Sintering Which Includes A Chemical Reaction Patents (Class 419/45)
  • Patent number: 5788142
    Abstract: A process for joining two parts of which at least one is made of an intermetallic material comprises:mixing elemental powders to form an intermetallic compound of the same type as that of the intermetallic part or parts;compacting and forming an intermediate part from the said compound at a temperature below that of the reaction sintering temperature of the compound;placing the intermediate part in position between the two parts to be joined;subjecting the assembly of parts to a first thermal cycle so as to effect a reaction sintering of the intermediate part and a consolidation of the assembly; and,subjecting the assembly to a second thermal cycle at a temperature above 0.8 of the fusion temperature of said intermetallic compound so as to effect a diffusion treatment and mechanical consolidation of the assembly.The process may also be adapted to form a coating or a repair of a part using an intermetallic material.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: August 4, 1998
    Assignees: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "Snecma", Commissariat a L'Energie Atomique
    Inventors: Yves Bigay, Alain Lasalmonie
  • Patent number: 5773733
    Abstract: The present invention provides an alumina-aluminum nitride-nickel (Al.sub.2 O.sub.3 -AlN-Ni) composite which can be prepared by pressureless sintering Al.sub.2 O.sub.3 and NiAl alloy powders or by pressureless sintering Al.sub.2 O.sub.3, Ni and Al powders in a nitrogen-containing atmosphere. The mechanical properties and the thermal conductivity of the obtained composite are better than those of alumina alone, while the electrical resistivity of the composite remains high. The composite thus is suitable for use as an electronic substrate or package.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 30, 1998
    Assignee: National Science Council
    Inventors: Wei-Hsing Tuan, Wen-Bing Chou, Shun-Tai Chang
  • Patent number: 5774779
    Abstract: A method for making multi-channel structures suitable for use as filters, catalyst carriers or the like.A composite rod comprising an outer shell and an inner core is formed of respective mixtures of powders. The mixture for the outer shell comprises a sinterable powdered structural material such as ceramics, metals, intermetallics, and a powdered binder such as paraffin, wax or polymer. The inner core comprises a powdered channel-forming filler material such as melamine or polymers, or soluble inorganic compounds or a metal that can differentially be removed from the structural material of the shell.The composite rod may be deformed, as by extrusion, to reduce its diameter. In any event, a bundle of composite rods is assembled and deformed, as by extrusion, to reduce the diameter of the bundle and of its component composite rods.
    Type: Grant
    Filed: November 6, 1996
    Date of Patent: June 30, 1998
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventor: Ley J. Tuchinskiy
  • Patent number: 5761592
    Abstract: A process for producing a sliding member employs a base material having a covering surface and pores, and a layer material comprising a constitutive component for reacting with a constitutive component of the base material. Initially, the layer material comes into contact with at least part of the covering surface of the base material. Next, the both are heated to the sintering temperature of the base material. Thus, a molten liquid occurs at the boundary between the base material and the layer material. Since the solidus temperature of the molten liquid increases with the reaction proceeding, the molten liquid can solidify early to seal the pores at the covering surface of the base material early. Therefore, the layer material remains on the covering surface of the base material, the remaining layer material comes to constitute a sliding surface.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: June 2, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Okajima, Akira Manabe
  • Patent number: 5758253
    Abstract: A process for producing sintered titanium-graphite having improved wear resistance and low frictional characteristics is described. The said process which produces titanium-graphite composites having a triphasic structure with controlled porosity and a graphite lubricating film, comprises sintering a mixture of titanium and graphite powders in which the percentage of graphite may vary from 4 to 8 percent at temperatures from about 800.degree. C. to 1600.degree. C., for about 1/2 to 2 hours, under a compaction pressure of 0.17 to 0.62 MPa. The composites have applications in biomedical engineering and other fields of engineering due to their biocompatibility, strength and improved wear resistance.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: May 26, 1998
    Assignee: National University of Singapore
    Inventors: Swee Hin Teoh, Rajendran Thampuran, James Cho Hong Goh, Winston Kar Heng Seah
  • Patent number: 5742891
    Abstract: A wire for fabrication of a vibration resistant filament for an incandescent lamp. The wire includes about 0.05-1.00 weight percent lanthanum oxide dispersed in a tungsten matrix and has a microstructure including stringers of fine particles of lanthanum oxide extending parallel to the wire axis. During primary recrystallization of a vibration resistant lamp filament from the filament wire, the stringers produce a microstructure in the filament exhibiting sufficient grain boundary segments extending generally axially along the length of the filament to render the filament resistant to vibration. A method for producing a vibration resistant filament for an incandescent lamp is also disclosed.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: April 21, 1998
    Assignee: Osram Sylvania Inc.
    Inventors: Thomas J. Patrician, Harry D. Martin, III
  • Patent number: 5723799
    Abstract: The present invention provides metal-based composite with oxide particle dispersion and a method for producing the same.The present invention relates to a method for producing metal-based composite with oxide particle dispersion, comprising sintering of metal-based ultrafine powders (with an average grain size of about 20 nm to 100 nm and a grain size distribution of about 5 nm to 300 nm and with the surface oxidized for handling) in vacuum, in an inert gas or in a reducing atmosphere by rapid sintering, crystallizing the ultrafine powders with a grain size of about 50 nm or less to metal oxide during sintering and simultaneously removing the oxygen on the surface of the ultrafine powders with the grain size of about 50 nm or more, and the metal-based composite with oxide particle dispersion produced according to the said method.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: March 3, 1998
    Assignee: Director General of Agency of Industrial Science and Technology
    Inventors: Norimitsu Murayama, Yasuyoshi Torii
  • Patent number: 5722037
    Abstract: There is provided a process for producing titanium composite, comprising the steps of: molding titanium powder, titanium alloy powder, or powder comprising titanium into a certain shape by a cold isostatic press or cold press; reacting the shape with hydrocarbon gas at its decomposition temperature or higher, to form TiC therein; and providing the shape with high density by vacuum sintering, hot isostatic pressing, hot forging, hot rolling and/or the combinations thereof. TiC a reinforcing material, is in-situ formed by reacting a cold-pressed body of the powder with hydrocarbon gas and cleaner than the externally added one and distributed more uniformly and finely in the Ti matrix, leading to a significant improvement in wear resistance and high temperature property.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: February 24, 1998
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Hyung-Sik Chung, Yong-Jin Kim, Byung-Kee Kim, Jian-Qing Jiang
  • Patent number: 5708956
    Abstract: Ceramic-ceramic and ceramic-metal composite materials are disclosed which contain at least two ceramic phases and at least one metallic phase. At least one of these ceramic phases is a metal boride or mixture of metal borides and another of the ceramic phases is a metallic nitride, metallic carbide, or a mixture of metallic nitride and a metallic carbide.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: January 13, 1998
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Michael J. Romanowski
  • Patent number: 5701575
    Abstract: An article essentially consisting of one or more of Ti--Al intermetallic compounds is fabricated so as to have a volume ratio of voids no more than 3.5%, by preparing a mixture of materials selected from a group consisting of Ti, Ti alloys, Al, Al alloys, and Ti--Al compounds, having a composition suitable for forming a desired Ti--Al intermetallic compound, and heating said mixture so that said mixture may be sintered. Typically, the temperature and pressure for the heating or sintering process is appropriately selected so that the desired porosity may be obtained. The mechanical strength of an article according to the present invention is not only improved but is highly predictable, or, in other word, highly reliable. The fabrication costs can be reduced because the fabrication process involves only relatively low temperatures when pressing and heating the work at the same time.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: December 23, 1997
    Assignee: NHK Spring Co., Ltd.
    Inventors: Kohei Taguchi, Michihiko Ayada, Hideo Shingu
  • Patent number: 5678162
    Abstract: A mold useful for injection molding, comprising: a porous network of metal and oxidized metal and a cured epoxy resin dispersed in the porous network. The mold can be prepared by a process comprising the sequential steps of (a) forming a mixture of a metal powder and a polymer binder; (b) heating the mixture at a temperature in the range from about 100.degree. C. to about 300.degree. C. to remove a majority of the polymer binder from the mixture; (c) heating the mixture resulting from step (b) at a temperature greater than about 300.degree. C. and less than the melting point of the metal in the presence of oxygen to oxidize at least a portion of the metal to form a self-adhering porous network of metal and oxidized metal; (d) contacting the self-adhering porous network with an epoxy resin to fill at least a portion of the porous network with epoxy resin; and (e) curing the body resulting from step (d) to form the mold. The shape of the mold can be performed by selective laser sintering of the mixture.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: October 14, 1997
    Assignee: Board of Regents, Univ. of Texas System
    Inventors: Joel W. Barlow, Balasubramanian Badrinarayan, Joseph J. Beaman, David L. Bourell, Richard H. Crawford, Harris L. Marcus, James R. Tobin, Neal K. Vail
  • Patent number: 5666631
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: September 9, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5613180
    Abstract: A method for producing high density and/or high surface density ferrous powder metal parts has the steps of: compacting a iron-containing powder substantially free of graphite at room temperature and at about 40-50 tsi; sintering the green compact in an inert, non-oxidizing environment at a temperature of about 2050.degree.-2300.degree. F.; repressing the sintered compact at room temperature at about 60 tsi; carburizing the repressed compact at high temperature to form a layer of relatively high carbon concentration to a depth of at least about 0.010 inches; and immediately quenching the hot carburized compact followed by a tempering treatment.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: March 18, 1997
    Assignee: Keystone Investment Corporation
    Inventor: John C. Kosco
  • Patent number: 5608368
    Abstract: The metering valve is controlled by an electromagnet having a fixed core, a oil, and an armature. The core is formed by pressing and subsequently sintering a mixture of powdered ferrous material and an epoxy binder; and presents a low magnetic hysteresis and low parasitic currents, so that, for a given energizing current, a greater magnetic force is achieved and more rapidly, and, for a given magnetic force or maximum operating frequency, the core and/or coil may be made smaller.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: March 4, 1997
    Assignee: Elasis Sistema Ricerca Fiat Nel Mezzogiorno Societa Consortile per Azioni
    Inventors: Mario Ricco, Giovanni Bruni
  • Patent number: 5594932
    Abstract: In a method for the manufacture of an encased high critical temperature superconducting wire by the "powder in tube" method, prior to the introduction of a compressed rod of superconducting material into a silver tube, the rod is heat treated so that grains of unwanted phase are reabsorbed. The tube can be drawn more easily, and strands can be produced with a regular geometry and no defects. The wire is constituted by 15 .mu.m to 20 .mu.m thick filaments (30) with a form factor of more than 60.
    Type: Grant
    Filed: June 9, 1994
    Date of Patent: January 14, 1997
    Assignee: Alcatel Alsthom Compagnie General d'Electricite
    Inventors: Gerard Duperray, Denis Legat
  • Patent number: 5590383
    Abstract: A porous membrane produced by preparing a slurry made from at least one micropyretic substance and at least one liquid carrier. The slurry is dried into a green form having a desired geometric configuration. Combustion of the green form produces the porous membrane.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: December 31, 1996
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Jainagesh A. Sekhar, James J. Liu, Naiping Zhu
  • Patent number: 5590385
    Abstract: A manufacturing method of a target for sputtering comprises the steps of: compressing first and second oxide powders with high permeability to form first and second compressed materials, respectively; sintering the first and the second compressed materials to form a sintered body made of a third oxide crystal; pulverizing the sintered body made of the third oxide crystal to form a third oxide powder; mixing the third oxide powder and titanium powder and compressing the mixed powder to form a third compressed material; and sintering the third compressed material in a vacuum condition to form an oxide target. This manufacturing method produces a target which can stably form oxide thin film with high permeability at high voltage for a long time and can be applied to a direct current sputtering process.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 31, 1996
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Choong-ryul Paik
  • Patent number: 5574956
    Abstract: A method for oxidizing treatment of molten matte and at the same time directly smelting sulphidic concentrate in a refractory-lined liquid bath reactor, e.g. a converter, into which oxidizing air is introduced below the surface of the liquid bath. For additional supply of energy in order to achieve thermal balance or increase of capacity, sulphidic concentrate is introduced into the gas phase of the liquid bath reactor together with oxygen gas or oxygen-enriched gas by means of a concentrate burner.
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: November 12, 1996
    Assignee: Outokumpu Engineering Contractors Oy
    Inventor: Rolf Malmstrom
  • Patent number: 5555481
    Abstract: A method of producing parts from two distinct classes of materials utilizes depositing a first class material and a second class material on a deposition surface where the first class material forms a three-dimensional shape defined by the interface of the first class material and the second class material. The first class material is unified and the second class material is removed therefrom to form a three-dimensional part of the first class material. Preferably, the first and second class materials are deposited in layers.
    Type: Grant
    Filed: August 1, 1995
    Date of Patent: September 10, 1996
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Stephen J. Rock, Charles R. Gilman
  • Patent number: 5534220
    Abstract: A method is described for the manufacture of a sintered ferrous-based material having improved machinability, the method comprises the steps of making a mixture of a ferrous-based powder, the mixture including a compound containing at least one metal from the group comprising manganese and the alkaline-earth series of metals; at least one sulphur donating material; pressing the powder mixture and sintering the pressed mixture so as to cause the formation by reaction during sintering of at least one stable metal sulphide within the sintered material. Materials and articles made by the method are also described.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: July 9, 1996
    Assignee: Brico Engineering Limited
    Inventors: Charles G. Purnell, Mohammad S. Mahmoud, Helen A. Brownlie
  • Patent number: 5532069
    Abstract: A dispersion-strengthened aluminum alloy having a composite structure containing a matrix of .alpha.-aluminum and a precipitation deposited phase of an intermetallic compound with the intermetallic compound in a volume ratio of not more than 35 vol. %, has both high strength and high toughness. The precipitation phase of the intermetallic compound has an aspect ratio of not more than 3.0, the .alpha.-aluminum has a crystal grain size which is at least twice the grain size of the precipitation phase of the intermetallic compound, and the crystal grain size of the .alpha.-aluminum is not more than 200 nm. It is possible to obtain an aluminum alloy having the aforementioned limited structure by carrying out first and second heat treatments on gas-atomized powder containing at least 10 vol. % of an amorphous phase or a green compact thereof and thereafter carrying out hot plastic working.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: July 2, 1996
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Toshihiko Kaji, Junji Iihara, Yoshishige Takano
  • Patent number: 5525292
    Abstract: A process is disclosed for producing an aluminum or an aluminum alloy sintering, comprising successive steps of maintaining a rare gas atmosphere inside a sintering furnace while heating a compact of aluminum particles or aluminum alloy particles, together with a magnesium source; reducing the pressure inside the sintering furnace while heating further for thereby sublimating magnesium nitrogen to generate Mg.sub.3 N.sub.2 and bringing the generated Mg.sub.3 N.sub.2 into contact with Al.sub.2 O.sub.3 in the surface of the compact for the reduction of Al.sub.2 O.sub.3, thereby effecting heating and sintering at a temperature lower than the melting point of aluminum. The process increases the bonding strength of the aluminum alloy particles while fully taking the advantage of a sintering process. Thus, it enables aluminum sinterings or aluminum-alloy sinterings improved in yield point, strength, and elongation.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: June 11, 1996
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhiro Nakao, Kunitoshi Sugaya, Shigehisa Seya, Takeshi Sakuma
  • Patent number: 5522976
    Abstract: The target element (2) is formed from an inorganic compound layer (16) with a melting point above 300.degree. C. deposited on a foam or metallic felt support layer such that the layer of inorganic compound sinks to part of its depth into the support layer to define a composite layer (17). In order to form the target element, a precursor system of the inorganic compound is applied to the support layer, the assembly so formed is subjected to a pressure of between 0.1 MPa and 15 MPa, the resulting assembly is maintained at between 300.degree. C. and 1600.degree. C. and below the melting temperature of the support in order to obtain a sintered assembly. Said assembly is than cooled to an ambient temperature avoiding any sudden cooling. In order to produce the target, the element (2) is glued to a metallic substrate (4) using a conductive adhesive.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: June 4, 1996
    Assignee: Societe Nationale Elf Aquitaine
    Inventors: Guy Campet, Jean-Michel Chabagno, Claude Delmas, Joseph Portier, Jean Salardenne
  • Patent number: 5520880
    Abstract: This invention relates to a method for producing a self-supporting body comprising the steps of:(a) forming a permeable mass comprising at least one solid-phase oxidant selected from the group consisting of the halogens, sulphur and its compounds, metals, metal oxides other than the silicates, and metal nitrides other than those of boron and silicon;(b) orienting said permeable mass and a source of said parent metal relative to each other so that formation of said oxidation reaction product will occur into said permeable mass;(c) heating said source of parent metal to a temperature above the melting point of said parent metal but below the melting point of said oxidation reaction product to form a body of molten parent metal;(d) reacting said body of molten parent metal with said at least one solid-phase oxidant at said temperature to permit said oxidant at said temperature to permit said oxidation reaction product to form; and(e) maintaining at least a portion of said at least one oxidation reaction product
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: May 28, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: William B. Johnson, Eugene S. Park, Gerhard H. Schiroky, Danny R. White, Terry D. Claar
  • Patent number: 5508000
    Abstract: According to the present invention, silicide grains are coupled with each other in a linked manner so as to provide a metal silicide phase, and grains forming a Si phase are dispersed in the gaps of the metal silicide phase discontinuously so as to provide a mixed structure of a sputtering target of high density and containing carbon at a rate less than 100 ppm. Because of the high density and high strength of the target, generation of particles at the time of sputtering can be reduced, and because of the reduced content of carbon, mixing of carbon in a thin film formed by the sputtering can be prevented.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: April 16, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takasi Yamanobe, Mituo Kawai, Tooru Komatu, Hiromi Shizu, Noriaki Yagi
  • Patent number: 5500182
    Abstract: This invention relates generally to a novel method for forming a self-supporting body. Specifically, the formed self-supporting body has a higher volume percent of metallic constituent relative to a body formed by similar techniques. A first porous self-supporting body is formed by reactively infiltrating a molten parent metal into a bed or mass containing a boron donor material and a carbon donor material (e.g., boron carbide) and/or a boron donor material and a nitrogen material (e.g., boron nitride) and, optionally, one or more inert fillers. Additionally, powdered parent metal may be admixed with a mass to be reactively infiltrated to form additional porosity therein. The porous self-supporting body which is formed by the reactive infiltration process according to this invention should contain at least some interconnected porosity which is capable of being filled in a subsequent step with additional metal, thus increasing the volume percent of parent metal in the body at the expense of porosity.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: March 19, 1996
    Assignee: Lanxide Technology Company, LP
    Inventor: Philip J. Roach
  • Patent number: 5496513
    Abstract: A method of preparing dense sintered bodies of beta alumina suitable for solid electrolytes, which comprises preparing a shaped body from a mixture containing an aluminum powder, a sodium compound, a structure stabilizer and a zirconia powder or from a mixture containing an aluminum powder, an alumina powder, a sodium compound, a structure stabilizer and a zirconia powder, and reaction-sintering the shaped body.
    Type: Grant
    Filed: December 2, 1992
    Date of Patent: March 5, 1996
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenji Nakane, Tetsu Umeda, Masahide Mohri
  • Patent number: 5490968
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: February 13, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5484490
    Abstract: A P-type thermoelectric material consists essentially of iron disilicide, metallic manganese and metallic aluminium dissolved in or alloyed with the iron disilicide, and silicon oxide and/or aluminum oxide present in the iron disilicide. The manganese is contained in an amount of from 1.67 to 4.1 atomic % with respect to a sum of atoms of iron and silicon constituting the iron disilicide, the metallic manganese and the metallic aluminum taken as 100 atomic %, and the metallic aluminum contained in an amount of from 1.33 to 3.33 atomic % with respect thereto, and a sum of the metallic manganese and the metallic aluminum in an amount of from 4.0 to 5.34 atomic % with respect thereto. The P-type thermoelectric material having such a composition produces a thermoelectromotive force equal to or greater than those of the conventional P-type thermoelectric materials comprised of iron disilicide, and it exhibits a mean resistivity equal to or smaller than that of the N-type thermoelectric material.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: January 16, 1996
    Assignees: Technova Inc., National Research Institute for Metals
    Inventors: Shigeki Tokita, Makoto Okabayashi, Takashi Amano, Isao Nishida
  • Patent number: 5484568
    Abstract: Electrical heating elements and related articles having oxidation resistance at high temperatures, produced by a method involving micropyretic synthesis. A composition subjected to micropyretic synthesis comprises a filler material, a reactive system capable of undergoing micropyretic synthesis, and (optionally) a plasticizer or extrusion agent. The method of preparation of articles includes slurry techniques, plastic extrusion, slip casting, or coating.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 16, 1996
    Assignee: University of Cincinnati
    Inventors: Jainagesh A. Sekhar, Naiping Zhu
  • Patent number: 5468445
    Abstract: A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: November 21, 1995
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Renuka S. Divakaruni, Govindarajan Natarajan, Srinivasa S. N. Reddy, Manfred Sammet
  • Patent number: 5453243
    Abstract: A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: September 26, 1995
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Jeffrey S. Hansen, Paul C. Turner, Edward R. Argetsinger
  • Patent number: 5451365
    Abstract: A ceramic composite may be densified, strengthened and toughened by the present transient plastic phase processing method. The ceramic composite comprises a transient plastic phase and a reactant phase. The transient plastic phase includes a metallic component and may also include a non-metallic component. The transient plastic phase has a yield strength which is a function of the stoichiometric concentration of the metallic component therein. In the present method, heat and pressure are applied to the ceramic composite to plastically deform the transient plastic phase of the composite and densify the composite. The densified composite is heated to react the transient plastic phase and the reactant phase in the solid state at a reaction temperature lower than the melting temperature of either of the transient plastic phase or the reactant phase.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: September 19, 1995
    Assignee: Drexel University
    Inventor: Michel Barsoum
  • Patent number: 5445786
    Abstract: A heat-resistant metallic monolith manufactured by forming metal powders into a honeycomb structure and by sintering the structure, a heat-resistant metal oxide coated on the surface of the cell walls and that of the pores thereof. Such a heat-resistant metallic monolith is manufactured by mixing metal powders, an organic binder and water to prepare a mixture, by forming the mixture into a shape of a desired honeycomb configuration, by sintering the shape in a non-oxidizing atmosphere at a temperature between 1000.degree. and 145.degree. C. and then by coating a heat-resistant metal oxide on a surface of the cell walls and that of the pores of the obtained sintered body.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: August 29, 1995
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Harada, Hiroshige Mizuno, Fumio Abe, Tsuneaki Ohashi
  • Patent number: 5441694
    Abstract: In a method for preparing a high .alpha.-type silicon nitride powder by adding to and mixing with metallic silicon powder a copper catalyst and nitriding the mixture in a non-oxidizing gas atmosphere containing nitrogen or ammonia at 1,000.degree. to 1,500.degree. C., the amount of copper catalyst is limited to from 0.05 % to less than 0.5 % by weight of copper based on the weight of the metallic silicon. There is obtained silicon nitride powder of high purity at low cost and high efficiency since the copper catalyst can be efficiently removed from the silicon nitride powder through conventional acid treatment.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: August 15, 1995
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masanori Fukuhira, Hirofumi Fukuoka, Yoshiharu Konya, Masaki Watanabe
  • Patent number: 5437833
    Abstract: This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry D. Claar, Gerhard H. Schiroky, William B. Johnson
  • Patent number: 5437832
    Abstract: An improved process is provided for preparing a porous ceramic product. By this process, a mixture of metal grains, ceramic grains, and short glass fibers is molded by a slurry casting method and dried and then sintered by heating in an oxidizing or nitriding gaseous atmosphere.
    Type: Grant
    Filed: November 5, 1993
    Date of Patent: August 1, 1995
    Assignee: Sintokogio, Ltd.
    Inventors: Masato Imamura, Kiichi Nakajima, Akira Yanagisawa
  • Patent number: 5429793
    Abstract: A process for producing metal oxide dispersion-strengthened anodes for use in fuel cells in which a metal alloy powder comprising at least one metal powder and at least one metal oxide forming phase is formed into a "green" cohesive structure. The "green" cohesive structure is heated in a sintering furnace resulting in simultaneous sintering and internal oxidizing of the oxide forming phase within the "green" cohesive structure, forming an oxide dispersion-strengthened structure. To promote simultaneous sintering of the "green" cohesive structure and internal oxidation of the oxide forming phase within the "green" cohesive structure, an oxidizing agent is disposed within the "green" cohesive structure or is applied to the exterior of the cohesive structure.
    Type: Grant
    Filed: May 17, 1994
    Date of Patent: July 4, 1995
    Assignee: Institute of Gas Technology
    Inventors: Estela T. Ong, Nellie Burton-Gorman
  • Patent number: 5427734
    Abstract: The object of the invention is to provide a manufacturing method of a complex shaped R--Fe--B type sintered anisotropic magnet improved the moldability of injection molding and preventing the reaction between R ingredients and binder and controlled the degradation of magnetic characteristics due to residual carbon and oxygen. Utilizing the R--Fe--B type alloy powder or the resin coated said alloy powder, and methylcellulose and/or agar and water, instead of the usual thermoplastic binder, it is mixed and injection molded. The molded body is dehydrated by the freeze vacuum dry method to control the reaction between R ingredients and of the R--Fe--B alloy powder and water; furthermore, by administering the de-binder treatment in the hydrogen atmosphere, and sintering it after the dehydrogen treatment, residual oxygen and carbon in the R--Fe--B sintered body is drastically reduced, improving the moldability during the injection molding to obtain a three dimensionally complex shape sintered magnet.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 27, 1995
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Masahiro Asano, Tsunekazu Saigo
  • Patent number: 5422069
    Abstract: Master alloys and methods of producing same are disclosed, wherein an intermetallic compound, for example Al.sub.3 Cb is first prepared via thermite processing, then size reduced, then mixed with other components in amounts yielding a mixture in the desired proportion for the master alloy. The mixture is compacted, then heated to produce the master alloy by fusion.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: June 6, 1995
    Assignee: Reading Alloys, Inc.
    Inventor: Frederick H. Perfect, deceased
  • Patent number: 5418071
    Abstract: In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 23, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Takashi Ishigami, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Minoru Obata, Shigeru Ando
  • Patent number: 5382405
    Abstract: A method of manufacturing a shaped article from a powdered precursor, wherein the components of the powdered precursor are subjected to a self-propagating high-temperature synthesis (SHS) reaction and are consolidated essentially simultaneously. The shaped article requires essentially no machining after manufacture.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: January 17, 1995
    Assignee: Inland Steel Company
    Inventors: Kenneth F. Lowrance, II, Eric C. Knorr, William M. Goldberger, Daniel Boss, Doreen Edwards
  • Patent number: 5374390
    Abstract: A process is proposed which serves to produce layer systems for gas sensors, the electrodes essentially being composed of a finely divided ceramic material and finely divided electron-conducting material. The process comprises adding stabilizer oxides to the electrode material in proportions above those necessary for full stabilization. As a result, a layer system having outstanding mechanical properties and high electrode load carrying capacity is obtained by a simple manufacturing process.
    Type: Grant
    Filed: May 25, 1993
    Date of Patent: December 20, 1994
    Assignee: Robert Bosch GmbH
    Inventor: Karl-Hermann Friese
  • Patent number: 5370837
    Abstract: A high temperature heat-treating jig characterized by forming a tungsten layer or a tungsten alloy layer on the surface of a heat-resistant base to avoid discoloration and color shading during the heat treatment at a high temperature.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: December 6, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanori Kibata, Noboru Kitamori, Shigeki Kajima, Kazunori Yokosu, Mituo Kawai, Hideo Ishihara, Noriaki Yagi
  • Patent number: 5368812
    Abstract: Metal carbides may be formed by mixing metal powder with a stoichiometric amount of graphite, compressing the same in a mould/die and then sintering. High temperatures (and maybe a bonding agent) are required to effect the final step and finished product. These disadvantages are overcome by exploiting dry high energy milling to bring the starting materials into a very finely divided and reactive state, with regions of metal, carbon and metal based solid solution ranging from 3 to 100 nanometers in diameter. As an alternative source of carbon, cationic organic surfactants may be used instead of graphite in the appropriate proportion. Compacting the milled mixture, followed by sintering at lower temperatures by a margin of at least 400.degree. C., will produce very strong dense carbides at low cost. The method may be extended to include metal based composites, which also includes cermets, by incorporating an appropriate excess of metal powder(s) in the starting materials.
    Type: Grant
    Filed: December 10, 1992
    Date of Patent: November 29, 1994
    Assignee: Australian National University
    Inventors: Andrzej Calka, Barry W. Ninham
  • Patent number: 5366686
    Abstract: A method for producing an article including a refractory compound by infiltrating a preform with a liquid infiltrant and initiating a reaction between the preform and the liquid infiltrant to establish a reaction front which propagates in a direction opposite to the direction of flow of the liquid infiltrant is provided, as are articles prepared according to this method.
    Type: Grant
    Filed: March 19, 1993
    Date of Patent: November 22, 1994
    Assignee: Massachusetts Institute of Technology, a Massachusetts Corporation
    Inventors: Andreas Mortensen, David C. Dunand
  • Patent number: 5364442
    Abstract: A composite electrode for electrochemical processing having improved high temperature properties, and a process for making the electrode by combustion synthesis. A composition from which the electrode is made by combustion synthesis comprises from about 4% to about 90% by weight of a particulate or fibrous combustible mixture which, when ignited, is capable of forming an interconnected network of a ceramic or metal-ceramic composite, and from about 10% to about 60% by weight of a particulate or fibrous filler material capable of providing the electrode with improved oxidation resistance and maintenance of adequate electrical conductivity at temperatures above 1000.degree. C. The filler material is molybdenum silicide, silicon carbide, titanium carbide, boron carbide, boron nitride, zirconium boride, cerium oxide, cerium oxyfluoride, or mixtures thereof.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: November 15, 1994
    Assignee: Moltech Invent S.A.
    Inventor: Jainagesh A. Sekhar
  • Patent number: 5364587
    Abstract: Master alloys and methods of producing same are disclosed, wherein an intermetallic compound is first prepared via thermite processing, then size reduced, then mixed with other components in amounts yielding a mixture in the desired proportion for the master alloy. The mixture is compacted, then heated to produce the master alloy, which is used for making Nickel-based alloys used, (for example), in hydrogen battery electrodes.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: November 15, 1994
    Assignee: Reading Alloys, Inc.
    Inventor: Frederick H. Perfect, deceased
  • Patent number: 5358684
    Abstract: The friction lining for disk brakes comprises a carrier plate (10) and a block (16) of a compressed friction material secured to the latter, wherein the carrier plate, on the side bearing the block of friction material, is provided with a sinter-fused mounting bed (12) for the block of friction material of individual shaped members (13) forming frictional and positive connections with the block of friction material, in which, prior to the block of friction material is pressed onto the carrier plate (10) with the mounting bed sinter-fused thereupon, a galvanically, thermally or in some other suitable way produced metallic coating (50) is applied to the carrier plate as a corrosion protection.
    Type: Grant
    Filed: August 19, 1992
    Date of Patent: October 25, 1994
    Assignee: Jurid Werke GmbH
    Inventor: Wolfgang Valentin
  • Patent number: 5352405
    Abstract: A method and apparatus for fabricating three-dimensional objects according to the selective laser sintering process are disclosed. In order to reduce inconsistencies in structural and textural integrity, and in thermal effects that can cause distortion, methods for ensuring that overlapping laser scans are accomplished in a consistent manner relative to the thermal flow from the sintered locations are utilized. Methods are disclosed for achieving this by limiting the extent to which the laser scans object areas in the powder layers so that the time-to-return for adjacent overlapping scans is minimized; such minimization results in significantly less variation in the time-to-return overall.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: October 4, 1994
    Assignee: DTM Corporation
    Inventors: Joseph J. Beaman, Joseph C. McGrath, Frost R. R. Prioleau