input from all the host devices than a maximum number of rounded frames obtained by dividing a value of a total number of frames input until the frames of all the host devices take turns around the plurality of queues by the number of OLTs.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 25, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Rintaro Harada, Hiroyuki Uzawa, Hirotaka Nakamura, Jun Terada
  • Patent number: 11630124
    Abstract: The present invention relates to a device for operating at least one bending beam in at least one closed control loop, wherein the device has: (a) at least one first interface designed to receive at least one controlled variable of the at least one control loop; (b) at least one programmable logic circuit designed to process a control error of the at least one control loop using a bit depth greater than the bit depth of the controlled variable; and (c) at least one second interface designed to provide a manipulated variable of the at least one control loop.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: April 18, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Christof Baur, Florian Demski
  • Patent number: 11223438
    Abstract: The present invention discloses a service transmission method, a network device, and a network system. The method includes: obtaining, by a first network device, a client service of FlexE, and obtaining clock information corresponding to the client service; mapping, by the first network device, the client service and the clock information to a timeslot of a FlexE frame, where the client service and the clock information occupy a same timeslot and/or different timeslots; and sending, by the first network device, the FlexE frame to a second network device. Therefore, service clock information can be transparently transmitted in flexible Ethernet by using the method of the present invention.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 11, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Huiyu Zhou, Junling Xiang, Limin Dong
  • Patent number: 11201668
    Abstract: If wavelength defragmentation is performed during the operation of an optical network, an instantaneous interruption of a network arises; consequently, data are lost; therefore, an optical network control method according to an exemplary aspect of the present invention includes monitoring a data volume of a client signal to be transmitted using a plurality of optical subcarriers; and performing synchronously, depending on a variation in the data volume, an optical subcarrier changing process of changing an active optical subcarrier, of the plurality of optical subcarriers, to be used for transmitting the client signal, and a remapping process of remapping the client signal onto an active optical subcarrier after having been changed.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: December 14, 2021
    Assignee: NEC CORPORATION
    Inventors: Tomoyuki Hino, Akio Tajima, Hitoshi Takeshita, Shinsuke Fujisawa
  • Patent number: 10952174
    Abstract: In embodiments of distributed coordination of mesh network configuration updates, pending commissioning datasets are managed and distributed to coordinate configuration changes of parameters that control participation in, and secure communication over, a mesh network. Pending network commissioning datasets are managed across fragmentation of the mesh network into multiple partitions and subsequent merging of the fragments to ensure that the most recent updates to pending commissioning datasets are propagated to mesh network devices and that all mesh network devices will receive pending commissioning datasets before the time that the pending commissioning dataset becomes the active commissioning dataset for the mesh network.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 16, 2021
    Assignee: Google LLC
    Inventors: Jonathan Wing-Yan Hui, Martin A. Turon
  • Patent number: 10855393
    Abstract: A transmitting device, includes inputting a multiplex light multiplexed a first wavelength-multiplexed signal light stream in a first wavelength band and a second wavelength-multiplexed signal light stream in a second wavelength band; inputting a multiplex light multiplexed a third wavelength-multiplexed signal light stream in a first wavelength band and a fourth wavelength-multiplexed signal light stream in a second wavelength band; converting the first wavelength-multiplexed signal light stream to the second wavelength band; converting the third wavelength-multiplexed signal light stream to the second wavelength band; generating a first output signal light multiplexed by signal light in a first wavelength band among the multi-wavelength light so that wavelengths do not overlap; generating a second output signal light multiplexed by signal light in a second wavelength band among the multi-wavelength light so that wavelengths do not overlap; converting the first output signal light to the first wavelength ban
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: December 1, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Masahiro Yuki
  • Patent number: 10757077
    Abstract: A method for performing stateful processing of a packet at a flow-based managed forwarding element (MFE) is provided. The method sends a first packet from the MFE to a connection tracker that stores headers of a set of original direction packets that each established a new connection. The method receives, from the connection tracker, the first packet with the header of an original direction packet associated with the first packet appended to the first packet. The header of the original direction packet includes (i) a second set of IP addresses different than a first set of IP addresses of the first packet and (ii) stateful connection status information. The method replaces a first set of IP addresses of the first packet with the second set of IP addresses and performs a matching operation on the packet based on the second set of IP addresses and the stateful connection status information.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 25, 2020
    Assignee: NICIRA, INC.
    Inventors: Jarno Rajahalme, Jonathan Stringer, Soner Sevinc, Ben Pfaff, Justin Pettit
  • Patent number: 10715249
    Abstract: If wavelength defragmentation is performed during the operation of an optical network, an instantaneous interruption of a network arises; consequently, data are lost; therefore, an optical network control method according to an exemplary aspect of the present invention includes monitoring a data volume of a client signal to be transmitted using a plurality of optical subcarriers; and performing synchronously, depending on a variation in the data volume, an optical subcarrier changing process of changing an active optical subcarrier, of the plurality of optical subcarriers, to be used for transmitting the client signal, and a remapping process of remapping the client signal onto an active optical subcarrier after having been changed.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 14, 2020
    Assignee: NEC CORPORATION
    Inventors: Tomoyuki Hino, Akio Tajima, Hitoshi Takeshita, Shinsuke Fujisawa
  • Patent number: 10686668
    Abstract: Implementations relate to systems and methods for configuring a probe server network using a reliability model. A company, customer, or organization may wish to outsource the management of a set of name servers used to operate a domain name, such as a domain name associated with a Web site. In aspects, that deployment of name servers can be monitored by a separate set of failover or probe servers which are configured to track the uptime, operability, and performance of the underlying name servers, which can number in the thousands. An administrator or other user may wish to determine a minimum number of probe servers to apply to the name server topology, to achieve desired service levels. According to aspects, automated tools and logic are provided which model and simulate the overall network including the number and arrangement of necessary probe servers to ensure performance, failover reliability, and other factors.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: June 16, 2020
    Assignee: VERISIGN, INC.
    Inventors: Mirko Djuric, Velmurugan Periasamy, Sunil Choppala
  • Patent number: 10547543
    Abstract: A method implemented by a network element (NE) configured as a temporal tunnel service (TTS) controller, comprising computing, via a processor of the NE, a path in a network for a temporal label switched path (LSP), wherein the path satisfies a constraint in a scheduled time interval comprising a predetermined start time and a predetermined end time, reserving, at a current time prior to the predetermined start time via the processor, a first network resource on a link along the path computed for the temporal LSP, wherein the first network resource is reserved for the temporal LSP to carry traffic in the scheduled time interval, and sending, at the predetermined start time via a transmitter of the NE, a LSP creation request to a node associated with the temporal LSP to request creation of the temporal LSP along the path in the network.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 28, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huaimo Chen, Renwei Li
  • Patent number: 10541775
    Abstract: The invention relates to a system for sending data in an optical network comprising source nodes (1-1, 1-2, 1-3, 1-4, 1-5), each capable of generating, in a spectral band that is associated with it, a multi-carrier optical data signal obtained by modulation of a source signal at a source wavelength and of sending this signal in the form of single-band data bursts (11-13, 21-23, 31-33, 41-43, 51-53) that can be associated with distinct source wavelengths, and a combiner (1,2) for combining single-band data bursts, sent by the source nodes in the spectral bands that are associated with them, into multi-band data bursts (61-63, 71-73) occupying a spectral band corresponding to a juxtaposition of the spectral bands associated with the source nodes. In this system, a unit for controlling an instant of sending of said single-band data bursts by the source nodes, implements a control plane taking account of a path time of the single-band data bursts sent by the source nodes to the combiner.
    Type: Grant
    Filed: July 25, 2015
    Date of Patent: January 21, 2020
    Assignee: ORANGE
    Inventors: Paulette Gavignet, Erwan Pincemin, Esther Le Rouzic
  • Patent number: 10498640
    Abstract: An apparatus comprising a receiver configured to receive a first path computation request (PCReq) message from a path computation client (PCC) requesting path computation for a label switched path (LSP) in a network, wherein the PCReq message indicates a time interval scheduled for the LSP to carry traffic, a processor coupled to the receiver and configured to compute a path in the network for the LSP by determining that the path satisfies a network constraint in the scheduled time interval, and reserve a network resource on a link along the path computed for the LSP, wherein the network resource is reserved in advance for the scheduled time interval, and a transmitter coupled to the processor and configured to send a path computation response (PCRep) message to the PCC indicating the path computed for the LSP in the scheduled time interval.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 3, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huaimo Chen, Charles E. Perkins
  • Patent number: 10419201
    Abstract: Provided are a method and a device for implementing timeslot synchronization. The method includes: a master node performing timeslot synchronization training of an OBTN according to a timeslot length of the OBTN. By adopting the solution provided by the embodiments of the present disclosure, an FDL does not need to be considered in node design, the node design is simplified, the time precision of synchronization is improved and no loss is caused to optical efficiency.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: September 17, 2019
    Assignee: ZTE CORPORATION
    Inventor: Yingchun Shang
  • Patent number: 10231036
    Abstract: A method and system for configuring an optical circuit switch is provided. Configuring includes sampling for demand estimation at buffers of an electrical packet switch that is either directly connected to the optical circuit switch, or is dynamically routed to a physical port that is connected to the optical circuit switch. Configuring is performed based on the demand estimation at a port on the electrical packet switch exceeding a first dynamic threshold. The optical circuit can be released based on the demand estimation at the port on the electrical packet switch receding a second dynamic threshold, and the second dynamic threshold is less than the first dynamic threshold.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Yaniv Ben-Itzhak, Shay Vargaftik
  • Patent number: 10231037
    Abstract: Disclosed are an optical burst transport network, a node, a transmission method and a computer storage medium.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: March 12, 2019
    Assignee: XI'AN ZHONGXING NEW SOFTWARE CO.LTD
    Inventors: Yingchun Shang, Lei Wang, Huitao Wang, Sheping Shi
  • Patent number: 9866344
    Abstract: A frequency conversion device includes: an optical convertor configured to convert a source modulated light into an unmodulated light; and a frequency convertor configured to use the unmodulated light converted by the optical convertor as a reference light and convert the source modulated light into a modulated light that has a desirable frequency.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: January 9, 2018
    Assignee: FUJITSU LIMITED
    Inventor: Futoshi Izumi
  • Patent number: 9749720
    Abstract: The present invention provides a receiving device and an optical switching fabric apparatus, where the receiving device includes: multiple selecting modules, a fast optical switch connecting to each selecting module, an output module connecting to all the fast optical switches, and a receiver connecting to the output module, where the selecting module is configured to receive a multiwavelength optical signal, select and filter a first optical signal of a preset time segment in the multiwavelength optical signal; the fast optical switch is configured to select a second optical signal from the first optical signal filtered by the selecting module; the output module is configured to combine optical signals separately selected by all the fast optical switches into one optical burst signal; and the receiver is configured to perform optical-to-electrical conversion on the optical burst signal, and extract service data from an electrical signal.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 29, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Shiyi Cao
  • Patent number: 9742490
    Abstract: Systems and methods for automatically managing the bandwidth requirements of application workloads may include learning the bandwidth requirements using historical data, predicting the required bandwidth for a time interval and provisions the services to deliver the appropriate bandwidth to the applications. Systems and methods for automatically managing the bandwidth requirements of application workloads may also include monitoring for the actual bandwidth requirements of the applications and adapt dynamically to changing requirements.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: August 22, 2017
    Assignee: Infinera Corporation
    Inventors: Madhukar Anand, Ramesh Iyer
  • Patent number: 9743160
    Abstract: A memory access system that includes a data sending apparatus, an optical transmission medium, and a data receiving apparatus. The data sending apparatus includes a signal generator, an optical switch, and an optical modulator. The signal generator controls the optical switch to output the optical wave of the wavelength corresponding to the target memory, and the optical wave carries an electrical signal corresponding to an access request, so that an optical signal carrying the access request is directly transmitted from the optical transmission medium to the data receiving apparatus without passing through the optical switch anymore, which avoids noise interference generated when the optical signal passes through the optical switch.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 22, 2017
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Tongtong Cao, Liyao Zhang
  • Patent number: 9729946
    Abstract: Consistent with the present disclosure, an optical switch is provided that switches multiple wavelength division multiplexed (WDM) optical signals. Each of the WDM signals includes optical signals having the same wavelengths. The WDM signals are supplied to optical splitters, which supply power split portions of the WDM signals to corresponding optical gates. Groups of the optical gates are associated with a corresponding switching block, which may include a cyclical arrayed waveguide grating (AWG), and the optical gates within each group are controlled so that one gate passes a received WDM signal portion while the remaining optical gates in the group are in a blocking configuration. As a result, the WDM portion received by the non-blocking gate is demultiplexed in the switching block and each of the wavelength components that constitute the selected WDM portion are supplied to corresponding outputs within the switching block.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 8, 2017
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Ting-Kuang Chiang, Curtis Villamizar
  • Patent number: 9578400
    Abstract: A network element of a transport network has three fabrics housed within a single shelf of a telco rack, namely a packet fabric, an electrical fabric and an optical fabric. A stream of traffic including a plurality of lambdas is received at a trunk interface of such a shelf. The optical fabric in the shelf performs optical switching on the stream to replace a first lambda in the stream with a second lambda. The first lambda is converted within the shelf into an electrical signal. Also within the shelf, first frames are recovered from the electrical signal. The packet fabric in the shelf is used to perform packet switching on the first frames to generate a flow of second frames. The flow of second frames is transmitted at a client interface of the shelf.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: February 21, 2017
    Assignee: Ciena Corporation
    Inventors: Stephen J. West, Scott Pradels
  • Patent number: 9577910
    Abstract: Implementations relate to systems and methods for configuring a probe server network using a reliability model. A company, customer, or organization may wish to outsource the management of a set of name servers used to operate a domain name, such as a domain name associated with a Web site. In aspects, that deployment of name servers can be monitored by a separate set of failover or probe servers which are configured to track the uptime, operability, and performance of the underlying name servers, which can number in the thousands. An administrator or other user may wish to determine a minimum number of probe servers to apply to the name server topology, to achieve desired service levels. According to aspects, automated tools and logic are provided which model and simulate the overall network including the number and arrangement of necessary probe servers to ensure performance, failover reliability, and other factors.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: February 21, 2017
    Assignee: VERISIGN, INC.
    Inventors: Mirko Djuric, Velmurugan Periasamy, Sunil Choppala
  • Patent number: 9380362
    Abstract: A communication network including a master switch and one or more local switches is provided with a loop-back test device for in line loop-back testing. The local switches convey communication traffic between one another using one or more channels of a transmission medium and configuration information using an out-of-band channel of the transmission medium that is separate from the channels used to convey the communication traffic. The master switch includes an application that generates configuration information including loop-back connection information for configuring the out-of-band channel using at least one loop-back test device, transmits the generated configuration information to the loop-back test device using the out-of-band channel of the transmission medium, and conducts loop-back testing using the out-of-band channel.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: June 28, 2016
    Assignee: Level 3 Communications, LLC
    Inventors: Salvador E. Paredes, Timothy I. Copley
  • Patent number: 9369197
    Abstract: The present invention provides a method and an apparatus for detecting a communication channel in whose frequency band radio signals are transmitted by different radio signal sources inside a cabin. In this case a wide band antenna receives the radio signals transmitted inside the cabin. Different demodulators are provided, each of which demodulate the radio signals received by the wide band antenna within an associated frequency range of the demodulator. A configuration logic establishes whether, in a frequency band within a demodulated frequency range, radio signals are being transmitted simultaneously by different radio signal sources. In the case of impermissible signal transmissions of a radio signal source, e.g.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 14, 2016
    Assignee: AIRBUS OPERATIONS GMBH
    Inventors: Sven Knefelkamp, Eric Duraz
  • Patent number: 9312963
    Abstract: An optical transmission converter comprises a wavelength selector configured to output a reception wavelength selection signal and a transmission wavelength selection signal in response to a wavelength control signal, an opto-electrical converter configured to convert a selection optical signal into a reception electrical signal based on a reception optical signal from a host device and the reception wavelength selection signal, and an electro-optical converter configured to convert a transmission electrical signal into a transmission optical signal based on the transmission wavelength selection signal and the transmission electrical signal.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: April 12, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Kyoum Kim, Seok-Hun Hyun, In-Dal Song, Seong-Jin Jang, Jung-Hwan Choi
  • Patent number: 9161107
    Abstract: A communication system enabling a switching procedure for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM) based flexible rate intra-data center network DCN, includes a MIMO OFDM DCN with optical burst switching OBS capability, an optical burst switching OBS procedure for influencing the MIMO OFDM DCN, and a centralized control configuration coupled to the MIMO OFDM DCN and enabling a software defined network SDN configuration in the communication system.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 13, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Philip Nan Ji, Ting Wang
  • Patent number: 9140854
    Abstract: Embodiments provide an optical device that includes a star coupler, a polarization bam splitter (PBS) and a polarization rotator. The star coupler includes a port at a first end face. The polarization beam splitter is optically coupled via a first side to the star coupler port, and is further optically coupled via a second side to a first port of an optical coupler. The polarization rotator is optically coupled between the polarization beam splitter and a second port of the optical coupler.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: September 22, 2015
    Assignee: Alcatel Lucent
    Inventor: Christopher Doerr
  • Patent number: 9136968
    Abstract: A Time Wavelength Division Multiplexing-Passive Optical Network (TWDM-PON) system and a communication link method thereof are provided. The communication link method is a method whereby an Optical Network Unit (ONU) which has established communication link to one Optical Line Terminal (OLT) establishes communication link to a different OLT. The ONU receives a wavelength change instruction to change a wavelength thereof to an operating wavelength assigned to the different OLT, and change the wavelength in response to the wavelength change instruction to synchronize to a downstream signal of the operating signal. In addition, the ONU receives an upstream discovery grant signal from the different OLT, and transmits an acknowledgement message to notify the receipt of the upstream discovery grant signal, so that the ONU establishes communication link to the different OLT.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: September 15, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Han-Hyub Lee, Sang-Soo Lee
  • Patent number: 9118726
    Abstract: A network device capable of performing auto-negotiation at a proper communication speed. In the network device, a cable speed setting unit decides, based on LAN cable category information, a maximum communication speed that can be guaranteed by a LAN cable connected to a physical layer circuit of the network device, and a speed decision unit compares the maximum communication speed notified from the cable speed setting unit with each of communication speeds that can be set for the physical layer circuit and decides an upper limit communication speed for use when a communication speed is decided by auto-negotiation.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 25, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Kazuaki Maruhashi
  • Patent number: 9100127
    Abstract: A method and system for encoding and determining labels in a Dual Polarization (DP) Quaternary Phase Shift Keying (QPSK) signal is provided. A label frame, signature sequence, and data payload are combined using a complementary constant-weight code encoding (CCWC) encoder, the output of which is deinterleaved and differentially precoded to generate a polarized tributary of a DP-QPSK signal. This encoding can be duplicated for a second tributary of the DP-QPSK signal. The label can be determined using one or more polarizers and corresponding low-speed photodetectors, each applied to a copy of the DP-QPSK signal. The strongest output of the photodetectors is then used to determine the label. Alternatively, the DP-QPSK signal can be viewed as having XI, XQ, PH, and PV tributaries. These tributaries can then be translated into XI, XQ, YI, and YQ tributaries are encoded into a standard DP-QPSK signal.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 4, 2015
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mark D. Feuer, Vinay A. Vaishampayan
  • Patent number: 9048965
    Abstract: A multiplexer capable of automatically and dynamically selecting a correct or the best input out of a pre-configurable set of alternative inputs, based on the current status of the alternative inputs. An input status-sensitive, dynamic, M-by-M digital cross-connect can be formed out of an arrangement of M (an integer) instances of such input-controllable dynamic M:1 multiplexers. An application is an SDH/SONET cross-connect system that is able to perform a protection-switch for any number, up to all, of its output paths, simultaneously, if necessary, thereby enabling a short and deterministic latency for individual-path-granular protection-switch process for cross-connects of unlimited capacity. Another application is an SDH/SONET path that can be dynamically shared, even at a single time-slot granularity, among multiple path sources.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: June 2, 2015
    Inventor: Mark Henrik Sandstrom
  • Publication number: 20150131991
    Abstract: An optical network system includes a master node and a plurality of optical switch nodes, allowing the number of nodes without depending on the number of wavelengths. The master node is configured to: divide a wavelength path having an arbitrary wavelength into time slots each having a predetermined time period; and allocate the time slots to each of the optical switch nodes. Each of the optical switch nodes is configured to: synchronize the time slots based on information delivered from the master node; and thereby transmit or receive a data or performs route switching.
    Type: Application
    Filed: June 13, 2013
    Publication date: May 14, 2015
    Inventors: Kyota Hattori, Naoki Kimishima, Masahiro Nakagawa, Masaru Katayama, Akira Misawa
  • Patent number: 9031407
    Abstract: The present disclosure discloses data vortex architecture with bidirectional links in which the packets are routed both in forward as well as in reverse directions through a single node. The disclosed arrangement avoids any packet congestion in the network and improves the BER characteristics.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: May 12, 2015
    Assignee: Indian Institute of Technology, Delhi
    Inventors: Vinod Chandra, Devi Chadha, R. G. Sangeetha
  • Patent number: 8983292
    Abstract: A packet switch 40 comprises wavelength tunable optical transmitters 12, an optical switch fabric 42, optical detectors 30 and a controller 32. The transmitters 12 are arranged to receive at least one electrical signal packet to be switched and convert it into a corresponding optical signal packet at an input wavelength. The optical switch fabric 42 comprises an ingress stage 44 comprising wavelength selective routers 46 and an egress stage 50 comprising wavelength selective routers 54 and tunable wavelength converters 26 arranged to receive an optical signal at the input wavelength and to output an optical signal at an output wavelength. The controller 32 is arranged to set the input wavelength of a transmitter 12 and the output wavelength of a wavelength converter to configure a path across the switch fabric 42 connecting the transmitter 12 to a detector 30. A communications network router 90 comprises an input module 92, a packet switch 40, an output module 96 and a scheduler 94.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: March 17, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Francesco Testa, Antonio D'Errico
  • Patent number: 8886039
    Abstract: An optical packet switching device is provided with: a first input unit and a second input unit for receiving optical packet signals having destination information and information of a wavelength in use; an optical switch unit for routing the optical packet signals; a branching unit for branching the received optical packet signals; an analyzer unit for analyzing the header of the branched optical packet signals so as to detect the destination information and the information of the wavelength in use; and an output competition determination unit for checking for temporal competition of the optical packet signals based on the destination information and for determining whether the optical packet signals should be transmitted or discarded based on the information of the wavelength in use when there is competition.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 11, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Kimio Uekama, Shota Mori
  • Patent number: 8879910
    Abstract: An optical packet transmitter device includes: a detection unit for detecting packet-length information and priority information from a received Ether signal; a setting unit for setting, according to the degree of priority, a division factor by which the Ether signal is divided and a wavelength used for an optical packet signal to be transmitted; a header generation unit for generating a header containing destination information, the packet-length information, the priority information, and information of wavelength in use of the Ether signal; a transmission processing unit for dividing the Ether signal according to the set division factor and generating a plurality of packet signals; a header insertion unit for inserting the generated header in at least one packet signal; and an electrical/optical converter unit for converting the plurality of packet signals into optical packet signals of a plurality of wavelengths according to the set wavelength in use.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 4, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventors: Kimio Uekama, Shota Mori
  • Patent number: 8873955
    Abstract: Scheduling methods and apparatus for use with optical switches with hybrid architectures are provided. An exemplary distributed scheduling process achieves 100% throughput for any admissible Bernoulli arrival traffic. The exemplary distributed scheduling process may be easily adapted to work for any finite round trip time, without sacrificing any throughput. Simulation results also showed that this distributed scheduling process can provide very good delay performance for different traffic patterns and for different round trip times associated with current switches.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Polytechnic Institute of New York University
    Inventors: Shivendra S. Panwar, Yanming Shen, Shunyuan Ye
  • Patent number: 8867913
    Abstract: Optical Transport Network (OTN) High Order (HO) mapping systems and methods utilize pointer processing to map one HO signal into another similarly sized HO signal. An OTN HO mapping method and circuit include receiving a first HO signal at a first rate, asynchronously mapping the first HO signal into a second HO signal at a second rate, wherein the first rate and the second rate are substantially similar, translating a portion of overhead from the first HO signal to overhead of the second HO signal, utilizing pointers in the overhead of the second HO signal for frame alignment of the first HO signal, and transmitting the second HO signal containing the first HO signal.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: October 21, 2014
    Assignee: Ciena Corporation
    Inventors: Sebastien Gareau, Tim Norman, Richard Wyatt, Michael Hubbard
  • Publication number: 20140308037
    Abstract: A network switch is disclosed with each port having the function of: electrical processing and optical modulation; electrical processing has the ability to identify packet or frame destination; burst mode transmission and receiving capability; uses its pre-assigned time slot to send to the corresponding destination, or receive from the expected source.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 16, 2014
    Applicant: NEC Laboratories America, Inc.
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 8798465
    Abstract: An optical path switching type optical signal transmission/reception apparatus includes a one-to-seven compatible optically controlled optical path switching apparatus 100 that is connected to a host optical signal transmission/reception apparatus 1 via an optical fiber, a total of seven subordinate optical communication adapters 110 connected via optical fibers, user side devices 160 connected to respective subordinate optical communication adapters via an electric circuit, an optical transmission/reception control circuit provided in each of the total of seven subordinate user side optical communication adapters 110, and including an uplink optical signal transmission mechanism, a downlink optical signal reception mechanism, a control light source that can generate control light to drive the optical path switching apparatus 100, in which a wavelength of the generated control light is different from a wavelength of signal light, and an optical communication oriented transmission/reception mechanism using the
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 5, 2014
    Assignees: Dainichiseika Color & Chemicals Mfg. Co., Ltd., Inter Energy Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Norio Tanaka, Shigeru Takarada, Hirobumi Watanabe, Shiro Futaki, Ichiro Ueno, Takashi Hiraga, Noritaka Yamamoto
  • Patent number: 8781328
    Abstract: The inventive method, implemented in an optical flexible wavelength division multiplexing FWDM network, includes finding a connection route in an optical FWDM network on which a channel with sufficient spectrum is available at lowest wavelength among all available channels, finding K channels at first available K lower wavelengths out of available channels for minimizing total required spectrum; and selecting a channel which is routed through minimum number of optical fiber paths out of the K available channels at one of the lower wavelengths.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 15, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Ankitkumar Patel, Philip Nan Ji
  • Patent number: 8774625
    Abstract: Embodiments of the present invention are directed to implementing high-radix switch topologies on relatively lower-radix physical networks. In one embodiment, the method comprises constructing the physical network (702) composed of one or more optical switches connected via one or more waveguides. A desired switch topology (704) is then designed for implementation on the physical network. The switch topology is then overlain on the switch network by configuring the optical switches and waveguides (706) to implement the switch topology on the physical network. The optical switches can be reconfigured following a transmission over the physical network and can be configured to implement circuit switching or packet switch.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: July 8, 2014
    Assignee: Hewlett-Packard Development Company, L. P.
    Inventors: Nathan L. Binkert, Alan L. Davis, Moray McLaren
  • Patent number: 8768167
    Abstract: A single step routing and wavelength assignment method and system for automated provisioning of services on DWDM networks is presented. This novel single step solution automates design and assignment of services in DWDM networks. For an automated provisioning platform that can handle the routing and wavelength assignment in a single step, the solution avoids reconfiguration of existing services. It also takes into consideration practical aspects of DWDM transponder availability at termination sites and regeneration sites along the selected route. The methodology includes iterative computation of common channel sets to avoid multiple shortest path computations for each of the wavelengths.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 1, 2014
    Assignee: Telcordia Technologies, Inc.
    Inventors: Harshad Tanna, Sudha Ramesh, Ravi Vaidyanathan
  • Patent number: 8705960
    Abstract: An M×N wavelength-selective switch (WSS) is provided. M input ports launch M input beams towards a wavelength-dispersing system, which disperses the M input beams into M×K sub-beams at K wavelength bands. A redirecting system redirects the M×K sub-beams towards a first 1×K switching array, which selects K sub-beams from the M×K sub-beams. The redirecting system blocks the (M?1)×K non-selected sub-beams, but re-images the K selected sub-beams onto a second 1×K switching array by means of at least one relaying element having optical power. The second 1×K switching array routes the K selected sub-beams to N output ports. The redirecting system redirects the K selected sub-beams towards the wavelength-dispersing system, which combines any selected sub-beams that are routed to a same output port. The N output ports then output the K selected sub-beams.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: April 22, 2014
    Assignee: JDS Uniphase Corporation
    Inventor: Paul Colbourne
  • Patent number: 8699878
    Abstract: A multi-chassis network device includes a plurality of nodes that operate as a single device within the network and a switch fabric that forwards data plane packets between the plurality of nodes. The switch fabric includes a set of multiplexed optical interconnects coupling the nodes. For example, a multi-chassis router includes a plurality of routing nodes that operate as a single router within a network and a switch fabric that forwards packets between the plurality of routing nodes. The switch fabric includes at least one multiplexed optical interconnect coupling the routing nodes. The nodes of the multi-chassis router may direct portions of the optical signal over the multiplexed optical interconnect to different each other using wave-division multiplexing.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: April 15, 2014
    Assignee: Juniper Networks, Inc.
    Inventor: Pradeep Sindhu
  • Patent number: 8660427
    Abstract: A method and apparatus for control and data burst routing in WDM photonic burst-switched network is disclosed. In one embodiment, only the control bursts and network management labels are going through optical-electrical-optical conversion inside the photonic burst switching (PBS) module. The building blocks of the control processing unit inside the PBS module may include input and output buffers, control burst parser, burst scheduler, PBS configuration and control, contention resolution, forwarding engine, network management controller, control burst generator, and queue manager. The contention resolution block may be used to resolve resource contention between multiple data bursts. Such contention resolution may take the form of adding additional delays to one of the data bursts, changing one of the data bursts to an alternate wavelength, or dropping some of the data bursts based on various criteria such as relative priority and wavelength.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: February 25, 2014
    Assignee: Intel Corporation
    Inventor: Shlomo Ovadia
  • Patent number: 8639114
    Abstract: In the optical communication device and the optical communication system using DPSK modulation whose cost is low, whose size is small and whose power consumption is low, the N:1 multiplexer 125 generates a serial signal by multiplexing a parallel signal coded by the DPSK modulation coding units 115˜117 bit by bit on a time division basis. The electric-phase modulation optical converter 127 converts a serial signal into a phase modulation light. The N-bit delay interferometer 132 executes DPSK decoding with respect to a phase modulation light by comparison with an N-bit preceding optical signal. The optical-electric signal converter 134 converts a decoded intensity modulation light into an electric signal. The N:1 demultiplexer 136 divides an electric signal converted by the optical-electric signal converter 134 into a number N of signals bit by bit on a time division basis.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 28, 2014
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Toshiharu Itou, Kiyoshi Fukuchi, Hitoshi Takeshita
  • Patent number: 8639115
    Abstract: A bidirectional optical network, in which an incoming/downstream modulated optical signal(s) of a particular wavelength may carry content from a headend to a subscriber. An incoming/downstream unmodulated continuous wave optical signal(s) from the headend is time-shifted (i.e., time delayed with respect to just received incoming/downstream optical signal(s)), collected, modulated and sent back as return/upstream optical signal(s) from the subscriber to the headend. The return/upstream optical signal(s) may have the same wavelength or a slightly shifted wavelength relative to incoming/downstream optical signal(s). Wavelength, bandwidth, subscriber priority and service (content) provider may be fixed, dynamically, or statistically assigned. A modulated marker optical signal(s) is sent along with a modulated data optical signal simultaneously in a different plane. The modulated data optical signal(s) can therefore be securely delivered to a subscriber(s) according to the marker identification.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: January 28, 2014
    Assignee: Dorica Properties NY LLC
    Inventor: Mohammad A. Mazed