Consolidation Of Powders Patents (Class 419/66)
  • Publication number: 20130218281
    Abstract: A method of pressure forming a brown part from metal and/or ceramic particle feedstocks includes: introducing into a mold cavity or extruder a first feedstock and one or more additional feedstocks or a green or brown state insert made from a feedstock, wherein the different feedstocks correspond to the different portions of the part; pressurizing the mold cavity or extruder to produce a preform having a plurality of portions corresponding to the first and one or more additional feedstocks, and debinding the preform. Micro voids and interstitial paths from the interior of the preform part to the exterior allow the escape of decomposing or subliming backbone component substantially without creating macro voids due to internal pressure. The large brown preform may then be sintered and subsequently thermomechanically processed to produce a net wrought microstructure and properties that are substantially free the interstitial spaces.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 22, 2013
    Applicant: ACCELLENT INC.
    Inventors: Mark W. Broadley, James Alan Sago, Hao Chen, Edward J. Schweitzer, John Eckert, Jeffrey M. Farina
  • Publication number: 20130209265
    Abstract: A composition of matter comprises, in combination, in weight percent: a content of nickel as a largest content; 3.10-3.75 aluminum; 0.02-0.09 boron; 0.02-0.09 carbon; 9.5-11.25 chromium; 20.0-22.0 cobalt; 2.8-4.2 molybdenum; 1.6-2.4 niobium; 4.2-6.1 tantalum; 2.6-3.5 titanium; 1.8-2.5 tungsten; and 0.04-0.09 zirconium.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Paul L. Reynolds, Darryl Slade Stolz
  • Publication number: 20130209262
    Abstract: Disclosed is a method of manufacturing an airfoil. The method includes establishing an Argon (Ar)-free environment, providing a bed within the Argon free environment, providing a set of data instructions for manufacturing the airfoil, and providing a powdered Nickel (Ni)-based alloy on the bed. In one example, the powdered Nickel (Ni)-based alloy consists essentially of about 4.8 wt. % Iron (Fe), about 21 wt. % Chromium (Cr), about 8.6 wt. % Molybdenum (Mo), about 0.07 wt. % Titanium (Ti), about 0.40% Aluminum (Al), about 5.01 wt. % Niobium (Nb), about 0.03 wt. % Carbon (C), about 0.14 wt. % Silicon (Si), and a balance Nickel (Ni). The method further includes fusing the powdered Nickel (Ni)-based alloy with an electron beam with reference to the data instructions to form the airfoil.
    Type: Application
    Filed: May 22, 2012
    Publication date: August 15, 2013
    Inventors: Daniel Edward Matejczyk, Clifford C. Bampton, John R. Wooten
  • Publication number: 20130209266
    Abstract: A composition of matter, comprising in combination, in atomic percent contents: a content of nickel as a largest content; 19.0-21.0 percent cobalt; 9.0-13.0 percent chromium; 1.0-3.0 percent tantalum; 0.9-1.5 percent tungsten; 7.0-9.5 percent aluminum; 0.10-0.25 percent boron; 0.09-0.20 percent carbon; 1.5-2.0 percent molybdenum; 1.1-1.5 percent niobium; 3.0-3.6 percent titanium; and 0.02-0.09 percent zirconium.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Paul L. Reynolds, Jerry C. Capo, Darryl Slade Stolz
  • Patent number: 8506882
    Abstract: A method for producing a high purity tungsten sputtering target. The method includes heat treating of high purity tungsten powder in order to consolidate it into a blank with density providing closed porosity. The consolidation may be achieved by hot pressing, HIP or any other appropriate method. Next, this plate is rolled to produce target blanks of approximate size and further increased density of the material. The method may be applicable to a variety of blanks including round shape target blanks, for example, consisting of tungsten, molybdenum, tantalum, hafnium, etc.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Tosoh SMD, Inc.
    Inventor: Eugene Y. Ivanov
  • Patent number: 8506733
    Abstract: The present invention provides a magnesium-based composite material that can achieve excellent performance such as high tensile strength not only at ordinary temperature but also at high temperature. The magnesium-based composite material of the present invention is Al2Ca-containing magnesium-based composite material, wherein said composite material is obtained by a solid-phase reaction of an aluminum-containing magnesium alloy and an additive, said additive being calcium oxide, and said composite material contains Al2Ca formed in the solid-phase reaction. In the magnesium-based composite material, CaO, in combination with Al2Ca, can be dispersed.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 13, 2013
    Assignee: Topy Kogyo Kabusikikaisya
    Inventors: Keitaro Enami, Shoji Ono, Masaki Ohara, Takanori Igarashi
  • Publication number: 20130195708
    Abstract: A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.
    Type: Application
    Filed: June 21, 2012
    Publication date: August 1, 2013
    Applicant: UT-Battelle, LLC
    Inventors: James W. Klett, Paul A. Menchhofer, James A. Hunter
  • Publication number: 20130195710
    Abstract: Provided is a manufacturing method of a rare-earth magnet capable of penetrant-diffusing a modifier alloy to increase a coercive force (especially a coercive force under a high-temperature atmosphere) at a temperature lower than the conventional method for manufacturing a rare-earth magnet without using heavy rare-earth metals such as Dy and Tb, and accordingly capable of manufacturing a high coercivity rare-earth magnet at the lowest cost possible.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Inventors: Kazuaki HAGA, Noritaka MIYAMOTO, Tetsuya SHOJI, Noritsugu SAKUMA, Shinya OMURA, Motoki HIRAOKA
  • Patent number: 8496725
    Abstract: The invention relates to a composition for producing magnetic or magnetizable moldings, comprising from 95.5 to 98.95% by weight of a powder made of a magnetic or magnetizable material, from 1.0 to 4% by weight of a mixture made of at least one epoxy-novolak resin, and also of at least one hardener, and comprising from 0.05 to 0.5% by weight of at least one additive, based in each case on the total weight of the composition. The mixture made of the at least one epoxy-novolak resin and of the at least one hardener comprises from 85 to 95% by weight of the epoxy-novolak resin and from 5 to 15% by weight of hardener. The hardener has been selected from (cyclo)aliphatic amines and their adducts, polyamides, Mannich bases, amidoamines, phenolic resins, imidazoles, and imidazole derivatives, dicyandiamide, and BF3-monoethanolamine. The invention further relates to a process for producing the composition, and also to a process for producing a molding made of the composition.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 30, 2013
    Assignee: BASF SE
    Inventors: Carsten Blettner, Jürgen Kaczun, Ria Kress, Dag Wiebelhaus
  • Patent number: 8486328
    Abstract: Powders of respective metal elements (Mn,Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material. A paste containing the mixture of the powders is interposed between an air electrode and an interconnector, and with this state, a sintering is performed, whereby a bonding agent according to the present invention can be obtained. This bonding agent has a “co-continuous structure”. In the “co-continuous structure”, a thickness of an arm portion that links many base portions to one another is 0.3 to 2.5 ?m. The bonding agent includes a spherical particle in which plural crystal faces are exposed to the surface, the particle having a side with a length of 1 ?m or more, among the plural sides constituting the outline of the crystal face. The diameter of the particle is 5 to 80 ?m.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 16, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Toshiyuki Nakamura, Takashi Ryu
  • Publication number: 20130148919
    Abstract: The present invention provides a rolling bearing which is excellent in strength, rigidity, heat resistance, and dimensional accuracy while being able to hold rolling elements in a stable manner and reduce manufacturing cost without degrading performance as a bearing and a manufacturing method for the rolling bearing. To achieve the object, the present invention adopts a rolling bearing including a cage provided with a plurality of pockets for housing and hold the rolling elements arranged at specific intervals in a circumferential direction in a peripheral wall of a cylindrical member. The cage is formed integrally by metal powder injection molding; and the cage includes a housing space for the rolling elements and a rolling-element fall-out prevention structure is formed by applying compressive working to an outer edge of the housing space in a direction from an outer circumferential surface toward a radial center of the cage.
    Type: Application
    Filed: May 19, 2011
    Publication date: June 13, 2013
    Applicant: NTN CORPORATION
    Inventors: Akira Matsuo, Shunsuke Takeguchi, Shinji Oishi, Masashi Nishimura, Tsutomu Nakagawa
  • Patent number: 8460603
    Abstract: An object of the present invention is to provide an electrical discharge surface treatment-purpose electrode that stabilizes properties and a film-forming rate of a coating made by surface treatment that uses the electrode showing a narrow distribution in physical properties such as a composition and resistance. A method of manufacturing an electrical discharge surface treatment-purpose electrode according to the present invention is identified as a method of manufacturing an electrical discharge surface treatment-purpose electrode formed of a green compact made of a metal powder subjected to compression molding, characterized in that the method includes the step of forming a nitride coating by nitriding a surface of the metal powder, and the step of forming a green compact by subjecting the metal powder having its surface nitrided to compression molding.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Shigyo, Yoshikazu Nakano
  • Publication number: 20130134364
    Abstract: An electromagnetically active composite has an electrically-nonconductive host matrix and electrically-conductive nanostrand bodies embedded in a substantially uniform distribution throughout the host matrix. Each of the nanostrand bodies comprises a volume containing at least one nanostrand of filamentary metal. Adjacent nanostrand bodies that are sufficiently mutually proximate will interact electromagnetically with each other. The filamentary metal of the one or more nanostrands in each of the nanostrand bodies occupies a deminimus fraction of the overall volume occupied by the at least one nanostrand that comprises each of the nanostrand bodies. The filamentary metal is chosen from among the group of metals that includes nickel, nickel aluminides, iron, iron aluminides, alloys of nickel and iron, and alloys of nickel and copper.
    Type: Application
    Filed: January 23, 2013
    Publication date: May 30, 2013
    Applicant: Conductive Composites Company, LLC
    Inventors: George Clayton Hansen, Nathan D. Hansen, Lauren Hansen
  • Patent number: 8449798
    Abstract: A die set for forming explosive charge liners from powdered material is provided. The die set comprises a die block defining a basin and a punch shaped to interact with the basin. The die block and the punch are configured to exclude powdered material from a center axis of the basin.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: May 28, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Jerry L. Walker
  • Publication number: 20130130152
    Abstract: An interconnect for a fuel cell stack includes a first plurality of ribs extending from a first major surface of the interconnect and defining a first plurality of gas flow channels between the ribs, the ribs extending between a first rib end and a second rib end and having a tapered profile in a vertical dimension, perpendicular to the first major surface of the interconnect, proximate at least one of the first rib end and the second rib end, wherein the ribs comprise a flat upper surface and rounded edges between the flat upper surface and the adjacent gas flow channels, the rounded edges having a first radius of curvature, and wherein the gas flow channels comprise a rounded surface having a second radius of curvature, different from the first radius of curvature.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: BLOOM ENERGY CORPORATION
    Inventor: Bloom Energy Corporation
  • Publication number: 20130129557
    Abstract: Methods for fabricating an interconnect for a fuel cell stack that include the steps of providing a metal powder, and rapidly compressing the metal powder, such as with a combustion-driven compaction apparatus, in a lubricant-free and/or sub-atmospheric environment to form the interconnect. The interconnect may have sufficient strength and density such that the interconnect may be incorporated into a fuel cell stack without performing a separate sintering and/or an oxidation step following the compressing.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: Bloom Energy Corporation
    Inventor: Bloom Energy Corporation
  • Publication number: 20130129558
    Abstract: The invention relates to a tool for compacting the surface of a component (2) produced by powder metallurgy, comprising a mold (1) and a stamp (20), wherein in the mold (1) a recess (5) is provided which extends from a first mold opening (6) to a second mold opening (8), and which has a wall surface (10) for supporting the component (2), and the stamp (20) has a stamp length (23) and a stamp surface (21), wherein the inner diameter (12) of the recess (5) of the mold (1) becomes smaller from the first mold opening (6) in the direction of the second mold opening (8) or an external diameter (22) of the stamp (20) becomes greater over the stamp length (23), and wherein a compaction element (17) is arranged on the wall surface (10) of the mold (1) or on the stamp surface (21). The compaction element (17) is configured to have a thread-like progression.
    Type: Application
    Filed: June 9, 2011
    Publication date: May 23, 2013
    Applicant: MIBA SINTER AUSTRIA GMBH
    Inventors: Christian Dumanski, Robert Spitaler
  • Patent number: 8444915
    Abstract: The invention concerns a method for making a thermoelectric element consisting mainly of a crystalline alloy having a cubic structure, the alloy comprising a first constituent having at least a first element selected among the transition metals, a second constituent having at least one element selected among column XIV, XV or XVI of the periodic table, and a third constituent having at least one constituent selected among rare earths, alkalis, alkaline earths or actinides. The method includes making the alloy in the form of nanopowders by mechanosynthesis. The invention also concerns the thermoelectric material obtained by implementing said method.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 21, 2013
    Assignee: Centre National de la Recherche Scientifique (CNRS)
    Inventors: David Berardan, Eric Alleno, Claude Godart, Eric Leroy
  • Publication number: 20130097050
    Abstract: Methods and systems for selecting and fabricating individualized golf clubs or golf club components. Using a website, for example, a golfer can input relevant information about his or her golf game, receive recommendations for golf club components, select from the recommendations, and have the desired golf club components manufactured and delivered. In some embodiments, the golf club components include custom golf club heads fabricated using layer by layer processing, such as direct metal laser sintering.
    Type: Application
    Filed: December 3, 2012
    Publication date: April 18, 2013
    Inventors: Peter L. Soracco, Karl Clausen
  • Publication number: 20130089749
    Abstract: An apparatus for increasing the bulk density of metal powder may include a sealed chamber, a nozzle, and a target. The sealed chamber may include an inert environment. The nozzle may be coupled to an inert gas source and may be configured to introduce raw metal powder into a flow of the inert gas for discharge as a cold spray mixture of the raw metal powder and the inert gas into the chamber. The target may be housed within the sealed chamber and may be configured to receive an impact of the cold spray mixture. The nozzle and the target may be configured to flatten the raw metal particles into flattened metal particles in response to the cold spray mixture impacting the target.
    Type: Application
    Filed: October 8, 2011
    Publication date: April 11, 2013
    Applicant: THE BOEING COMPANY
    Inventor: Kevin Thomas Slattery
  • Publication number: 20130071681
    Abstract: One embodiment of the invention may include a method of producing a composite article comprising a container, filling the container with a powdered metal, and compacting the powdered metal in the container such that an interfacial bond is created between the compacted powdered metal and the container.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chongmin Kim, Anil K. Sachdev
  • Publication number: 20130051979
    Abstract: A turbine shroud segment is metal injection molded (MIM) about an insert having a cooling air cavity covered by an impingement plate. The insert is held in position in an injection mold and then the MIM material is injected in the mold to form the body of the shroud segment about the insert.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: ERIC DUROCHER, Guy Lefebvre
  • Patent number: 8375581
    Abstract: A method and apparatus for fixturing an airfoil stub during linear friction welding are described. Critical clamping support structures are manufactured by a direct digital manufacturing process such as direct metal laser sintering to minimize time and expense of the process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 19, 2013
    Assignee: United Technologies Corporation
    Inventors: James Romanelli, Wangen Lin, Robert P. Delisle, Herbert A. Chin, James J. Moor, Jesse R. Boyer
  • Publication number: 20130038420
    Abstract: Provided are a green compact from which a low-loss core can be formed, a method of manufacturing the green compact, and a core for a reactor using the green compact. Parts of outer circumferential surfaces of green compacts 41 and 42 are molded with an inner peripheral surface of a through hole 10hA of a die 10A, and the other parts are molded with an outer circumferential surface of a core rod 13A that is inserted and disposed in the through hole 10hA. A raw-material powder P, which is a coated soft magnetic powder, is fed into compacting spaces 31 and 32 and pressurized by using a lower punch 12 (first punch) and an upper punch 11 (second punch). Then, the green compacts 41 and 42 are removed from the compacting spaces 31 and 32 by moving the die 10A with respect to the green compacts 41 and 42 without moving the core rod 13A with respect to the green compacts 41 and 42.
    Type: Application
    Filed: February 16, 2012
    Publication date: February 14, 2013
    Applicants: SUMITOMO ELECTRIC SINTERED ALLOY, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masato Uozumi, Atsushi Sato, Kazushi Kusawake
  • Publication number: 20130039798
    Abstract: A method for manufacturing a cutting insert green body from a sinterable powder, a tool set for manufacturing the cutting insert green body by that method and the green body manufactured by the tool set. The tool set has axially moving upper and lower punches and radially moving side punches. The side punches move slidably on die rods. The side punches and die rods move in channels in a base body on which a cover plate is mounted. The upper and lower punches move in through holes in the cover plate and base body, respectively. The die rods are stationary during compaction of the sinterable powder. The upper, lower and side punches form surfaces of the green body and the die rods form some of the edges of the green body. The green body can have undercuts and the edges formed by the die rods can be non-linear in shape.
    Type: Application
    Filed: April 12, 2012
    Publication date: February 14, 2013
    Applicant: Iscar, Ltd.
    Inventors: Amir Satran, Alexander Zibenberg
  • Publication number: 20130039799
    Abstract: A method of manufacturing a product includes forming a metal powder into a desired shape, transferring the formed metal powder and pressure transmission media into a container, and applying heat and pressure to the container to form a consolidated product from the formed metal powder.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Applicant: SUMMIT MATERIALS, LLC
    Inventors: Eric S. Bono, Charles F. Yolton
  • Publication number: 20130028781
    Abstract: A method of making a selectively corrodible article is disclosed. The method includes forming a powder comprising a plurality of metallic powder particles, each metallic powder particle comprising a nanoscale metallic coating layer disposed on a particle core. The method also includes forming a powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles. In one embodiment, forming the powder compact includes compacting the powder particles into a billet, and forming the billet to provide the powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventor: Zhiyue Xu
  • Patent number: 8361254
    Abstract: Maraging steel compositions, methods of forming the same, and articles formed therefrom comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 3.0 to 8.0% Ti, up to 0.5% Al, the balance Fe and residual impurities. The composition may be a first layer of a composite plate, and may have a second layer deposited on the first layer, the second layer having a composition comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 1.0 to 3.0 Ti, up to 0.5% Al, the balance Fe and residual impurities. The first layer may have a hardness value ranging from 58 to 64 RC, and the second layer may have a hardness value ranging from 48 to 54 RC. The first layer may be formed employing powdered metallurgical techniques. Articles formed from the compositions include armored plate.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 29, 2013
    Assignee: ATI Properties, Inc.
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Timothy M. Hackett, Tong C. Lee
  • Publication number: 20130014998
    Abstract: A downhole cutting tool includes a base including a first consolidated powder; and at least one cutting feature affixed to the base, the at least one cutting feature including a cutting material suspended in a second consolidated powder, wherein the base and the at least one cutting feature are both consolidated and bonded together simultaneously. Also included is a method of manufacturing a cutting tool.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Gerald D. Lynde
  • Publication number: 20120328465
    Abstract: A method is provided for producing pressed articles which contain direct-reduced, fine particulate iron (direct reduced iron, DRI) from a fluidized bed reduction system for direct reduction of fine particulate iron ore, wherein direct-reduced, fine particulate iron produced in the fluidized bed reduction system during direct reduction is compacted into pressed articles. Dry, fine particulate material containing at least fine particulate iron ore and optionally fine particulate iron and carbon is admixed to the direct-reduced fine particulate iron and the mixture thus obtained is subsequently compacted into pressed articles. An apparatus for carrying out such method is also provided.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 27, 2012
    Inventors: Thomas Eder, Robert Millner, Jan-Friedemann Plaul, Norbert Rein
  • Publication number: 20120315399
    Abstract: A method of making a nanoparticle reinforced metal matrix component is provided. The method involves solid state processing nanoparticles into a metal matrix material at solid state processing conditions to form a master alloy. At least a portion of the master alloy is added to a mass of metal melt to produce the nanoparticle reinforced metal matrix component.
    Type: Application
    Filed: May 3, 2012
    Publication date: December 13, 2012
    Inventors: Zhili FENG, Jun QU, Michael L. SANTELLA, Tsung-Yu PAN, Allen D. ROCHE, Sheng-Tao YU
  • Publication number: 20120308426
    Abstract: In one aspect, the invention relates to compositions useful in frangible projectiles, methods of making same, and articles comprising same This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: May 8, 2012
    Publication date: December 6, 2012
    Inventors: Martin Gerardo Perez, Eric Timothy Riley, Erika Vanessa Esquivel
  • Publication number: 20120299430
    Abstract: A rotor for a modulated pole machine, the rotor being configured to generate a rotor magnetic field for interaction with a stator magnetic field of a stator of the modulated pole machine, wherein said rotor includes: a tubular support structure defining a circumferential mounting surface, the tubular support structure including a plurality of elongated recesses in the mounting surface, and a plurality of permanent magnets arranged at the mounting surface of the tubular support structure and magnetised in the circumferential direction of said rotor so as to generate the rotor magnetic field, the permanent magnets being separated from each other in the circumferential direction of the rotor by axially extending rotor pole sections for directing the rotor magnetic field generated by said permanent magnets in a radial direction, wherein at least one permanent magnet or one rotor pole section extends at least partly into one of the recesses.
    Type: Application
    Filed: December 20, 2010
    Publication date: November 29, 2012
    Applicant: HOGANAS AB (publ)
    Inventors: Lars-Olov Pennander, Göran Nord
  • Publication number: 20120294751
    Abstract: A lead-free, frangible bullet is provided. The lead-free, frangible bullet is manufactured without sintering or external heating of the bullet. The bullet is prepared by blending a lead-free copper powder mixture and cold compacting the powder in a die to form a bullet. The copper powder can be atomized copper powder, electrolytic copper powder, or a combination of atomized and electrolytic copper powder. The atomized copper powder can be water atomized, air atomized, and combination of water and air atomized. Preferably, the frangible bullet has a fragmentation less than 5 grains.
    Type: Application
    Filed: June 18, 2012
    Publication date: November 22, 2012
    Inventors: Jessu Joys, Barry Anshutz, K. Clive Ramsey
  • Publication number: 20120279412
    Abstract: In making frangible objects, including lead-free bullets and other projectiles, powdered metal primary and powdered ceramic secondary phases are mixed and densified at an elevated temperature such that the ceramic phase forms a brittle network. Different combinations of metal and ceramic phases may be used to achieve desired chemical and physical properties. Any appropriate mixing, forming, and/or thermal processing methods and equipment may be used. Degrees of frangibility, strength, and toughness can be adjusted to suit a given application by precursor selection, degree of mixing, relative amounts of metal and ceramic phases, forming method, and thermal and mechanical processing parameters.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 8, 2012
    Applicant: Ervin Industries, Inc.
    Inventors: Mark C. Hash, Trent Pearson
  • Publication number: 20120276393
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventor: Robert G. LEE
  • Publication number: 20120270059
    Abstract: Disclosed herein is a connection means 58 made from metal, and in particular Al, Mg, Cu or Ti, or an alloy comprising one or more thereof. The connection means 58 is made from a compound material of said metal reinforced by nanoparticles, in particular CNT, wherein the reinforced metal has a microstructure comprising metal crystallites at least partly separated by said nanoparticles.
    Type: Application
    Filed: January 28, 2010
    Publication date: October 25, 2012
    Inventors: Henning Zoz, Michael Dvorak, Horst Adams
  • Publication number: 20120263620
    Abstract: A method of making aluminum nitride armor bodies is provided. The method starts with low cost bulk raw material, in the form of aluminum or aluminum alloy, cryogenically mills the raw material into a precursor powder, which is essentially free of oxides and other undesirable impurities. The precursor powder is formed into a pre-form using low cost, short residence time molding processes. Finally, the pre-form is exposed to a nitriding process to convert the pre-form into the aluminum nitride armor body. In this manner, the method avoids the use of high cost aluminum nitride as a starting material and avoids the need for the high cost, single axis densification processes of the prior art.
    Type: Application
    Filed: October 26, 2011
    Publication date: October 18, 2012
    Inventor: John Carberry
  • Publication number: 20120258008
    Abstract: The present invention relates to a method for controlling the carbon and/or oxygen content in a material by forming a feedstock composition comprising at least one powder, at least one platinum group metal and at least one binder; and forming the material by powder injection molding; wherein at least a proportion of the carbon and/or oxygen is catalytically removed by the at least one platinum group metal.
    Type: Application
    Filed: October 13, 2010
    Publication date: October 11, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventor: Hugh Gavin Charles Hamilton
  • Publication number: 20120249089
    Abstract: Improved capacitors containing novel electrodes are described. One electrode composition comprises mixed metal oxides of the transition metals nickel and cobalt in a molar ratio of 0.5:1 or greater, and optionally containing a binder and carbon nanotubes. The resulting capacitors can be characterized by superior properties including higher specific capacitance values at higher voltage scan rates than the prior art. Methods of forming the electrodes that produce superior results are also described.
    Type: Application
    Filed: July 21, 2010
    Publication date: October 4, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Steven M. Risser, Vincent D. McGinniss, Bing Tan, Kevin B. Spahr, Homero Castaneda-Lopez
  • Publication number: 20120253095
    Abstract: A patient-specific compensator is created from solid particulates on-site at a radiation treatment facility and then used there at that facility in conjunction with a radiation therapy machine to deliver radiation therapy to a cancer patient. After use, the compensator can be broken down into loose solid particulates at the facility, and another compensator can be created on-site at the facility from those particulates and used in the radiation treatment of a different cancer patient at the facility.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: Axellis Ventures Ltd.
    Inventors: John M. Wright, Michael J. Hudson
  • Publication number: 20120244030
    Abstract: Provided are a powder for a magnet, which provides a rare-earth magnet having excellent magnet properties and which has excellent formability, a method for producing the powder for a magnet, a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material which are used as materials for the magnet, and methods for producing the powder compact and these alloy materials. Magnetic particles 1 constituting the powder for a magnet each have a texture in which grains of a phase 3 of a hydride of a rare-earth element are dispersed in a phase 2 of an iron-containing material, such as Fe. The uniform presence of the phase 2 of the iron-containing material in each magnetic particle 1 results in the powder having excellent formability, thereby providing a powder compact 4 having a high relative density.
    Type: Application
    Filed: December 2, 2010
    Publication date: September 27, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Toru Maeda
  • Publication number: 20120231159
    Abstract: A method of producing a reactive powder includes providing a bulk structure of reactive material comprising a first reactant and a second reactant, the bulk structure having a preselected average spacing between the first and the second reactants; and mechanically processing the bulk structure of reactive material to produce a plurality of particles from the bulk structure such that each of the plurality of particles comprises the first and second reactants having an average spacing that is substantially equal to the preselected average spacing of the bulk structure of reactive material. The first and second materials of the plurality of particles react with each other in an exothermic reaction upon being exposed to a threshold energy to initiate the exothermic reaction and remain substantially stable without reacting with each other prior to being exposed to the threshold energy.
    Type: Application
    Filed: October 25, 2010
    Publication date: September 13, 2012
    Applicant: The Johns Hopkins University
    Inventors: Timothy P. Weihs, Adam Stover
  • Publication number: 20120222964
    Abstract: Compositions for making wettable cathodes to be used in aluminum electrolysis cells are disclosed. The compositions generally include titanium diboride (TiB2) and metal additives. The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity. The electrodes may be durable and used in aluminum electrolysis cells.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: ALCOA INC.
    Inventors: Douglas A. Weirauch, JR., Lance M. Sworts, Brian J. Tielsch, Robert A. DiMilia
  • Publication number: 20120216654
    Abstract: The invention relates to a method for producing a green compact, said green compact comprising at least two partial green compacts, each partial green compact being compacted and joined from at least one powdery material in one working cycle. Particularly, two, three, four or more than four partial green compacts can be compacted and joined in one working cycle.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 30, 2012
    Inventors: Rainer Schmitt, Antonio Casellas
  • Publication number: 20120219451
    Abstract: Provided are methods of preparing high density compacted components that increase that lubricity of metallurgical powder compositions while reducing the overall organic content of the compacted component. Method of preparing high density compacted components having a high density include the steps of providing a metallurgical powder composition having particles at least partially coated with a metal phosphate layer, and compacting the metallurgical powder composition in the die at a pressure of at least about 5 tsi. The metallurgical powder composition comprises a base-metal powder, optional alloying powders, and a particulate internal lubricant. The metal phosphate at least partially coats the base-metal powder, the optional alloying powder, or both. The metal phosphate coating increases the lubricity of metallurgical powders without the need for large quantities of organic material, e.g., lubricants and binders.
    Type: Application
    Filed: December 22, 2011
    Publication date: August 30, 2012
    Applicant: Hoeganaes Corporation
    Inventor: Francis G. Hanejko
  • Publication number: 20120213658
    Abstract: A system and method for stabilizing fission products in a cermet for long term storage. The method includes forming a metal oxide precipitate, combining the metal oxide precipitate with an undissolved solid, and densifying the combined metal oxide precipitate and the undissolved solid to provide a cermet having a ceramic dispersed phase and a metallic matrix phase, wherein the metallic matrix phase includes metallic content from the undissolved solid. The undissolved solid can include fission product metals from the reprocessing of irradiated nuclear fuel. The cermet waste loading can be greater than approximately 30 percent, reducing waste volume by 50 percent or more when compared to baseline glassified articles.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: W. Scott Aaron, Emory D. Collins, Guillermo D. DelCul, Robert T. Jubin, Raymond J. Vedder
  • Publication number: 20120214014
    Abstract: The invention relates to a method for producing a composite part, the composite part comprising at least one powder metal part compacted from a powdery material and at least one solid part. The powdery material is compacted to a powder metal part inside the working chamber of a press, especially a pressing tool of a press, and the solid part is at least partially fed to the working chamber in the same step, especially in the same working cycle of the press so that the composite part is produced within one working cycle.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 23, 2012
    Inventors: Rainer Schmitt, Frank Sablotny
  • Publication number: 20120207641
    Abstract: The explosive consolidation of semiconductor powders results in thermoelectric materials having reduced thermal conductivity without a concurrent reduction in electrical conductivity and thereby allows the construction of thermoelectric generators having improved conversion efficiencies of heat energy to electrical energy.
    Type: Application
    Filed: April 6, 2012
    Publication date: August 16, 2012
    Applicant: TXL Group, Inc.
    Inventors: Edward Rubio, David Charles Nemir
  • Publication number: 20120171041
    Abstract: A method for producing a thin-walled structural component from a casting material. The casting material is supplied as a powder, and the powder is deposited on a support (1) by a kinetic cold gas spraying process so as to form the structural component (11, 11?). A structural component which is made of a casting material and in which the structure is formed from a plurality of particles (17) that are interlinked and deformed using a cold gas spraying process.
    Type: Application
    Filed: August 9, 2010
    Publication date: July 5, 2012
    Applicant: MTU Aero Engines GmbH
    Inventors: Andreas Jakimov, Erwin Bayer, Karl-Heinz Dusel, Carsten Butz