Manganese Containing Patents (Class 420/404)
  • Patent number: 11739400
    Abstract: A magnesium alloy of the present invention has a structure, comprising: 0.5-2.0 wt % of Zn; 0.3-0.8 wt % of Ca; at least 0.2 wt % of Zr; and the remainder comprising Mg and unavoidable impurities, wherein a nanometer-sized precipitate comprising Mg, Ca and Zn dispersed on the (0001) plane of a magnesium matrix, thereby achieving both formability and strength in a range of temperatures including room temperature.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 29, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ming-Zhe Bian, Taisuke Sasaki, Kazuhiro Hono, Shigeharu Kamado, Taiki Nakata
  • Patent number: 11732334
    Abstract: The invention relates to biodegradable, metal alloys, methods for their preparation and applications for their use. The alloys include magnesium and other components, such as, yttrium, calcium, zirconium, and zinc. These elements are alloyed together in specific combinations and amounts in order to achieve an alloy having desired properties and characteristics. In certain embodiments, strontium or cerium may be included as an additive. The resulting alloys are particularly suitable for forming various medical devices for implantation into the body of a patient.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 22, 2023
    Assignee: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventor: Prashant N. Kumta
  • Patent number: 11326241
    Abstract: A plastic wrought magnesium alloy includes a Mg—Al—Bi—Sn—Ca—Y alloy, prepared from the following chemical components in percentage by mass: 3 to 6.0% of Al, 1 to 3.0% of Bi, 0.5 to 2.0% of Sn, 0.02 to 0.05% of Ca, 0.02 to 0.05% of Y and the balance of Mg, in which the percentage sum of Ca and Y elements is more than 0.05% and less than 0.1%.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: May 10, 2022
    Assignee: CITIC Dicastal CO., LTD.
    Inventors: Lixin Huang, Zuo Xu, Chunhai Liu, Zhihua Zhu, Lisheng Wang, Yongfei Li, Dong Guo
  • Patent number: 10851442
    Abstract: According to one implementation, a magnesium-lithium alloy contains not less than 10.50 mass % and not more than 16.00 mass % lithium, not less than 5.00 mass % and not more than 12.00 mass % aluminum, and not less than 2.00 mass % and not more than 8.00 mass % calcium. According to one implementation, a rolled stock is made of the above-mentioned magnesium-lithium alloy. According to one implementation, a processed product includes the above-mentioned magnesium-lithium alloy as a material.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: December 1, 2020
    Assignee: SUBARU CORPORATION
    Inventors: Ayako Miura, Takayuki Goto
  • Publication number: 20130144290
    Abstract: The invention relates to a magnesium alloy containing (in % by weight) more than 0.0 to 7.0% zinc, optionally more than 0.0 to 1.0% zirconium, optionally more than 0.0 to 1.0% calcium, optionally more than 0.0 to 1.0% manganese, optionally more than 0.0 to 0.5% silicon, optionally more than 0.0 to 1.0% silver, a max. up to 0.5% aluminum and at least one element selected from the group comprising more than 0.05 to 0.6% yttrium, more than 0.05 to 4.0% ytterbium, more than 0.05 to 4.0% gadolinium, with the residue being magnesium and impurities due to production. The invention also relates to a use of a magnesium alloy of this type and an implant therefrom and a method for producing a body of a magnesium alloy according to the invention.
    Type: Application
    Filed: June 15, 2011
    Publication date: June 6, 2013
    Applicant: AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH
    Inventors: Andreas Schiffl, Bernhard Mingler
  • Patent number: 8293031
    Abstract: A magnesium alloy, comprising: Y: 0.5-10? Zn: 0.5-6?? Ca: 0.05-1?? Mn: ??0-0.5 Ag: 0-1 Ce: 0-1 Zr: 0-1 or Si: 0-0.4, wherein the amounts are based on weight-percent of the alloy and Mg, and manufacturing-related impurities constitute the remainder of the alloy to a total of 100 weight-percent. Also disclosed is a method for manufacturing such an alloy and a biodegradable implant formed therefrom.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 23, 2012
    Assignee: Biotronik VI Patent AG
    Inventors: Bodo Gerold, Heinz Mueller, Joerg Loeffler, Anja Haenzi, Peter Uggowitzer
  • Publication number: 20120107171
    Abstract: A magnesium alloy sheet having good press formability, a magnesium alloy structural member produced by pressing the sheet, and a method for producing a magnesium alloy sheet are provided. The magnesium alloy sheet is composed of a magnesium alloy containing Al and Mn. When a region from a surface of the alloy sheet to 30% of the thickness of the alloy sheet in a thickness direction of the magnesium alloy sheet is defined as a surface region and when a 200 ?m2 sub-region is arbitrarily selected from this surface region, the number precipitated impurity grains containing both Al and Mg and having a maximum diameter of 0.5 to 5 ?m is 5 or less. When a 50 ?m2 subregion is arbitrarily selected from the surface region, the number of crystallized impurity grains containing both Al and Mn and having a maximum diameter of 0.1 to 1 ?m is 15 or less. In the grains of the crystallized phases, the mass ratio Al/Mn of Al to Mn is 2 to 5.
    Type: Application
    Filed: June 8, 2010
    Publication date: May 3, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takahiho Kitamura, Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20120100035
    Abstract: A magnesium alloy sheet having high impact resistance at low temperature, a magnesium alloy structural member using this sheet, and a method for producing a magnesium alloy sheet are provided. The magnesium alloy sheet is composed of a magnesium alloy containing Al and Mn. When a region from a surface of the alloy sheet to 30% of the thickness of the alloy sheet in a thickness direction of the magnesium alloy sheet is defined as a surface region and when a 50 ?m2 sub-region is arbitrarily selected from this surface region, the number of grains that are crystallized phases containing both Al and Mn is 15 or less. The maximum diameter of each of the crystallized phases is 0.1 to 1 ?m and the mass ratio Al/Mn of Al to Mn is 2 to 5. This magnesium alloy sheet has high impact resistance since it contains crystallized phases that are small in size and in amount contained and cause breaking and the like, and exhibits good mechanical properties even in a low-temperature environment.
    Type: Application
    Filed: June 8, 2010
    Publication date: April 26, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yukihiro Oishi, Takahiro Kitamura, Nozomu Kawabe
  • Publication number: 20090291015
    Abstract: The invention relates to a magnesium-based alloy and a semi-finished product produced therefrom with uniformly small grain size and high cold forming capability. In order to create a fine-grain billet from an ingot, the material of which is highly formable (deep-drawable) at increased temperature and at room temperature and has desirable corrosion properties, according to the invention a magnesium-based alloy (L1, L2) is provided, containing in % by weight zinc (Zn) more than 0.8, but less than 6.2, zirconium (Zr) traces, but less than 1.0, manganese (Mn) more than 0.04, but less than 0.6, calcium (Ca) more than 0.04, but less than 2.0, silicon (Si) traces, but less than 1.0, antimony (Sb) traces, but less than 0.5, silver (Ag) more than 0.1, but less than 2.0, the rest being magnesium and production-related contaminants.
    Type: Application
    Filed: April 19, 2007
    Publication date: November 26, 2009
    Inventors: Peter J. Uggowitzer, Joerg F. Loeffler, Franz Riemelmoser, Maria Kuehlein, Michael Kettner, Helmut Kilian
  • Publication number: 20090035171
    Abstract: Provided is a high-strength and high-toughness magnesium alloy which has practical level of both the strength and the toughness for expanded applications of the magnesium alloys, and is a method for manufacturing thereof. The high-strength and high-toughness magnesium alloy of the present invention contains: a atom % in total of at least one metal of Cu, Ni, and Co; and b atom % in total of at least one element selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm, while a and b satisfying the following formulae (1) to (3), 0.2?a?10??(1) 0.2?b?10??(2) 2/3a?2/3<b.
    Type: Application
    Filed: March 20, 2007
    Publication date: February 5, 2009
    Inventors: Yoshihito Kawamura, Michiaki Yamasaki, Takaomi Itoi, Mitsuji Hirohashi
  • Publication number: 20080311423
    Abstract: The invention is to provide a magnesium alloy material such as a magnesium alloy cast material or a magnesium alloy rolled material, excellent in mechanical characteristics and surface precision, a producing method capable of stably producing such material, a magnesium alloy formed article utilizing the rolled material, and a producing method therefor. The invention provides a producing method for a magnesium alloy material, including a melting step of melting a magnesium alloy in a melting furnace to obtain a molten metal, a transfer step of transferring the molten metal from the melting furnace to a molten metal reservoir, and a casting step of supplying a movable mold with the molten metal from the molten metal reservoir, through a pouring gate, and solidifying the molten metal to continuously produce a cast material. In a process from the melting step to the casting step, parts contacted by the molten metal are formed by a low-oxygen material having an oxygen content of 20 mass % or less.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 18, 2008
    Inventors: Masatada Numano, Yoshihiro Nakai, Toshiya Ikeda, Taichiro Nishikawa