Molybdenum Or Tungsten Containing Patents (Class 420/37)
  • Patent number: 11692251
    Abstract: Disclosed are a pressure vessel steel sheet and a method for manufacturing the same, the steel sheet comprising: by wt %, 0.10-0.20% of C, 0.15-0.40% of Si, 1.15-1.50% of Mn, 0.45-0.60% of Mo, 0.03-0.30% of Cu, 0.025% or less of P, 0.025% or less of S and 0.005-0.06% of sol. Al; two or more selected from the group consisting of 0.03-0.30% of Cr, 0.002-0.025% of Nb and 0.002-0.025% of Zr, and the balance of Fe and inevitable impurities, wherein the structure comprises a mixture structure of ferrite, perlite and tempered bainite after post weld heat treatment (PWHT) for 60 hours at 600-660° C., and the area fraction of the tempered bainite is at least 10% (excluding 100%).
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 4, 2023
    Assignee: POSCO CO., LTD
    Inventor: Soon-Taik Hong
  • Patent number: 10677109
    Abstract: An iron-based alloy includes, in weight percent, carbon from about 1 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 2.5 percent; chromium from about 11 to about 19 percent; nickel up to about 8 percent; vanadium from about 0.8 to about 5 percent; molybdenum from about 11 to about 19 percent; tungsten up to about 0.5 percent; niobium from about 1 to about 4 percent; cobalt up to about 5.5 percent; boron up to about 0.5 percent; nitrogen up to about 0.5 percent, copper up to about 1.5 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 50 to about 70 percent; and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 9, 2020
    Assignee: I. E. JONES COMPANY
    Inventors: Cong Yue Qiao, David Doll, Todd Trudeau, Douglas Dooley
  • Patent number: 10494688
    Abstract: Provided is a hot-working tool capable of maintaining adequate toughness even if the permissible amount of P contained in the hot-working tool is increased. The present invention is a hot-working tool, which has a component composition that can be adjusted to a martensitic structure by quenching and has a post-quenching and tempering martensitic structure, wherein: the component composition comprises greater than 0.020 mass % to 0.050 mass % of P; prior austenite grain diameter in said post-quenching and tempering martensitic structure is at least No. 9.5 in grain size number according to JIS-G-0551; and the P concentration of the grain boundary of said prior austenite particles is not more than 1.5 mass %. A hot-working tool wherein said component composition also comprises not more than 0.0250 mass % of Zn is preferable. The present invention also is a method for manufacturing a hot-working tool in which quenching and tempering are performed on a hot-working tool material with said component composition.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: December 3, 2019
    Assignee: HITACHI METALS, LTD.
    Inventor: Yousuke Nakano
  • Patent number: 10196718
    Abstract: The present invention provides a steel strip for cutlery, which has a composition containing, in mass %, 0.45 to 0.55% of C, 0.2 to 1.0% of Si, 0.2 to 1.0% of Mn, and 12 to 14% of Cr, and further contains Mo, with the balance made up of Fe and unavoidable impurities, in which Mo is contained in an amount of 2.1 to 2.8%, and the amount of formed M3C deposited by tempering is decreased to improve bending workability.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: February 5, 2019
    Assignee: Hitachi Metals, Ltd.
    Inventors: Norihide Fukuzawa, Tomonori Ueno, Laura Ming Xu, Charles Samuel White
  • Patent number: 9932867
    Abstract: An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: April 3, 2018
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David Doll, Todd Trudeau, Peter Vennema
  • Publication number: 20150147591
    Abstract: Disclosed herein are embodiments of iron-based corrosion resistant hardfacing alloys. The alloys can be designed through the use of different compositional, thermodynamic, microstructural, and performance criteria. In some embodiments, chromium content in the alloy can be increased while avoiding the formation of different hard chromium carbides, thereby increasing the corrosion resistance of the alloy.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Justin Lee Cheney, Shengjun Zhang, John Hamilton Madok, Jonathon Bracci
  • Publication number: 20140219855
    Abstract: An iron-chromium-aluminum alloy with improved heat resistance, low chromium vaporization rate and good processability, comprising (in % by mass), 2.0 to 4.5% Al, 12 to 25% Cr, 1.0 to 4% W, 0.25 to 2.0% Nb, 0.05 to 1.2% Si, 0.001 to 0.70% Mn, 0.001 to 0.030% C, 0.0001 to 0.05% Mg, 0.0001 to 0.03% Ca, 0.001 to 0.030% P, max. 0.03% N, max. 0.01% S, remainder iron and the usual melting-related impurities.
    Type: Application
    Filed: June 6, 2012
    Publication date: August 7, 2014
    Applicant: OUTOKUMPU VDM GMBH
    Inventors: Heike Hattendorf, Bernd Kuhn, Thomas Eckardt, Tilmann Beck, Willem Joe Quadakkers, Werner Theisen, Nilofar Nabiran
  • Patent number: 8034197
    Abstract: An ultra-high strength stainless steel alloy with enhanced toughness includes in % by weight: 0 to 0.06% carbon (C); 12.0 to 18% chromium (Cr); 16.5 to 31.0% cobalt (Co); 0 to 8% molybdenum (Mo); 0.5 to 5.0% nickel (Ni); 0 to 0.5% titanium (Ti); 0 to 1.0% niobium (Nb); 0 to 0.5% vanadium (V); 0 to 16% tungsten (W); balance iron (Fe) and incidental deoxidizers and impurities. The heat treating method includes the steps of austenitizing at least once followed by quenching, tempering and sub-zero cooling to obtain no more than about 6-8% retained austenite in the finished alloy.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 11, 2011
    Assignee: Carnegie Mellon University
    Inventor: Warren M. Garrison, Jr.
  • Patent number: 7820098
    Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 26, 2010
    Assignees: The Japan Steel Works, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
  • Patent number: 7785426
    Abstract: A welded joint of a tempered martensitic heat resisting steel includes a fine-grained heat affected zone of weldment of a heat resisting steel having a tempered martensite structure which exhibits a creep strength of 90% or more of the creep strength of the base metal thereof. The welded joint is inhibited in the formation of the fine-grained HAZ exhibiting a significantly reduced creep strength.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 31, 2010
    Assignees: National Institute for Materials Science, Sumitomo Metal Industries, Ltd., Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaaki Tabuchi, Hirokazu Okada, Masayuki Kondo, Susumu Tsukamoto, Fujio Abe
  • Publication number: 20100086430
    Abstract: There is provided a heat resistant ferritic steel, excellent in the weld crack resistance of the HAZ and creep strength. A high-Cr heat resistant ferritic steel is characterized by consisting of, by mass %, Si: more than 0.1% and not more than 1.0%, Mn: 2.0% or less, Co: 1 to 8%, Cr: 7 to 13%, V: 0.05 to 0.4%, Nb: 0.01 to 0.09%, either one or both of Mo and W: 0.5 to 4% as a total, B: 0.005 to 0.025%, Al: 0.03% or less, and N: 0.003 to 0.06%, and containing C in an amount satisfying Expression (1), the balance being Fe and impurities, and O, P and S as impurities being such that O: 0.02% or less, P: 0.03% or less, and S: 0.02% or less, respectively, 0.005?C?(?5/3)×B+0.085??(1) in which C and B represent the content of each element (mass %). Furthermore, the high-Cr heat resistant ferritic steel may contain one or more kinds selected from the group consisting of Nd, Ta, Ca and Mg.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 8, 2010
    Inventors: Hiroyuki Hirata, Mitsuru Yoshizawa, Kazuhiro Ogawa, Masaaki Igarashi
  • Publication number: 20100074791
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Inventor: Takemori Takayama
  • Publication number: 20090123322
    Abstract: High-speed steel for saw blades, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 1.5; Chromium between 1.0 and 10.0; equivalent Tungsten, given by 2Mo+W relation, between 3.0 and 10.0; Niobium between 0.5 and 2.0. Niobium may be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.3 and 2.0. Vanadium may be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium, Silicon between 0.3 and 3.5. Silicon may be partially or fully replaced with Aluminum, at a 1:1 ratio; Cobalt lower than 8, the remaining substantially Fe and impurities inevitable to the preparation process.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 14, 2009
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20090123323
    Abstract: A castable and machinable alloy suitable for submersion in a molten magnesium or magnesium aluminum melt has the following composition: ELEMENT CONTENT (weight %) Boron 0.01-2.0? Carbon 0.01-2.0? Sulphur Trace Phosphorus Trace Chromium ?5.0-15.0 Silicon 0.0-2.0 Molybdenum ?2.00-12.00 Tungsten ?0.5-10.00 Vanadium 0.5-5.0 Niobium 0.5-5.0 Cobalt ?0.5-10.0 Iron Balance The alloy is resistant to dissolution by the melt at temperatures of up to around 1800° F.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 14, 2009
    Inventor: Jorge A. Morando
  • Publication number: 20090123324
    Abstract: A method and cast wear resistant component made of an alloy that includes carbon, tungsten, chromium, and cobalt with the balance essentially iron and other alloying components made using waste, surplus or worn-out cemented carbide product, such as cemented carbide cutting tool inserts. In one method, the alloy further includes silicon, manganese, nickel, titanium, and molybdenum. In practicing the method, pieces of waste, surplus or worn-out cemented carbide product having tungsten carbide (WC) are added to a cast iron alloy melt. The melt includes enough chromium to control solubility of the WC. In one method, precipitated carbide structure having chromium and carbon is produced with tungsten in the melt being substitutionally dissolved. In one implementation, tungsten is substitutionally dissolved in a lattice of the precipitated carbide structure. Carbide can be added to the melt via super inoculation. The cast wear resistant component can be a cutting tool.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 14, 2009
    Inventors: Carl-Hakan Andersson, Mikael Andersson, Henrik Andersson, Helena Andersson, Anders Nilsson, Jan-Eric Stahl
  • Patent number: 7484926
    Abstract: A steam turbine power plant which is provided with an extra-high-pressure turbine 100, a high-pressure turbine 200, an intermediate-pressure turbine 300 and a low-pressure turbine 400, and has high-temperature steam of 650° C. or more introduced into the extra-high-pressure turbine 100, wherein the extra-high-pressure turbine 100 has an outer casing cooling unit which cools an outer casing 111, and a turbine rotor 112, an inner casing 110 and a nozzle box 115 of the extra-high-pressure turbine 100 are formed of an Ni base heat-resisting alloy, and the outer casing 111 is formed of a ferrite-based alloy.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: February 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeo Suga, Ryuichi Ishii, Takeo Takahashi, Masafumi Fukuda
  • Publication number: 20090004040
    Abstract: A ferritic stainless steel sheet for forming a raw material pipe for bellows pipe is excellent in formability and high-temperature properties (high-temperature salt corrosion resistance and high-temperature fatigue properties). Specifically, the ferritic stainless steel sheet for forming a raw material pipe for bellows pipe contains 0.015% by mass or less of C, 1.0% by mass or less of Si, 1.0% by mass or less of Mn, 0.04% by mass or less of P, 0.010% by mass or less of S, 11% to 19% by mass of Cr, 0.015% by mass or less of N, 0.15% by mass or less of Al, 1.25% to 2.5% by mass of Mo, 0.3% to 0.7% by mass of Nb, 0.0003% to 0.003% by mass of B, and the balance being Fe and incidental impurities. In the ferritic stainless steel sheet for forming a raw material pipe for bellows pipe, preferably, the average crystal grain diameter D of the steel sheet is 35 ?m or less, and alternatively, the surface roughness Ra of the steel sheet is 0.40 ?m or less.
    Type: Application
    Filed: May 29, 2006
    Publication date: January 1, 2009
    Applicant: JFE STEEL CORPORATION
    Inventors: Yasushi Kato, Yoshihiro Ozaki, Osamu Furukimi, Norimasa Hirata, Takumi Ujiro
  • Publication number: 20080274006
    Abstract: A submerged pot roll and other articles for use in galvanizing baths including a metallurgically bonded superalloy cladding layer on a steel core layer. The cladding layer improves the corrosion resistance and dross buildup of the article and improves service life while reducing costs.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventors: Mark Bright, Vinod K. Sikka, James W. Hales, Ravi Menon, Ever J. Barbero, Xingbo Liu, Jing Xu
  • Patent number: 7297214
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: November 20, 2007
    Assignees: Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Takayuki Inoguchi, Tetsuya Shimizu, Michio Okabe
  • Patent number: 7179318
    Abstract: The present invention aims at preventing abrasion of relatively sliding members under a high pressure or/and high temperature condition. It also aims at preventing seizure of the sliding contact surfaces at high temperatures. The sliding member of the present invention serves as one of a pair of relatively sliding members essentially consisting of stainless steel as base material containing 5% to 10% by weight of cobalt, 1 to 5% by weight of molybdenum disulfide and 2% to 5% by weight of calcium fluoride.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: February 20, 2007
    Assignee: Eagle Industry Co., Ltd.
    Inventor: Yoshihiro Mura
  • Patent number: 6899772
    Abstract: A castable and machinable alloy suitable for submersion in a molten magnesium or magnesium aluminum melt has the following composition: ELEMENT CONTENT (weight %) Boron 0.01-2.0? Carbon 0.01-2.0? Sulphur Trace Phosphorus Trace Chromium ?5.0-15.0 Silicon 0.0-2.0 Molybdenum ?2.00-12.00 Tunsten ?0.5-10.00 Vanadium 0.5-5.0 Niobium 0.5-5.0 Cobalt ?0.5-10.0 Iron Balance The alloy is resistant to dissolution by the melt at temperatures of up to around 1800° F.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: May 31, 2005
    Assignee: Alphatech, Inc.
    Inventor: Jorge A. Morando
  • Patent number: 6881280
    Abstract: An iron-based corrosion resistant and wear resistant alloy is addressed. The alloy contains (in weight percent) 1.1-1.4% carbon, 11-14.25% chromium, 4.75-6.25% molybdenum, 3.5-4.5% tungsten, 0-3% cobalt, 1.5-2.5% niobium, 1-1.75% vanadium, 0-2.5% copper, up to 1.0% silicon, up to 0.8% nickel, up to 0.6% manganese, and the balance iron. The alloy is suitable for use in valve seat insert applications.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: April 19, 2005
    Assignee: L.E. Jones Company
    Inventor: Cong Yue Qiao
  • Patent number: 6841122
    Abstract: A hot working die steel contains 0.05-0.25% C, 0.30% or less Si, 0.03% or less Mn, 1.0% or less Ni, 5.0-13.0 % Cr, 2.0% or less Mo, 1.0-8.0% W, 1.0-10.0% Co, 0.003-0.020% B, 0.005-0.050% N, and the balance consisting essentially of Fe and unavoidable impurities. If desired, the hot working die steel may further contain 0.01-1.0% V and 0.01-1.0% of at least one kind selected from Nb and Ta.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: January 11, 2005
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Rinzo Kayano, Eiji Maeda
  • Publication number: 20040109784
    Abstract: The invention concerns steel for high temperature use containing by weight: 0.06 to 0.20% of C, 0.10 to 1.00% of Si, 0.10 to 1.00% of Mn, not more than 0.010% of S, 10.00 to 13.00% of Cr, not more than 1.00% of Ni, 1.00 to 1.80% of W, Mo such that (W/2+Mo) is not more than 1.50%, 0.50 to 2.00% of Co, 0.15 to 0.35% of V, 0.040 to 0.150% of Nb, 0.030 to 0.12% of N, 0.0010 to 0.0100% of B and optionally up to 0.0100% of Ca, the rest of the chemical composition consisting of iron and impurities or residues resulting from or required for preparation processes or steel casting. The chemical constituent contents preferably verify a relationship such that the steel after normalizing heat treatment between 1050 and 1080° C. and tempering has a tempered martensite structure free or practically free of &dgr; ferrite.
    Type: Application
    Filed: October 3, 2003
    Publication date: June 10, 2004
    Inventors: Alireza Arbab, Bruno Lefebvre, Jean-Claude Vaillant
  • Patent number: 6746782
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 8, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6696016
    Abstract: A high-Cr containing ferrite heat resistant steel having not only an excellent long-term creep strength at a high temperature exceeding 650° C., but also an improved oxidation resistance, which is based on ferritic phase and contains 13% by weight or more of chromium, and containing precipitates of intermetallic compounds.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 24, 2004
    Assignee: Japan as represented by Director General of National Research Institute for Metals
    Inventor: Kazuhiro Kimura
  • Publication number: 20030103860
    Abstract: An iron-based corrosion resistant and wear resistant alloy is addressed. The alloy contains (in weight percent) 1.1-1.4% carbon, 11-14.25% chromium, 4.75-6.25% molybdenum, 3.5-4.5% tungsten, 0-3% cobalt, 1.5-2.5% niobium, 1-1.75% vanadium, 0-2.5% copper, up to 1.0% silicon, up to 0.8% nickel, up to 0.6% manganese, and the balance iron. The alloy is suitable for use in valve seat insert applications.
    Type: Application
    Filed: August 15, 2002
    Publication date: June 5, 2003
    Inventor: Cong Yue Qiao
  • Publication number: 20030024609
    Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.
    Type: Application
    Filed: July 16, 2002
    Publication date: February 6, 2003
    Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
  • Patent number: 6485678
    Abstract: A unique iron base alloy for wear resistant applications, characterized in one aspect by its hardening ability when exposed to a certain temperature range, is useful for valve seat insert applications. The alloy also possesses excellent wear resistance, hot hardness and oxidation resistance. The alloy comprises less than 0.1 wt % carbon; about 18 to about 32 wt % molybdenum, about 6 to about 15 wt % chromium, about 1.5 to about 3% silicon, about 8 to about 15 wt % cobalt and at least 40% iron, with less than 0.5 wt % nickel. In another aspect, for lower temperature applications, the cobalt is optional, the nickel content can be up to 14 wt %, but the molybdenum must be in the range of about 29% to about 36%. In one further aspect, for higher temperature applications, the cobalt is optional, but may be used up to 15 wt %, nickel must be used at a level of between about 3 and about 14 wt %, and the molybdenum will be in the range of about 26 to about 36 wt %.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: November 26, 2002
    Assignee: Winsert Technologies, Inc.
    Inventors: Xuecheng Liang, Gary R. Strong
  • Patent number: 6479013
    Abstract: A method of casting non-ferrous metals such as aluminum, magnesium, or zinc alloys uses casting components made from a tool steel comprising effective amounts of carbon, silicon, manganese, chromium, molybdenum, and vanadium, optional amounts of cobalt and increased level of molybdenum. Using the tool steel as a casting component, particularly as a mold, provides improvements in corrosion resistance, oxidation resistance, softening resistance, degradation resistance and deformation resistance. The tool steel casting component has a chromium oxide layer which is formed, in one mode, during the casting operation, to enhance the life and durability of the casting component and improve its casting performance.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: November 12, 2002
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomoaki Sera, Masahide Umino, Kunio Kondo
  • Patent number: 6419878
    Abstract: Fe—Cr alloy having excellent weldability and initial rust resistance with no requirement of greatly increasing the amount of elements such as Ni, Cu, Cr or Mo, addition of Nb or Ti and, further, excess reduction of C and N, in which the Fe—Cr alloy containing Cr in an amount of more than about 8.0 mass % and less than about 15 mass % is controlled specifically for the ingredients to contain Co: from about 0.01 mass % to about 0.5 mass %, V: from about 0.01 mass % to about 0.5 mass % and W: from about 0.001 mass % to about 0.05 mass %, and a value X represented by the following equation (1) and, preferably, a value Z represented by the following equation (2) satisfy: X≦11.0, and 0.03≦Z≦1.5 respectively: X value=Cr(mass %)+Mo(mass %)+1.5Si(mass %)+0.5Nb(mass %)+0.2V(mass %)+0.3W(mass %)+8Al(mass %)−Ni(mass %)−0.6Co(mass %)−0.5Mn(mass %)−30C(mass %)−30N(mass %)−0.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: July 16, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshihiro Yazawa, Takumi Ujiro, Susumu Satoh, Hiroki Ota
  • Patent number: 6290904
    Abstract: This invention relates to welding materials for high-Cr steels which exhibit higher toughness and improved creep characteristics. Specifically, this invention relates to a welding material for high-Cr steels which contains, on a weight percentage basis, 0.03 to 0.12% C, up to 0.3% Si, 0.2 to 1.5% Mn, up to 0.02% P, up to 0.01% S, 8 to 13% Cr, 0.5 to 3% Mo, up to 0.75% Ni, 0.15 to 0.3% V, up to 0.01% Nb, 0.05 to 0.3% Ta, 0.1 to 2.5% W, 0.01 to 0.75% Cu, up to 0.03% Al, 0.002 to 0.005% B, up to 0.015% N, and up to 0.01% O, the balance being Fe and incidental impurities. It also relates to such welding materials wherein W is optionally excluded from the aforesaid composition, wherein W is excluded and 0.1 to 3% Co is added, or wherein 0.1 to 3% Co is added to the aforesaid composition.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: September 18, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takayuki Kawano, Kaneyasu Ishikawa, Nobuhiko Nishimura, Iwami Ishihara, Mitsushige Kumou, Tamao Takatsu, Takashi Inami
  • Patent number: 6207103
    Abstract: Fe—Cr—Si steel sheet having an excellent corrosion resistance and high toughness and method for manufacturing the same; the amount of Cr is about 10-30 wt %, the total amount of C and N is not more than about 100 ppm and the remainder consists of Fe and incidental impurities; when a cast piece of this steel is subjected to hot rolling to roll into a thickness of not more than about 3 mm, the hot rolled sheet can be subjected to cold rolling or to warm rolling without annealing.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: March 27, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Shigeaki Takajo, Takako Yamashita, Akihiro Matsuzaki, Osamu Kondo
  • Patent number: 6174385
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: January 16, 2001
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume
  • Patent number: 6117388
    Abstract: Alloy steel containing 0.10 to 0.50 wt % of C, 0.5 wt % or less of Si, 1.5 wt % or less of Mn, 1.5 wt % or less of Ni, 3.0 to 13.0 wt % of Cr, 0 to 3.0 wt % of Mo, 1.0 to 8.0 wt % of W, 0.01 to 1.0 wt % of V, 0.01 to 1.0 wt % of Nb, 1.0 to 10.0 wt % of Co, 0.003 to 0.04 wt % of B, and 0.005 to 0.05 wt % of N, the balance comprising Fe and unavoidable impurities.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: September 12, 2000
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Takashi Shibata, Eiji Maeda
  • Patent number: 5997806
    Abstract: This invention provides a heat-resisting cast steel which is a high-Cr steel material having excellent high-temperature strength and hence suitable for use as a high-temperature steam turbine casing material capable of being used even at a steam temperature of 600.degree. C. or above. This heat-resisting cast steel contains, on a weight percentage basis, 0.07 to 0.15% carbon, 0.05 to 0.30% silicon, 0.1 to 1% manganese, 8 to 10% chromium, 0.01 to 0.2% nickel, 0.1 to 0.3% vanadium, a total of 0.01 to 0.2% niobium and tantalum, 0.1 to 0.7% molybdenum, 1 to 2.5% tungsten, 0.1 to 5% cobalt and 0.03 to 0.07% nitrogen, the balance being iron and incidental impurities.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: December 7, 1999
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Akitsugu Fujita, Masatomo Kamada
  • Patent number: 5972287
    Abstract: Disclosed is a heat-resisting steel comprising 0.05 to 0.15% by weight of carbon, 0.01 to 0.1% by weight of silicon, 0.01 to 1% by weight of manganese, 8 to 11% by weight of chromium, 0.1 to 0.8% by weight of nickel, 0.1 to 0.3% by weight of vanadium, a total of 0.01 to 0.2% by weight of niobium and tantalum, 0.001 to 0.01% by weight of nitrogen, 0.01 to 0.5% by weight of molybdenum, 0.9 to 3.5% by weight of tungsten, 0.1 to 4.5% by weight of cobalt, 0.001 to 0.01% by weight of boron, and the balance being iron and incidental impurities, as well as other similar heat-resisting steels. Thus, this invention provides heat-resisting steels which are 12Cr steel-based materials having excellent high-temperature strength and can be used at steam temperatures of 593.degree. C. or above, and forged steel products such as steam turbine rotors for high-temperature use.
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: October 26, 1999
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Akitsugu Fujita, Fujimitsu Masuyama, Masatomo Kamada
  • Patent number: 5888318
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant. Specifically, the d-electron orbital energy level (Md) and the bond order (Bo) with respect to iron (Fe) of each alloying element of a body-centered cubic iron-base alloy are determined by the Dv-X.alpha. cluster method, and the type and quantity of each element to be added to the alloy are determined in such a manner that the average Bo value and average Md value represented respectively by the following equations:average Bo value=.SIGMA.Xi.(Bo)i 1average Md value=.SIGMA.Xi.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: March 30, 1999
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume
  • Patent number: 5591391
    Abstract: The present invention discloses high chromium ferritic heat-resistant steel which has remarkable properties that the base metal and welded joints of the steel both exhibit excellent long term creep strength at elevated temperatures over 600.degree. C. excellent resistance to steam oxidation, and excellent toughness at room temperatures. The chemical composition of main elements of the steel of the invention is as follows:______________________________________ Cr: 8.0 to 13.0%, W: 1.5 to 4.0%, Co: 2.5 to 8.0%, Ta: 0.01 to 0.50%, Nd: 0.001 to 0.24%, ______________________________________wherein % means % by weight.The steel of the present invention further encompasses steels which contain, in addition to the above essential chemical composition, at least one element selected from the group consisting of Sc, Y, La, and Ce, or at least one element selected from the group consisting of Hf, Ti, and Zr, or at least one element from each of the two groups at the same time.
    Type: Grant
    Filed: September 18, 1995
    Date of Patent: January 7, 1997
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Hiroyuki Senba, Kaori Miyata
  • Patent number: 5575972
    Abstract: The present invention relates to a superior Fe--Cr alloy and a nozzle for diesel engines formed from this Fe--Cr alloy. The Fe--Cr alloy of the present invention comprises:______________________________________ C: 0.1.about.0.2% by weight Si: 0.1.about.2% by weight Mn: 0.1.about.2% by weight Cr: 16.about.20% by weight Mo: 1.1.about.2.4% by weight Nb: 0.3.about.2.1% by weight Ta: 0.1.about.2.2% by weight N: 0.02.about.0.15% by weight ______________________________________with a remaining portion therein consisting of Fe and unavoidable impurities. It is possible to substitute a portion of the Fe using 0.2.about.2.5% by weight of Co. Furthermore, in this case, it is also possible to substitute a portion of the Fe using at least one element selected from among 0.2.about.2.5% by weight of Ni and 0.2.about.2.5% by weight of W.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: November 19, 1996
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Akira Mitsuhashi, Takanori Matsui, Saburo Wakita
  • Patent number: 5560788
    Abstract: A heat resisting steels comprising, on percentage by weight basis, 0.05 to 0.2% of C, not more than 1.0% of Ni, 9 to 13% of Cr, 0.05 to 1% of Mo, 0.05 to 0.3% of V, 1 to 3% of W, 1 to 5% of Co, 0.01 to 0.1% of N, at least one member selected from 0.01 to 0.15% of Nb, 0.01 to 0.15% of Ta, 0.003 to 0.03% of a rare earth element, 0.003 to 0.03% of Ca and 0.003 to 0.03% of B, and the remainder of Fe and unavoidable impurities have enhanced high temperature characteristics and are suitable for use in parts of turbine such as turbine rotors, turbine blades, turbine disks and bolts.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 1, 1996
    Assignees: The Japan Steel Works, Ltd., Toshiba Corporation
    Inventors: Masayuki Yamada, Yoichi Tsuda, Ryuichi Ishii, Eiji Maeda, Tsukasa Azuma
  • Patent number: 5358577
    Abstract: A high strength, high toughness stainless steel consisting, by weight, of C more than 0.16% but less than 0.25%, Si not more than 2.0%, Mn not more than 1.0%, Ni not more than 2.0%, Cr from 11 to 15%, Mo not less than 0.5% but less than 3.0%, Co from 12 to 21%, at least one kind selected from the group consisting of V from 0.1 to 0.5% and Nb less than 0.1% which at least one kind is added as occasion demands, and the balance Fe and incidental impurities. This steel is produced by a method comprising the steps of: preparing a stainless steel having the composition of any one of the claims 1 to 4; subjecting the stainless steel to a solution heat treatment at a temperature of 950 to 1150.degree. C.; quenching the steel; subjecting the steel to a sub zero treatment at a temperature of -50.degree. to -100.degree. C.; and subjecting the steel to a tempering at a temperature of 120.degree. to 450.degree. C.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: October 25, 1994
    Assignees: Hitachi Metals, Ltd., The Society of Japanese Aerospace Companies, Inc., Sumitomo Precision Products Co., Ltd.
    Inventors: Toshihiro Uehara, Rikizo Watanabe, Nobuhito Nakama
  • Patent number: 5340534
    Abstract: An austenitic, stainless steel alloy having a good combination of galling resistance and corrosion resistance is disclosed containing in weight percent about:______________________________________ Broad Intermediate Preferred ______________________________________ C 0.25 max. 0.02-0.15 0.05-0.12 Mn 3-10 4-8 5-7 Si 2.25-5 2.5-4.5 3-4 Cr 15-23 16.5-21 17.5-19 Ni 2-12 4-10 6-9 Mo 0.5-4.0 0.5-2.5 0.75-1.5 N 0.35 max. 0.05-0.25 0.10-0.20 ______________________________________and the balance of the alloy is essentially iron. This alloy also has good resistance to formation of deformation-induced martensite as indicated by the alloy's low work-hardening rate and low magnetic permeability when cold-rolled to a 50% reduction in cross-sectional area.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: August 23, 1994
    Assignee: CRS Holdings, Inc.
    Inventor: John H. Magee
  • Patent number: 5338616
    Abstract: A far-infrared emitter of high corrosion resistance is prepared by an oxidizing heat treatment of a body made from a stainless steel of 20-35% by weight of chromium, 0.5-5.0% by weight of molybdenum, up to 3.0% by weight of manganese and up to 3.0% by weight of silicon at 900.degree.-1200.degree. C. to form an oxidized surface film having a thickness of at least 0.2 mg/cm.sup.2. Further, a far-infrared emitter of a high emissivity approximating a black body is prepared by subjecting a body made from a stainless steel of 10-35% by weight of chromium, 1.0-4.0% by weight of silicon and up to 3.0% by weight of manganese to a blasting treatment to roughen the surface followed by an oxidizing heat treatment at 900.degree.-1200.degree. C. to form an oxide film on the surface in the form of protrusions having a length of at least 5 .mu.m.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: August 16, 1994
    Assignees: Kawasaki Steel Corporation, Osaka Gas Co., Ltd.
    Inventors: Kazuhide Ishii, Tatsuo Kawasaki, Noriyuki Kuriyama, Shoji Dohi, Akio Nakashiba, Souhei Miyazaki
  • Patent number: 5064610
    Abstract: A heat resistant steel for use as a material of engine valves, having a composition containing, not less than 0.01% and below 0.20% of carbon, from 0.05% to 1.0% of silicon, from 7.5% to 15.0% of manganese, from 2.0% to 20.0% in total of at least one of nickel and cobalt, from 15.0% to 25.0% of chromium, not more than 3.0% of molybdenum, above 2.0% and not more than 10.0% of tungsten, not less than 0.01% and below 0.50% of niobium, from 0.30% to 0.65% of nitrogen, not more than 0.02% of boron, and the balance incidental inclusions and iron. Cobalt content is determined to meet the condition of % Co=(Ni.+-.5)%. The heat resistant steel meets the conditions of: oxidation weight loss when held at 1000.degree. C. for 100 hours being not greater than 0.15 mg/cm.sup.2 /hour in atmosphere; tensile strength being not less than 20 kgf/mm.sup.2 at 900.degree. C. after a solution treatment at 1030.degree. to 1070.degree. C. and a subsequent aging treatment; and creep rupture life at 900.degree. C.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: November 12, 1991
    Assignee: Hitachi Metals, Ltd.
    Inventors: Koji Sato, Rikizo Watanabe
  • Patent number: 4948556
    Abstract: A piston ring material is capable of improving the heat resistance, abrasion resistance, nitriding characteristics and scuffing resistance that are required in a piston ring, the C content is 0.6 to 1.5%, and Co is contained in high Cr steel. The piston ring material consists by weight of 0.6 to 1.5% C, not more than 1.0% Si, not more than 1.0% Mn, 7.0 to 25.0% Cr, 2.0 to 13.0% Co, and the balance Fe and incidental impurities. In the piston ring material, a part of Fe can be replaced by at least one kind of Mo and W, and/or V, Nb, or Ni. A piston ring has a nitrided layer provided at least on a sliding surface thereof which slides against a cylinder wall.
    Type: Grant
    Filed: April 18, 1989
    Date of Patent: August 14, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventor: Atushi Kumagai
  • Patent number: 4751046
    Abstract: An austenitic stainless steel alloy showing a high cavitation erosion resistance making it particularly useful for the manufacture and/or repair of hydraulic machine components. The alloy consists essentially of from 8 to 30% by weight of Co; from 13 to 30% by weight of Cr; from 0.03 to 2.0% by weight of C; up to 0.3% by weight of N; up to 5.0% by weight of Si; up to 1.0% by weight of Ni; up to 2.0% by weight of Mo; and up to 16% by weight of Mn, the balance being substantially Fe, with the proviso that at least one of the following conditions is satisfied: the amount of C is higher than 0.3%, and/or the amount of Si is higher than 3.0% and/or the amount of Mn is higher than 9.0%.
    Type: Grant
    Filed: October 23, 1986
    Date of Patent: June 14, 1988
    Assignee: Hydro Quebec
    Inventor: Raynald Simoneau
  • Patent number: 4626116
    Abstract: A wire dot printer head comprising a leaf spring welded to an armature and biased by a permanent magnet, and a magnetic coil adapted to erase the magnetic field of the permanent magnet so as to release the leaf spring and to drive a print wire. The leaf spring is made of an alloy which consists essentially of 13-14 wt % Cr, 0.37-0.43 wt % C, 0.25-0.5 wt % Si, 0.3-0.5 wt % Mn, 1.15-1.35 wt % Mo and the balance Fe. The alloy makes the width of the weld metal of the leaf spring wide and its depth of weld penetration deep and thus minimizes the generation of micro-cracking.
    Type: Grant
    Filed: March 5, 1985
    Date of Patent: December 2, 1986
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takehiko Sagara, Hiroya Suzuki, Iwao Ohtsuka