Mechanical Blending Patents (Class 419/32)
  • Patent number: 4734131
    Abstract: A permanent-magnet material having a composition represented by the following formula;R(Co.sub.1-X-Y-.alpha.-.beta. Fe.sub.X Cu.sub.Y M.sub..alpha. M'.sub.62)A(wherein X, Y, .alpha., .beta., and A respectively represent the following numbers:0.01.ltoreq.X, 0.02.ltoreq.Y.ltoreq.0.25, 0.001.ltoreq..alpha..ltoreq.0.15,0.0001.ltoreq..beta..ltoreq.0.001, and 6.0.ltoreq.A.ltoreq.8.3,providing that the amount of Fe to be added should be less than 15% by weight, based on the total amount of the composition, and R, M, and M' respectively represent the following constituents:R: At least one element selected from the group of rare earth elements,M: At least one element selected from the group consisting of Ti, Zr, Hf, Nb, V, and Ta, andM': B or B+Si),is disclosed.
    Type: Grant
    Filed: July 21, 1987
    Date of Patent: March 29, 1988
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohisa Arai, Naoyuki Sori, Seiki Sato, Nobuo Uchida
  • Patent number: 4732622
    Abstract: A method of producing products from a mechanically alloyed, dispersion strengthened iron-base powder comprises consolidating the powder and working the consolidated body to the desired product shape. To obtain a desired grain size in the product, the process includes at least two stages of recrystallization annealing which may be effected after consolidation or alternatively at least one of the recrystallization anneals may be carried out while the material is still in powder form.
    Type: Grant
    Filed: September 23, 1986
    Date of Patent: March 22, 1988
    Assignee: United Kingdom Atomic Energy Authority
    Inventor: Andrew R. Jones
  • Patent number: 4731115
    Abstract: A microcomposite material having a matrix of a titanium-base alloy, the material further including about 10-80% by weight TiC substantially uniformly dispersed in the matrix. Several methods of cladding a macrocomposite structure including pressing quantities of a matrix material and a microcomposite material composed of the matrix material and a compatible stiffener material into layers to form a multi-layered compact and sintering the multi-layered compact to form an integral metallurgical bond between the layers of the compact with diffusion but essentially no composition gradient between the layers. A multi-layered macrocomposite article composed of an alloy layer of a matrix material and a layer of a microcomposite material composed of the matrix material and a compatible stiffener material bonded together at the interface region between the layers, the interface region being essentially free of a composition gradient.
    Type: Grant
    Filed: February 22, 1985
    Date of Patent: March 15, 1988
    Assignee: Dynamet Technology Inc.
    Inventors: Stanley Abkowitz, Harold L. Heussi, Harold P. Ludwig
  • Patent number: 4728362
    Abstract: To increase service life and suppress interferences in high voltage electrodes for the ignition distributing system of internal combustion engines, the electrodes consist of molded and sintered mixture of 50-90% by weight iron powder and 50-10% by weight calcium silicide. Preferably, the electrode has tipstretched contact area of nonalloyed iron.
    Type: Grant
    Filed: April 22, 1986
    Date of Patent: March 1, 1988
    Assignee: Robert Bosch GmbH
    Inventors: Werner Grunwald, Hans-Peter Koch, Gundmar Leuze, Hans Neu
  • Patent number: 4722826
    Abstract: A method for utilizing a powder metallurgy ("P/M") slurry by employing water atomized metallic powders and subsequently reducing the oxide levels therein to acceptable levels. The slurry comprises a carbon containing binder. The slurry is consolidated and sintered under controlled conditions to reduce the oxide levels.
    Type: Grant
    Filed: September 15, 1986
    Date of Patent: February 2, 1988
    Assignee: Inco Alloys International, Inc.
    Inventor: Jon M. Poole
  • Patent number: 4722751
    Abstract: A light weight and high strength aluminum alloy and a process for producing such an alloy, which alloy is suitable for forming automotive engine components, including pistons. In a preferred embodiment, 80 to 99.5% by volume of an aluminum alloy powder or a mixed powder composed of pure metal powders or master alloy powders is blended with 0.5 to 20% by volume of at least one of carbon or graphite powder, an oxide powder, a carbide powder and a nitride powder. The blend is then mechanically alloyed, following which the thereby-obtained powder is subjected to working such as by compaction and hot forging, hot pressing, cold isostatic pressing and hot forging, or cold isostatic pressing and hot extrusion.
    Type: Grant
    Filed: December 19, 1984
    Date of Patent: February 2, 1988
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiyoaki Akechi, Nobuhito Kuroishi
  • Patent number: 4721599
    Abstract: Metal or alloy articles having complicated shapes can be produced with high precision by injection molding a kneaded mixture of a metal or alloy powder and an organic binder comprising a special methylcellulose, a plasticizer, a lubricant and water, followed by removal of the organic binder and sintering.
    Type: Grant
    Filed: April 24, 1986
    Date of Patent: January 26, 1988
    Assignee: Hitachi Metals, Ltd.
    Inventor: Hideki Nakamura
  • Patent number: 4716019
    Abstract: A process is disclosed for producing composite agglomerates of molybdenum and molybdenum carbide (Mo.sub.2 C). The process involves forming a relatively uniform mixture of non-agglomerated molybdenum powder and carbon powder having a particle size of no greater than the particle size of the molybdenum powder. The amount of carbon powder is proportional to the amount of molybdenum carbide desired in the composite agglomerate. A slurry is formed of the mixture, an organic binder, and water with the amount of the binder being no greater than about 2% by weight of the mixture; and the powders are agglomerated from the slurry. The agglomerated powders are then classified to remove the major portion of the agglomerates having a size greater than about 170 mesh and less than about 325 mesh from the balance of the agglomerates. The balance of the agglomerates in which the particle size is -170 +325 mesh is then reacted at a temperature of no greater than about 1400.degree. C.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: December 29, 1987
    Assignee: GTE Products Corporation
    Inventors: David L. Houck, David J. Port, Jen S. Lee
  • Patent number: 4708742
    Abstract: Nitride dispersion strengthening of stainless steel or nickel-based alloys is achieved by mechanically alloying the constituents of the alloy together with a nitride former, such as titanium, and a nitrogen donor, such as chromium nitride, and heating the mechanically alloyed powder to dissociate the donor and combine the resulting nitride with the nitride former. The heating step may be carried out in the course of hot consolidating the powder, e.g. by extrusion.
    Type: Grant
    Filed: October 27, 1986
    Date of Patent: November 24, 1987
    Assignee: United Kingdom Atomic Energy Authority
    Inventor: Eric G. Wilson
  • Patent number: 4699763
    Abstract: An electrical contact material characterized by a pressed and sintered powder of silver composite with about 5 weight percent of graphite fibers.
    Type: Grant
    Filed: June 25, 1986
    Date of Patent: October 13, 1987
    Assignee: Westinghouse Electric Corp.
    Inventors: Semahat D. Sinharoy, Jere L. McKee, Norman S. Hoyer
  • Patent number: 4690796
    Abstract: A process is disclosed for producing composite powder particles consisting essentially of a matrix phase and a reinforcement phase. The process involves entraining agglomerated particles in a carrier gas, the agglomerated particles consisting essentially of titanium diboride and particles of a metal selected from the group consisting of aluminum and aluminum based alloys. The agglomerated particles are fed through a high temperature zone having a temperature sufficient to allow the metal particles to melt, coalesce together, and encapsulate the titanium diboride particles. The metal is then resolidified, resulting in the formation of the composite powder particles wherein the matrix phase consists essentially of the metal and the reinforcement phase consists essentially of the titanium diboride particles.
    Type: Grant
    Filed: March 13, 1986
    Date of Patent: September 1, 1987
    Assignee: GTE Products Corporation
    Inventor: Muktesh Paliwal
  • Patent number: 4689197
    Abstract: A denture with a metallic microstructure and with low shrinkage and porosity is produced by metallurgical sintering by providing a multimodal size distribution of coarse and fine fractions of metal powder, optionally also with glass or ceramic powder, converting this powder mixture with water into a slip, modelling the denture with this, and sintering the slip at a temperature which exceeds the solidus temperature of at least one component of the powder mixture.
    Type: Grant
    Filed: April 4, 1986
    Date of Patent: August 25, 1987
    Assignee: Degussa Aktiengesellschaft
    Inventors: Werner Groll, Josef Rothaut, Angela Klaus, Rudi Steinke
  • Patent number: 4687515
    Abstract: An electrical contact for vacuum interrupters of a pressed and sintered composition of copper (60-80 wt %), ferrovanadium alloy (40-100 wt % of the balance) with at least 80 wt % of any remainder consisting of a refractory metal of the group of chromium, vanadium and their compounds. The ferrovanadium alloy comprises 55-85 wt % of vanadium.
    Type: Grant
    Filed: April 10, 1986
    Date of Patent: August 18, 1987
    Assignee: General Electric Company
    Inventor: Joseph L. Talento
  • Patent number: 4676949
    Abstract: A tetrafluoroethylene-type fluoroplastic powder is added and mixed with a metal powder and the mixture is shaped. The compact is heated in a nonoxidizing atmosphere and the oxides on the surface of the metal particles are converted and removed as gaseous fluorides. Alternatively, after the oxides are converted to solid or liquid fluorides, the fluorides are reduced by hydrogen and then they are removed as gaseous reaction products. Thereafter, the compact is sintered.
    Type: Grant
    Filed: September 16, 1986
    Date of Patent: June 30, 1987
    Assignee: Nippon Kokan Kabushiki Kaisha
    Inventors: Tsuneo Miyashita, Hiroaki Nishio
  • Patent number: 4668470
    Abstract: A method for forming intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications. Elemental powders are blended in proportions approximately equal to their respective intermetallic compounds. Heating of the blend results in the formation of intermetallic compounds whereas lack of heating results in intermetallic-type powder without the intermetallic structure. The resultant powder is then blended to form a final alloy. Examples involving aluminum-titanium alloys are discussed.
    Type: Grant
    Filed: December 16, 1985
    Date of Patent: May 26, 1987
    Assignee: Inco Alloys International, Inc.
    Inventors: Paul S. Gilman, Arun D. Jatkar, Stephen Donachie, Winfred L. Woodard, III, Walter E. Mattson
  • Patent number: 4657734
    Abstract: A method for preparing a sliding face of a machine tool, comprising the steps of: providing a flat surface as a slide surface to a slide component of a machine proper by gluing a plastic material prepared from a kneaded mixture of sintered metal powder and a synthetic resin binder to the slide component; and thermally dissolving out said synthetic resin binder contained in the plastic material and sintering said metal powder.
    Type: Grant
    Filed: April 16, 1985
    Date of Patent: April 14, 1987
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroyasu Yamada, Motoatsu Shiraishi
  • Patent number: 4636252
    Abstract: A method of manufacturing a cermet having high toughness and high hardness, which exhibits excellent impact resistance and wear resistance when used in cutting tools. A mixed powder is prepared which consists essentially of: titanium nitride, from 25 to 50 percent by weight; titanium carbide, from 10 to 30 percent by weight; at least one selected from the group consisting of tantalum carbide, niobium carbide, and zirconium carbide, from 5 to 25 percent by weight; tungsten carbide, from 10 to 25 percent by weight; and at least one selected from the group consisting of Co and Ni, and Al if required, from 7.5 to 25 percent by weight in total. The above mixed powder is compressed into a green compact. The green compact is sintered in a nitrogen atmosphere under a pressure within a range from 0.1 to 100 torr, and at a temperature within a range from 1400.degree. to 1550.degree. C.
    Type: Grant
    Filed: May 14, 1984
    Date of Patent: January 13, 1987
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hironori Yoshimura, Jhunichi Toyama
  • Patent number: 4634571
    Abstract: For the production of plate-shaped fuel elements for research reactors having charges of more than 26 volume % of uranium compound in the aluminum matrix according to the known picture frame technique, 0.01 to 0.3 mm thick aluminum layers are applied by rolling to the picture before inserting it into the frame in order to avoid dragging the uranium into the fuel-free zones.
    Type: Grant
    Filed: March 5, 1985
    Date of Patent: January 6, 1987
    Assignee: NUKEM GmbH
    Inventors: Horst Langhans, Erwin Wehner
  • Patent number: 4622068
    Abstract: The present invention provides a molybdenum alloy which suitably comprises in the range of from 0.2 to 1.0% by weight of an oxide of a specified metal prepared by adding a salt of the metal in dissolved form to molybdenum and/or a molybdenum oxide or a mixture of different molybdenum components, reducing this mixture at a temperature of up to 1150.degree. C. using hydrogen, pressing the reduced metal without the addition of a binder suitably under a pressure of from 150 to 300 mPA, and sintering the product at a temperature in the range of from 1750.degree. to 2200.degree. C. It is preferable to add salts of zirconium to the molybdenum oxide.
    Type: Grant
    Filed: November 12, 1985
    Date of Patent: November 11, 1986
    Assignee: Murex Limited
    Inventors: Charles E. D. Rowe, George R. Hinch
  • Patent number: 4615736
    Abstract: A process is disclosed for the preparation of metallic products from metal salts admixed with solvent wherein at least one of the metal salt and the solvent is easily reducible. The admixture is heated under hypercritical conditions of temperature and pressure to produce metallic products and a hypercritical fluid. The hypercritical fluid is subsequently removed from the reaction zone and the metallic product is collected. The metallic product includes pure metals selected from the group of silver, gold, platinum, palladium, ruthenium, rhodium, mercury, arsenic, rhenium, tellurium, iridium, osmium, and copper, and alloys and mixtures thereof. The metallic product ordinarily exists as finely divided powders which may be highly porous.
    Type: Grant
    Filed: May 1, 1985
    Date of Patent: October 7, 1986
    Assignee: Allied Corporation
    Inventors: John N. Armor, Emery J. Carlson
  • Patent number: 4609527
    Abstract: The specification discloses a powder process in which metal or ceramic particles are mixed with a binder such as ultra high molecular weight polyethylene powder and are compacted. The compacted shape is heated to a temperature near the melting point of the binder to consolidate the binder and produce a green shape. The green shape is formed and the binder is removed. Thereafter, the shape is sintered to form a final part.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 2, 1986
    Inventors: James R. Rinderle, Michael K. Pratt
  • Patent number: 4602954
    Abstract: A method of producing metallic strip containing discrete particles of one or more additional metallic or non-metallic materials dispersed therein, includes the step of forming a homogeneous mix of ductile metallic particles and a minor proportion of metallic and/or non-metallic particles having chemical and/or physical properties different from those of the ductile metallic particles. A slurry coating comprising a suspension of the mixed particles in a film forming cellulose derivative is deposited onto a moving support surface, dried and removed from the support surface before being subjected to rolling to effect compaction of the ductile content of the strip and sintering at a temperature at which the metallic particles coalesce to form a matrix containing particles of the additional metallic or non-metallic material(s) which either remain as discrete particles or alloy with the matrix.
    Type: Grant
    Filed: April 4, 1985
    Date of Patent: July 29, 1986
    Assignee: Mixalloy Limited
    Inventors: Idwal Davies, John Bellis
  • Patent number: 4594220
    Abstract: A method of manufacturing a scandate dispenser cathode having a matrix at least the top layer of which at the surface consists substantially of tungsten (W) and scandium oxide (Sc.sub.2 O.sub.3) and with emitter material in or below said matrix. If said method comprises the following steps:(a) compressing a porous plug of tungsten powder(b) heating said plug in a non-reactive atmosphere and in contact with scandium to above the melting temperature of scandium,(c) cooling the plug in a hydrogen (H.sub.2) atmosphere(d) pulverizing the plug to fragments(e) heating said fragments to approximately 800.degree. C. and firing them at this temperature for a few to a few tens of minutes in a hydrogen atmosphere and slowly cooling in said hydrogen atmosphere(f) grinding the fragments to scandium hydride-tungsten powder (ScH.sub.2 /W)(g) compressing a matrix or a top layer on a matrix of pure tungsten from said ScH.sub.
    Type: Grant
    Filed: December 24, 1984
    Date of Patent: June 10, 1986
    Assignee: U.S. Philips Corporation
    Inventors: Jan Hasker, Pieter Hokkeling, Johannes van Esdonk, Josef J. van Lith
  • Patent number: 4592780
    Abstract: A process for producing a flat product such as a coin includes the steps of forming a slurry comprising a suspension of particulate material in a film-forming cellulose derivative, depositing a quantity of this slurry onto a support surface, drying the slurry to form a self-supporting flat product, and removing the dried product from the support surface. The particulate material essentially comprises metallic particles and matter whose chemical composition and physical properties differ from those of the metallic particles such that the added matter is not or only partially taken into solution with the metallic particles on heat treatment of the product whereby the presence of the added matter can readily be detected following such heat treatment.
    Type: Grant
    Filed: April 4, 1985
    Date of Patent: June 3, 1986
    Assignee: Mixalloy Limited
    Inventors: Idwal Davies, John L. Fage
  • Patent number: 4591480
    Abstract: A method for sealing porous metals, which comprises applying powder of a eutectic alloy containing an element having a good diffusibility in a porous metal or powder of a mixture of metals capable of forming the eutectic alloy, to the surface of a porous metal member and heating the surface applied with the powder at a temperature higher than the eutectic temperature of the eutectic alloy to thereby cause the molten eutectic alloy to intrude into pores from the surface of the porous metal member, whereby the melting point of the molten alloy in the pores is promptly increased by diffusion of the element in the porous metal member to solidify the molten metal in the pores, sealing only pores present in the vicinity of the surface of the porous metal member.
    Type: Grant
    Filed: February 19, 1985
    Date of Patent: May 27, 1986
    Assignee: Mazda Motor Corporation
    Inventors: Tsuyoshi Morishita, Sigemi Osaki, Noriyuki Sakai, Yasuhumi Kawado
  • Patent number: 4588552
    Abstract: Manufacture of a workpiece from a creep-resistant nickel superalloy which is hardened by means of an oxide dispersion, by a powder-metallurgical process in which the mechanically alloyed powder is subjected to an isothermal or quasi-isothermal hot-rolling operation, in the course of which the powder particles are converted into a flake-shaped form with a pronounced longitudinal axes, and the rolled powder is introduced into a steel container and is compressed by isostatic hot-pressing. The workpiece is afterwards subjected to an annealing treatment which is designed to develop a coarse grain size. A preferred embodiment comprises the introduction of the powder into the mold or container in an oriented manner, in order to obtain a stratified packing of the powder, and an annealing treatment which is designed to develop a coarse grain size and is performed as a zone-annealing treatment.
    Type: Grant
    Filed: November 1, 1984
    Date of Patent: May 13, 1986
    Assignee: BBC Brown, Boveri & Co., Ltd.
    Inventors: Gunther Schroder, Robert Singer
  • Patent number: 4587096
    Abstract: A canless method for hot working a nickel-base gas atomized alloy powder. The powder is blended with nickel powder, consolidated and sintered to a sufficient green strength. The surface of the resultant form is sealed to create an oxygen impervious layer so as to prevent oxidation therein. The sealed surface, in a sense, acts as a can. The form is then reheated and hot worked.
    Type: Grant
    Filed: May 23, 1985
    Date of Patent: May 6, 1986
    Assignee: Inco Alloys International, Inc.
    Inventors: William L. Mankins, Lindy J. Curtis, Gene A. Stewart
  • Patent number: 4582680
    Abstract: An acoustical transducer is provided with an acoustically absorbant backing material having an acoustical impedance precisely matching the impedance of the piezoelectric element in the transducer. The backing material is a multiphase mixture of selected materials, such as a low melting point alloy (InPb) and one or more powders having high impedance characteristics (tungsten and copper). The slope of the curve impedance versus volume fraction of the backing components is low, thus allowing the impedance of the material to be precisely controlled. The backing material is preferably electrically conductive and is fuzed to one surface of the piezoelectric element to further improve the output characteristics of the transducer.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: April 15, 1986
    Assignee: Systems Research Laboratories, Inc.
    Inventors: Yoseph Bar-Cohen, David A. Stubbs, Wally C. Hoppe
  • Patent number: 4569822
    Abstract: A method is provided for preparing computer disk substrates having low surface amplitude which comprises: (a) forming a liquid suspension containing aluminum powder, an aluminum alloying element and a borate composition by initially admixing the borate composition with a volatile liquid medium to obtain a borate solution and thereafter admixing the aluminum powder and aluminum alloying element with the borate solution to produce the liquid suspension; (b) heating the liquid suspension to remove the liquid medium and to obtain a dry aluminum powder composition; (c) isostatically pressurizing the dry aluminum powder composition and roller compacting the same into sheet form; (d) heating and sintering the sheet form in a non-oxidizing atmosphere; and (e) cutting and compressing the sintered sheet into computer disk substrate configuration.
    Type: Grant
    Filed: May 11, 1984
    Date of Patent: February 11, 1986
    Inventors: Sanford W. Brown, Robert W. Hill
  • Patent number: 4563214
    Abstract: An electrically conducting cermet for use in a closure assembly in a high pressure sodium discharge lamp which cermet comprises a sintered compact of refractory oxide granules and a conducting network extending throughout the cermet wherein said network is provided by a layer of niobium and, optionally, at least one other specified metal. The cermet is, because of the niobium content of the metallic network, permeable to hydrogen and lamps incorporating this cermet can therefore be stabilized in acceptable times.
    Type: Grant
    Filed: November 17, 1983
    Date of Patent: January 7, 1986
    Assignee: Thorn EMI plc
    Inventors: Richard J. Seddon, Keith E. Parker, Peter Hing
  • Patent number: 4562040
    Abstract: The present invention relates to a method for manufacturing a high-strength sintered silicon carbide article and more particularly, to a method for a sintered silicon carbide article having high mechanical strength by mixing a finely divided silicon carbide powder with the definite amounts of a specific carbon-containing material, a boron compound and silicon powder as densification aids, shaping and then sintering said shaped article under an inert atmosphere.
    Type: Grant
    Filed: April 9, 1985
    Date of Patent: December 31, 1985
    Assignee: Sumitomo Aluminium Smelting Company, Ltd.
    Inventors: Koichi Yamada, Masahide Mouri, Yoshisaburo Nomura
  • Patent number: 4557893
    Abstract: A process for producing composite materials which comprises subjecting particles of a malleable matrix material, i.e., a metal or alloy or the components of a matrix alloy and particles of a reinforcing material such as a carbide or an oxide or an intermetallic to energetic mechanical milling under circumstances to insure the pulverulent nature of the mill charge so as to enfold matrix material around each of said reinforcing particles to provide a bond between the matrix material and the surface of the reinforcing particle. The process is exemplified by the use of aluminum alloy as the matrix material and silicon carbide as the reinforcing particles. Reinforcing particles are present in an amount of about 0.2 to about 30 volume percent of total matrix and reinforcing particles. The invention is also directed to the product of the process.
    Type: Grant
    Filed: June 24, 1983
    Date of Patent: December 10, 1985
    Assignee: INCO Selective Surfaces, Inc.
    Inventors: Arun D. Jatkar, Alfred J. Varall, Jr., Robert D. Schelleng
  • Patent number: 4556533
    Abstract: A sintered ferrous alloy which is high in wear resistance and relatively weak in the tendency to abrade another metal material with which the sintered alloy makes rubbing contact. The sintered alloy is produced by compacting and sintering 100 parts by weight of a powder mixture of 5-35 parts by weight of a Fe-Cr-B-Si alloy powder, which contains 10-35% of Cr, 1.0-2.5% of B and 0.5-3.0% of Si, such an amount of a Cu-P alloy powder that the powder mixture contains 0.2-1.5% of P and 1.0 to 20.0% of Cu, and the balance of a cast iron powder. Preferably the cast iron powder contains 2.5-3.5% of C, 1.8-2.2% of Si and 0.6-1.0% of Mn. For example, the sintered alloy is suitable for rocker arm tips in automotive engines.
    Type: Grant
    Filed: November 30, 1983
    Date of Patent: December 3, 1985
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takaaki Oaku, Masahiko Shioda, Syunsuke Suzuki, Yoshihiro Maki
  • Patent number: 4555268
    Abstract: A method for improving the handling characteristics of a flaked tantalum powder composition comprising heat treating the flaked powder component of the composition in order to pre-agglomerate the flaked component prior to mixing it with the granular tantalum powder component of the composition.
    Type: Grant
    Filed: December 18, 1984
    Date of Patent: November 26, 1985
    Assignee: Cabot Corporation
    Inventor: Marlyn F. Getz
  • Patent number: 4552719
    Abstract: A stainless steel powder is mixed with at least a Ni--Mn and a Ni--Cr powder, and the powder mixture is formed by loose packing into a required configuration. The powder mixture is sintered in a non-oxidizing atmosphere at the melting point of the Ni--Mn powder or at a higher temperature thereby to obtain a porous body.
    Type: Grant
    Filed: August 31, 1983
    Date of Patent: November 12, 1985
    Assignee: N.D.C. Co., Ltd.
    Inventors: Toru Morimoto, Tsuyoshi Ohsaki, Toshio Ohkawa, Masahito Fujita
  • Patent number: 4519839
    Abstract: A sintered high vanadium high speed steel with an excellent hardness and ductility of composition C 1.4-6.2%, W+2 Mo (W-equivalent) 10.0-24.0%, Cr 3.0-6.0%, V 8.5-28%, Co less than 17%, the remainder Fe and inevitable impurities, and a method of producing same.It can be produced by the steps of commingling the alloy constituents in the form of pulverulent oxides and carbon powder, heating the mixture in a stream of hydrogen, thereby reducing the mixture by the carbon and hydrogen simultaneously to yield an alloy powder, adjusting the composition and the grain size of the obtained alloy powder, pressing the alloy powder to a compact, sintered the compact in a vacuum, and finally converting the matrix of the sintered body into martensite by heat treatment.
    Type: Grant
    Filed: October 3, 1984
    Date of Patent: May 28, 1985
    Assignees: The Furukawa Electric Co., Ltd., Kanto Denka Kogyo Co., Ltd., Fujidie Co., Ltd.
    Inventors: Ishibachi Toyoaki, Yoshihara Minoru, Takuma Takashi, Fuke Yasunori, Maeda Masayuki
  • Patent number: 4432795
    Abstract: A sintered powdered titanium alloy article is provided which has a density approaching theoretical and which is characterized by having physical properties similar to those of a wrought titanium alloy article having the same chemical composition.
    Type: Grant
    Filed: February 16, 1982
    Date of Patent: February 21, 1984
    Assignee: Imperial Clevite Inc.
    Inventor: Phillip J. Andersen
  • Patent number: 4393563
    Abstract: A method and material for the manufacture of improved bearing elements such as annular inner and outer bearing ring blanks for ball, roller and needle bearing assemblies comprising the steps of mixing a powder consisting substantially of iron with ferro-alloy powders of substantially smaller size, each ferro-alloy containing at least 80% iron and the balance being an alloying element, together with graphite powder and a lubricant, compacting the resulting mixture to form a preform, pre-sintering the preform, and then coating the sintered preform with a stop-off and lubricant. The preform is subjected to a plastic deformation of at least 50% in a cold (room temperature) forging operation to produce an article which is at least 98% dense and has approximately the shape of the finished article. This cold forged shape is resintered and annealed, after which the annealed and resintered shape is roll formed into substantially final dimensions.
    Type: Grant
    Filed: May 26, 1981
    Date of Patent: July 19, 1983
    Inventor: David T. Smith
  • Patent number: 4388054
    Abstract: A method for manufacturing elongated dense bodies of metals or metal alloys by extrusion of a powder charge enclosed in a metal capsule. A closed, powder-filled capsule is heated to a temperature necessary for bonding the charge under pressure, and the capsule is then inserted in a pressure chamber and surrounded by a layer of a solid, readily deformable material, such as talcum powder or pyrophyllite. A piston is inserted into the pressure chamber and subjects the capsule and the surrounding material to a pressure such that the capsule and the surrounding material are pressed out together through an opening in a die. Tubes can also be extruded, with the deformable packing material filling the tube bore.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: June 14, 1983
    Assignee: ASEA Aktiebolag
    Inventor: Hans-Gunnar Larsson