Over 0.05 Percent Sulfur, Over 0.04 Percent Phosphorus Or Sulfur Or Phosphorus Added In Any Amount To Promote Machinability Patents (Class 420/42)
  • Patent number: 11021782
    Abstract: The disclosure provides methods of making iron-based alloys, as well as resulting alloys. An iron-based alloy containing a small amount of nickel (e.g., 0.5 to 2.0 wt %) is annealed and machined. The alloy is sufficiently ductile to reduce the likelihood of cracking, while not sufficiently high to result in a hardened alloy. After the alloy is shaped, the alloy is hardened by nitriding.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: June 1, 2021
    Assignee: Apple Inc.
    Inventors: Hoishun Li, Ethan E. Currens, Weiming Huang, James A. Wright
  • Patent number: 10815555
    Abstract: A heat-resistant, austenitic cast steel having excellent thermal fatigue properties, comprising by mass 0.3-0.6% of C, 0.5-3% of Si, 0.5-2% of Mn, 15-30% of Cr, 6-30% of Ni, 0.6-5% of Nb, 0.01-0.5% of N, and 0.01-0.5% of S, C/N being 4-7, and the balance being Fe and inevitable impurities; and a ratio A/B of a Cr-carbide-forming index A to a Nb-carbide-forming index B being 0.6-1.7, wherein A and B are expressed by the formula (1) of A=8.5C?Nb+0.05Cr+0.65Ni?5, and the formula (2) of B=7.8Nb.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 27, 2020
    Assignee: HITACHI METALS, LTD.
    Inventors: Hirofumi Kimura, Tomonori Namito, Susumu Katsuragi, Junji Hayakawa
  • Patent number: 10801124
    Abstract: A stainless steel plate for press forming includes a stainless steel having a recess formed along grain boundaries on a base surface of the stainless steel; and a surface film that is formed on a surface of the stainless steel that includes the recess, that is composed of at least one of an Fe and Cr-based oxide film and an Fe and Cr-based hydroxide film, and that has a thickness of equal to or greater than 0.1 ?m and equal to or less than 3.0 ?m, wherein a groove is formed correspondingly to the recess on the surface side of the stainless steel. The stainless steel plate has superior galling resistance and press formability during press forming even if general-purpose stainless steel and an extreme pressure additive, such as a non-chlorine-based additive, or a low viscosity press oil are used.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 13, 2020
    Assignee: ABEL CO., LTD.
    Inventors: Hideki Iai, Kosuke Iai, Yoshikazu Aoki
  • Patent number: 9617627
    Abstract: This heat-resistant austenitic stainless steel has a specific composition containing Ce and Zr and has an Hv1/Hv0 ratio of 1.20 or higher, where Hv1 is the average hardness of the area ranging from the surface to a thickness-direction depth of 50 ?m and Hv0 is the average hardness of the thickness-direction central part.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 11, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Takeo Miyamura, Shigenobu Namba
  • Patent number: 9206715
    Abstract: A surface hardening material being excellent in impact resistance and having abrasion resistance is provided. Provided are: a high-toughness cobalt-based alloy containing 25.0 to 40.0 mass % of Cr, 0.5 to 12.0 mass % of a sum of W and/or Mo, 0.8 to 5.5 mass % of Si, and 0.5 to 2.5 mass % of B, 8.0 mass % or less of each of Fe, Ni, Mn, and Cu, and 0.3 mass % or less of C, the sum amount of Fe, Ni, Mn, and C being 10.0 mass % or less, and the remainder comprising 48.0 to 68.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 8, 2015
    Assignees: Fukuda Metal Foil & Powder Co., Ltd., Nittan Valve Co., Ltd.
    Inventors: Katsunori Otobe, Shinichi Nishimura, Kazunori Kurahashi
  • Patent number: 9192981
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 24, 2015
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, George J. Smith, Jr., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Patent number: 9072450
    Abstract: A distal end barrel that holds a light guide bundle and an electronic image pickup unit inside a distal end portion is formed in such a manner that the distal end barrel is divided in a first distal end barrel arranged on the distal end side of the distal end portion and a second distal end barrel supported via the first distal end barrel so as not to be exposed at an outer surface of the distal end portion, the second distal end barrel holding the light guide bundle and the electronic image pickup unit, and the second distal end barrel includes a member having a thermal conductivity higher than the thermal conductivity of the first distal end barrel, thereby protecting the image pickup device from thermal damage without an increase in temperature of the outer surface of the distal end portion.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: July 7, 2015
    Assignee: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventors: Takanori Ushijima, Susumu Aono, Toshihiro Matsui, Mitsutaka Kokubo, Natsuki Hori
  • Patent number: 9068237
    Abstract: In a method for desulfurizing hot metal by analyzing S concentration of a sample taken out from the hot metal, the S concentration is analyzed rapidly and precisely by a method comprising a high frequency induction heating step of oxidizing the sample under a high frequency induction heating in a pure oxygen atmosphere to convert S in the hot metal to SO2 and an analysis step of analyzing SO2-containing gas generated in the high frequency induction heating step through an ultraviolet fluorescence method to quantify S concentration in the sample, whereby S concentration after the desulfurization is controlled precisely and hence fault of S concentration is prevented but also the increase of the cost due to the excessive addition of a desulfurization agent and step disruption at steel-making step are prevented.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: June 30, 2015
    Assignee: JFE STEEL CORPORATION
    Inventors: Satoshi Kinoshiro, Kyoko Fujimoto, Masao Inose, Toshiyuki Ito
  • Publication number: 20150086411
    Abstract: A heat-resistant bearing material may include an austenitic iron matrix alloy having a proportion of sulphur sufficient to achieve a solid lubricating action on bearing surfaces of the heat-resistant bearing material. The iron matrix alloy may have a proportion of carbides to achieve a reduction of wear on bearing surfaces of the heat-resistant bearing material and a proportion of 1 to 6 percentage by weight of at least one alloying element including cobalt, niobium, rhenium, tantalum, vanadium, tungsten, hafnium, yttrium and zirconium. The iron matrix alloy may also include the following alloying elements: carbon, chromium, manganese, silicon, nickel, molybdenum, niobium, tungsten, sulphur, copper, nitrogen and iron.
    Type: Application
    Filed: March 1, 2013
    Publication date: March 26, 2015
    Inventors: Lutz Steinert, Klaus Wintrich
  • Publication number: 20150086412
    Abstract: A heat-resistant, austenitic cast steel having excellent machinability comprising by mass 0.4-0.55% of C, 1-2% of Si, 0.5-1.5% of Mn, 18-27% of Cr, 8-22% of Ni, 1.5-2.5% of Nb, 0.01-0.3% of N, 0.1-0.2% of S, and 0.02-0.15% of Al, the balance being Fe and inevitable impurities, a machinability index I represented by the following formula: I=100×S+75×Al+0.75×Mn?10×C?2×Nb?0.25×Cr?0.15×Ni?1.2×N, wherein each element symbol represents % by mass of each element in the cast steel, meeting the condition of ?3.0?I?+14.0, and an exhaust member made thereof.
    Type: Application
    Filed: May 9, 2013
    Publication date: March 26, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Kana Morishita, Kenichi Inoue, Susumu Katsuragi, Masahide Kawabata, Tomonori Sakuta
  • Patent number: 8951368
    Abstract: Disclosed are amorphous, ductile brazing foils with a composition consisting essentially of FeRestNiaCrbSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %?c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %, or consisting essentially of FeRestNiaCrbMofCugSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %<c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; 0 atomic %<f?3 atomic %; 0 atomic %?g?3 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %. Also disclosed are brazed objects formed using these foils, particularly exhaust gas recirculation coolers and oil coolers, and methods for making the brazing foils and for making the brazed parts.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 10, 2015
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 8900510
    Abstract: A heat-resistant, ferritic cast steel having excellent room-temperature toughness, which has a composition comprising by mass 0.32-0.48% of C, 0.85% or less of Si, 2% or less of Mn, 1.5% or less of Ni, 16-19.8% of Cr, 3.2-5% of Nb, Nb/C being 9-11.5, 0.15% or less of N, 0.002-0.2% of S, and 0.8% or less in total of W and/or Mo, the balance being Fe and inevitable impurities, and a structure in which a eutectic (?+NbC) phase formed from a ? phase and Nb carbide (NbC) has an area ratio of 60-90%, and an exhaust member made thereof.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 2, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventor: Masahide Kawabata
  • Patent number: 8808472
    Abstract: A steel alloy suitable for holders and holder details for plastic molding tools contains in weight-%: 0.06-0.15 C, 0.07-0.22 N, wherein the total amount of C+N shall satisfy the condition, 0.16?C+N?0.26, 0.1-1.0 Si, 0.1-2.0 Mn, 12.5-14.5 Cr, 0.8-2.5 Ni, 0.1 1.5 Mo, optionally vanadium up to max. 0.7 V, optionally, in order to improve the machinability of the steel, one or more of the elements S, Ca and O in amounts up to max. 0.25 S, max. 0.01 (100 ppm) Ca, max. 0.01 (100 ppm) O, balance iron and unavoidable impurities.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 19, 2014
    Assignee: Uddeholms AB
    Inventors: Odd Sandberg, Magnus Tidesten
  • Publication number: 20140227124
    Abstract: A ferrous alloy for powder injection molding is provided. The ferrous alloy for powder injection molding includes iron (Fe) at 52.59-78.15 wt %, chromium (Cr) at 16.45-37.34 wt %, boron (B) at 3.42-7.76 wt %, silicon (Si) at 1.64-1.92 wt %, sulfur (S) at 0-0.21 wt %, carbon (C) at 0.16-0.18 wt %, and other inevitable impurities.
    Type: Application
    Filed: April 20, 2012
    Publication date: August 14, 2014
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Sung Hak Lee, Byeong-Joo Lee, Jeonghyeon Do, Yang Su Shin
  • Publication number: 20140216614
    Abstract: The present invention focuses on Sn and has as its problem to not only improve the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel but also improve the ridging resistance. The present invention derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods: 0.060?Sn?0.634?0.
    Type: Application
    Filed: June 18, 2012
    Publication date: August 7, 2014
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 8741215
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0 to 5.0%, Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 8.0% or less (including 0%), N: 0.02 to 0.2%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 442P(%)+12Mo(%)+5W(%)+7Nb(%)+328N(%)+171?300??Formula (1) ?38.13P(%)+1.06Mo(%)+0.13W(%)+9.64Nb(%)+13.52N(%)+4.83?0.12??Formula (2).
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 3, 2014
    Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.
    Inventors: Katsuhiko Ohishi, Takehiro Ohno, Toshihiro Uehara
  • Patent number: 8721808
    Abstract: The ferrite system heat-resistant cast steel and the exhaust system component are provided, which are inexpensive and are able to improve the reliability by largely improving the toughness under normal temperature and thermal fatigue performance. The ferrite system heat-resistant cast steel includes composition structure comprised, percent by mass, of 0.1% to 0.4% carbon, 0.5% to 2.0% silicon, 0.2% to 1.2% manganese, 0.3% or less phosphorus, 0.01% to 0.4% sulfur, 14.0% to 21.0% chrome, 0.05% to 0.6% niobium, 0.01% to 0.8% aluminum, 0.15% to 2.3% nickel, residual iron and inevitable impurities.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: May 13, 2014
    Assignee: Aisin Takaoka Co., Ltd.
    Inventors: Daisuke Yamanaka, Zhong-zhi Zhang
  • Publication number: 20140065006
    Abstract: Ferritic stainless steels with good oxidation resistance, good high temperature strength, and good formability are produced with Ti addition and low Al content for room temperature formability resulting from equiaxed as-cast grain structures. Columbium (niobium) and copper are added for high temperature strength. Silicon and manganese are added for oxidation resistance. The ferritic stainless steels provide better oxidation resistance than ferritic stainless steels of 18Cr—2Mo and 15Cr-Cb-Ti—Si—Mn. In addition, they are generally less costly to produce than 18Cr—2Mo.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Inventor: Eizo Yoshitake
  • Publication number: 20140065005
    Abstract: Ferritic stainless steels with good oxidation resistance, and good high temperature strength and good formability are produced with Ti addition and low Al content for room temperature formability resulting from equiaxed as-cast grain structures. Columbium (niobium) and copper are added for high temperature strength. Silicon and manganese are added for oxidation resistance. The ferritic stainless steels provide better oxidation resistance than ferritic stainless steels of 18Cr-2Mo and 15Cr—Cb—Ti—Si—Mn. In addition, they are generally less costly to produce than 18Cr-2Mo.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Inventor: Eizo Yoshitake
  • Patent number: 8663549
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0% or less (including 0%), Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 2.0% or less (including 0%), N: 0.02 to 0.30%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 156.42P(%)+0.91Mo(%)+0.73W(%)?12.27Nb(%)+220.96N(%)+120.59?170??Formula (1) 13.70P(%)?6.97Mo(%)?4.32W(%)?3.29Nb(%)+119.10N(%)+27.75?25??Formula (2).
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 4, 2014
    Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.
    Inventors: Katsuhiko Ohishi, Akihiro Toji
  • Publication number: 20140023550
    Abstract: The present invention provides ferritic stainless steel sheet which is excellent in heat resistance at 950° C. and workability at ordinary temperature, that is, ferritic stainless steel sheet excellent in heat resistance and workability which is characterized by containing, by mass %, C: 0.02% or less, N: 0.02% or less, Si: over 0.1 to 1.0%, Mn: 0.5% or less, P: 0.020 to 0.10%, Cr: 13.0 to 20.0%, Nb: 0.5 to 1.0%, Cu: 1.0 to 3.0%, Mo: 1.5 to 3.5%, W: 2.0% or less, B: 0.0001 to 0.0010%, and Al: 0.01 to 1.0% and having a balance of Fe and unavoidable impurities, where Mo+W is made 2.0 to 3.5%.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 23, 2014
    Inventors: Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue
  • Publication number: 20130343948
    Abstract: A nitrogen-rich two-phase stainless steel that has corrosion resistance equal to that of standard type of two-phase stainless steel and is not susceptible to corrosion in a welding heat-affected part, wherein the austenite phase area ratio is 40-70%, the PI value expressed by formula (1) is 30-38, the NI value expressed by formula (2) is 100-140, and the ?pre expressed by formula (3) is 1350-1450. (1) PI=Cr+3.
    Type: Application
    Filed: March 9, 2012
    Publication date: December 26, 2013
    Inventors: Yusuke Oikawa, Shinji Tsuge, Hiroshige Inoue, Ryo Matsuhashi
  • Publication number: 20130319583
    Abstract: The present invention provides a low-alloy high-purity ferritic stainless steel sheet provided with improved oxidation resistance and high-temperature strength by utilizing Sn addition in trace amounts without relying on excessive alloying of Al and Si which reduces fabricability and weldability or addition of rare elements such as Nb, Mo, W, and rare earths, and a process for producing the same. The high-purity ferritic stainless steel sheet includes C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: 0.05 to 3%, and Sn: 0.01 to 1% (% by mass), with the remainder being Fe and unavoidable impurities. A stainless steel slab having such steel components is heated, wherein an extraction temperature is 1100 to 1250° C., and a winding temperature after hot rolling is 650° C. or lower. A hot-rolled sheet is annealed at 900 to 1050° C., and cooled at 10° C./sec or less over a temperature range of 550 to 850° C.
    Type: Application
    Filed: January 23, 2012
    Publication date: December 5, 2013
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi
  • Publication number: 20130195713
    Abstract: A heat-resistant, ferritic cast steel having excellent melt flowability, gas defect resistance, toughness and machinability, which has a composition comprising by mass, C: 0.32-0.45%, Si: 0.85% or less, Mn: 0.15-2%, Ni: 1.5% or less, Cr: 16-23%, Nb: 3.2-4.5%, Nb/C: 9-11.5, N: 0.15% or less, S: (Nb/20-0.1) to 0.2%, W and/or Mo: 3.2% or less in total (W+Mo), the balance being Fe and inevitable impurities, and a structure in which the area ratio of a eutectic (?+NbC) phase of ? ferrite and Nb carbide (NbC) is 60-80%, and the area ratio of manganese chromium sulfide (MnCr)S is 0.2-1.2%, and an exhaust member made thereof.
    Type: Application
    Filed: October 3, 2011
    Publication date: August 1, 2013
    Applicant: HITACHI METALS, LTD.
    Inventors: Masahide Kawabata, Hideo Kuribayashi, Junji Hayakawa
  • Publication number: 20130122320
    Abstract: A martensitic stainless steel for use in tableware, knives, scissors and the like, containing in % by weight, 0.10 to 0.50% carbon and 11 to 16% chromium, and a production method therefore.
    Type: Application
    Filed: December 20, 2010
    Publication date: May 16, 2013
    Applicant: POSCO
    Inventors: Dong-Chul Chae, Jong-Heon Seok, Joon-In Kwon, Byoung-Jun Song, Ki-Hoon Jo, Mi-Nam Park
  • Publication number: 20130047786
    Abstract: A corrosion resistant, neutron absorbing, austenitic alloy powder is disclosed having the following composition in weight percent. C 0.08 max. Mn up to 3 Si up to 2 P 0.05 max. S 0.03 max. Cr 17-27 Ni 11-20 Mo + (W/1.92) ??up to 5.2 BEq 0.78-13.0 O ?0.1 max. N ??up to 0.2 Y less than 0.005 The alloy contains at least about 0.25% B, at least about 0.05% Gd, and the balance of the alloy composition is iron and usual impurities. BEq is defined as % B+4.35×(% Gd). An article of manufacture made from consolidated alloy powder is also disclosed which is characterized by a plurality of boride and gadolinide particles dispersed within a matrix. The boride and gadolinide particles are predominantly M2B, M3B2, M3X, and M5X in form, where X is gadolinium or a combination of gadolinium and boron and M is one or more of the elements silicon, chromium, nickel, molybdenum, iron.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Michael L. Schmidt, Gregory J. Del Corso, Patrick C. Ray, Ning Ma
  • Publication number: 20130039796
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
  • Publication number: 20130022488
    Abstract: An iron (Fe)-based austenitic heat-resistant cast steel includes, based on a total of 100 mass % (indicated below simply as “%”): 0.4 to 0.8% of carbon (C), 3.0% or less of silicon (Si), 0.5 to 2.0% of manganese (Mn), 0.05% or less of phosphorus (P), 0.03 to 0.2% of sulfur (S), 18 to 23% of chromium (Cr), 3.0 to 8.0% of nickel (Ni) and 0.05 to 0.4% of nitrogen (N). A ratio of chromium (Cr) to carbon (C) is in a range of 22.5?Cr/C?57.5. The cast steel includes one or two or more of vanadium (V), molybdenum (Mo), tungsten (W) and niobium (Nb) in a total amount of less than 0.2%.
    Type: Application
    Filed: April 5, 2011
    Publication date: January 24, 2013
    Applicants: AISIN TAKAOKA CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshikazu Genma, Go Kuramoto, Zhong-zhi Zhang
  • Publication number: 20130017116
    Abstract: The stainless steel sheet according to the present invention is a ferritic stainless steel which is comprised of, by mass %, C: 0.001 to 0.03%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 12 to 16%, N: 0.001 to 0.03%, Nb: 0.05 to 0.3%, Ti: 0.03 to 0.15%, Al: 0.005 to 0.5%, Sn: 0.01 to 1.0%, and has the remainder of Fe and unavoidable impurities and satisfies the relationship of 1?Nb/Ti?3.5. The method comprises heating a slab of stainless steel which contains the above steel ingredients, setting the extraction temperature 1080 to 1190° C., and setting the coiling temperature after the end of hot rolling 500 to 700° C. After hot rolling, the method comprises annealing the hot rolled sheet, which can be omitted, cold rolling once or cold rolling twice or more which includes processing annealing, and finish annealing the steel sheet at 850 to 980° C.
    Type: Application
    Filed: March 22, 2011
    Publication date: January 17, 2013
    Inventors: Masaharu Hatano, Akihito Yamagishi, Shigenori Takahata, Eiichiro Ishimaru
  • Publication number: 20120328897
    Abstract: A high-strength stainless steel for oil well having corrosion resistance excellent in a high-temperature environment, having excellent SSC resistance at normal temperature, and having better workability than 13% Cr steels has a chemical composition containing, by mass percent, C: at most 0.05%, Si: at most 1.0%, Mn: at most 0.3%, P: at most 0.05%, S: less than 0.002%, Cr: over 16% and at most 18%, Mo: 1.5 to 3.0%, Cu: 1.0 to 3.5%, Ni: 3.5 to 6.5%, Al: 0.001 to 0.1%, N: at most 0.025%, and O: at most 0.01%, the balance being Fe and impurities, a microstructure containing a martensite phase, 10 to 48.5%, by volume ratio, of a ferrite phase and at most 10%, by volume ratio, of a retained austenite phase, yield strength of at least 758 MPa and uniform elongation of at least 10%.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Taro OHE, Hisashi Amaya, Hideki Takabe, Kunio Kondo, Yohei Otome
  • Publication number: 20120321501
    Abstract: The present invention relates to a production method for high-carbon martensitic stainless steel as used in razorblades, knives and the like, which contains, as percentages by weight, 0.40 to 0.80% carbon and 11 to 16% chromium as main components. Provided is a production method for high-carbon martensitic stainless steel in a strip-casting device, wherein a stainless-steel thin sheet is cast by supplying a stainless molten steel containing, as percentages by weight, 0.40 to 0.80% carbon and from 11 to 16% chromium to a molten steel pool from a tundish via a nozzle, and the cast stainless-steel thin sheet is made into a hot-rolled annealed strip using in-line rollers to a rolling reduction of 5 to 40% immediately just after the casting so that the size of primary carbides within the microstructure of the hot-rolled annealed strip is 10 ?m or less, and also provided is martensitic stainless steel produced by means of the production method.
    Type: Application
    Filed: December 20, 2010
    Publication date: December 20, 2012
    Applicant: POSCO
    Inventors: Dong-Chul Chae, Bo-Sung Seo, Seung-Bae Ahn, Seong-In Jeong, Jae-Hwa Lee, Gyu-Jin Jo
  • Publication number: 20120321478
    Abstract: This invention provides a precipitate hardening stainless steel having excellent structure stability, strength, toughness, and corrosion resistance, which requires no sub-zero treating and thus is excellent in terms of productivity, and a long blade for a steam turbine using the same. The following are provided: a precipitate hardening stainless steel, which comprises C at 0.05 mass % or less, N at 0.05 mass % or less, Cr at 10.0 mass % to 14.0 mass %, Ni at 8.5 mass % to 11.5 mass %, Mo at 0.5 mass % to 3.0 mass %, Ti at 1.5 mass % to 2.0 mass %, Al at 0.25 mass % to 1.00 mass %, Si at 0.5 mass % or less, and Mn at 1.0 mass % or less, and the balance is composed of Fe and inevitable impurities; and a long blade for a steam turbine composed of the precipitate hardening stainless steel.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Shinji OIKAWA, Hideo YODA, Masahiko ARAI, Hiroyuki DOI
  • Publication number: 20120315181
    Abstract: STAINLESS MOLD STEEL WITH LOWER DELTA-FERRITE CONTENT comprising a composition of alloying elements consisting essentially of, in percentage by mass, Carbon between 0.01 and 0.20; Nitrogen between 0.01 and 0.07; Manganese between 2.0 and 4.0; Nickel between 0.01 and 1.0; Chromium between 11.0 and 13.0; Molybdenum+Tungsten lower than 1.0; Copper between 0.01 and 1.5; Vanadium between 0.01 and 1.0; Sulfur between 0.01 and 0.20; Calcium at maximum 0.01; Aluminum lower than 0.05; Silicon lower than 1.0; the remainder consisting essentially of Fe and inevitable impurities to the preparation process.
    Type: Application
    Filed: November 10, 2010
    Publication date: December 13, 2012
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20120301347
    Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Govindarajan MURALIDHARAN, Yukinori Yamamoto, Michael P. Brady
  • Patent number: 8287805
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: October 16, 2012
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Sjödin
  • Patent number: 8241558
    Abstract: A high-Cr, high-Ni, heat-resistant, austenitic cast steel comprises as main components C, Si, Mn, Cr, Ni, W and/or Mo, and Nb, the balance being substantially Fe and inevitable impurities, N being 0.01-0.5%, Al being 0.23% or less, and O being 0.07% or less by weight. Exhaust equipment members are produced by using this high-Cr, high-Ni, heat-resistant, austenitic cast steel.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: August 14, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Keijiro Hayashi, Kenji Itoh, Akinaga Odaira, Koki Otsuka
  • Publication number: 20120187093
    Abstract: A filler material for welding is characterized by the following chemical composition (amounts in % by weight): 0.05-0.15 C, 8-11 Cr, 2.8-6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 1-3 Re, 0.001-0.07 Ta, 0.01-0.06 N, 0-60 ppm Pd, max. 0.25 P, max. 0.02 S, remainder Fe and manufacturing-related unavoidable impurities. The material has outstanding properties, in particular a good creep rupture strength/creep resistance, a good oxidation resistance and a very high toughness.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 26, 2012
    Inventors: Mohamed Youssef Nazmy, Claus Paul Gerdes, Andreas Kuenzler, Sorin Keller
  • Publication number: 20120183807
    Abstract: A brazing filler metal with excellent wetting behaviour on stainless steel base material is provided. The brazing filler metal produces a brazed joint with high strength and good corrosion resistance. The brazing filler metal is suitable for brazing stainless steel and other materials where corrosion resistance and high strength is required. Typical examples of applications are heat exchangers and catalytic converters. The iron-chromium based brazing filler metal powder comprises: 11-35 wt % chromium, 0-30 wt % nickel, 2-20 wt % copper, 2-10 wt % silicon, 4-10 wt % phosphorous, 0-10 wt % manganese, and at least 20 wt % iron, and if Si is equal to or less than 6 wt % then P should be above 8 wt %, and if P is less or equal to 8 wt % then Si should be above 6 wt %.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 19, 2012
    Applicant: HOGANAS AB
    Inventor: Ulrika Persson
  • Publication number: 20120107169
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0 to 5.0%, Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 8.0% or less (including 0%), N: 0.02 to 0.2%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 442P(%)+12Mo(%)+5W(%)+7Nb(%)+328N(%)+171?300??Formula (1) ?38.13P(%)+1.06Mo(%)+0.13W(%)+9.64Nb(%)+13.52N(%)+4.83?0.
    Type: Application
    Filed: April 19, 2010
    Publication date: May 3, 2012
    Inventors: Katsuhiko Ohishi, Takehiro Ohno, Toshihiro Uehara
  • Patent number: 8137613
    Abstract: An austenitic stainless steel welded joint, whose base metal and weld metal each comprises, by mass percent, C: not more than 0.3%, Si: not more than 2%, Mn: 0.01 to 3.0%, P: more than 0.04% to not more than 0.3%, S: not more than 0.03%, Cr: 12 to 30%, Ni: 6 to 55%, rare earth metal(s): more than 0.2% to not more than 0.6%, sol. Al: 0.001 to 3% and N: not more than 0.3%, with the balance being Fe and impurities, and satisfies the formula of (Cr+1.5×Si+2×P)/(Ni+0.31×Mn+22×C+14.2×N+5×P)<1.388, in spite of having a high P content and showing the fully austenitic solidification, has excellent resistance to the weld solidification cracking. Therefore, the said austenitic stainless steel welded joint can be widely used in such fields where a welding fabrication is required. Each element symbol in the above formula represents the content by mass percent of the element concerned.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada, Masaaki Igarashi
  • Publication number: 20120014828
    Abstract: In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]?0.8×[Bi]+0.
    Type: Application
    Filed: May 25, 2010
    Publication date: January 19, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaki
  • Publication number: 20110293464
    Abstract: A stainless steel and a flat cold product produced therefrom, which can be easily produced in an economical manner. A steel according to the invention, in the cold-rolled state, has a microstructure with 5-15% by volume ?-ferrite and austenite as the remainder. It contains (in % by weight): C: 0.05-0.14%, Si: 0.1-1.0%, Mn: 4.0-12.0%, Cr: >17.5-22.0%, Ni: 1.0-4.0%, Cu: 1.0-3.0%, N: 0.03-0.2%, P: max. 0.07%, S: max. 0.01%, Mo: max. 0.5%, optionally one or more elements from the group consisting of Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, and H wherein Ti: max. 0.02%, Nb: max. 0.1%, B: max. 0.004%, V: max. 0.1%, Al: 0.001-0.03%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Pb: max. 0.01%, Bi: max. 0.01%, H: max. 0.0025%, and remainder Fe and unavoidable impurities.
    Type: Application
    Filed: September 3, 2009
    Publication date: December 1, 2011
    Applicant: THYSSENKRUPP NIROSTA GMBH
    Inventors: Cornel Abratis, Lutz Ernenputsch, Wilfried Klos, Hans-Joachim Krautschick, Michael Sachtleber
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Patent number: 8017071
    Abstract: A corrosion resistant, martensitic steel alloy having very good cold formability is described. The alloy has the following weight percent composition. Carbon 0.10-0.40 Manganese 0.01-2.0? Silicon ?2.0 max. Phosphorus ?0.2 max. Sulfur 0.030 max.? Chromium 10-15 Nickel ?0.5 max. Molybdenum 0.75-4.0? Nitrogen 0.02-0.15 Copper 1.5-4.0 Titanium 0.01 max. Aluminum 0.01 max. Niobium + Tantalum 0.10 max. Vanadium 0.20 max. Zirconium less than 0.001 Calcium less than 0.001 The balance of the alloy is essentially iron. Nickel and copper are balanced in the alloy such that the ratio Ni/Cu is less than 0.2. A second embodiment of the alloy contains at least about 0.005% sulfur, selenium, or a combination thereof to provide good machinability.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: September 13, 2011
    Assignee: CRS Holdings, Inc.
    Inventor: John H. Magee, Jr.
  • Publication number: 20110182764
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0% or less (including 0%), Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 2.0% or less (including 0%), N: 0.02 to 0.30%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 156.42P(%)+0.91Mo(%)+0.73W(%)?12.27Nb(%)+220.96N(%)+120.59?170??Formula (1) 13.70P(%)?6.97Mo(%)?4.32W(%)?3.29Nb(%)+119.10N(%)+27.
    Type: Application
    Filed: June 23, 2010
    Publication date: July 28, 2011
    Inventors: Katsuhiko Ohishi, Akihiro Toji
  • Publication number: 20110172783
    Abstract: The invention relates to a single-piece metal strip having no weld seams and made of a polycrystalline metal, comprising at least one region in which the crystallites have a comparatively stronger anisotropic orientation, and at least one region in which the crystallites have a comparatively less strong anisotropic orientation, and wherein 0-20 X-ray diffractograms measured at two arbitrary points of the strip by way of CuKalpha radiation produce no statistically significant differences with respect to the position and shape of the respectively corresponding pikes, and to tweezers, supporting implants, and joint prostheses comprising said metal strip. The invention further relates to a roll method for obtaining said metal strip.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 14, 2011
    Applicant: DUMONT SWITZERLAND AG
    Inventor: Anton Walliser
  • Publication number: 20110033731
    Abstract: A ferritic stainless steel suited for use as a member for heat exchangers to be brazed with Ni-based filler metal or Cu-based filler metal, comprising, on the basis of mass percent, C: 0.03% or less, Si: 3% or less, Mn: 2% or less, P: 0.05% or less, S: 0.03% or less, Cr: from 11 to 30%, Nb: from 0.15 to 0.8%, and N: 0.03% or less, wherein the balance is composed of Fe and incidental impurities, and wherein a value A determined by the following equation is 0.10 or greater: A=Nb?(C×92.9/12+N×92.9/14).
    Type: Application
    Filed: May 11, 2009
    Publication date: February 10, 2011
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Akinori Kawano, Taichirou Mizoguchi, Kouki Tomimura, Wakahiro Harada
  • Publication number: 20110014491
    Abstract: An iron-chromium based brazing filler metal is provided which exhibits an excellent wetting behavior on a stainless steel base material. The brazing filler metal produces a brazed joint which exhibits high strength and good corrosion resistance. The brazing filler metal is suitable for brazing stainless steel and other materials where corrosion resistance and high strength is required. Typical examples of applications are heat exchangers and catalytic converters. The iron-chromium based brazing filler metal powder according to the invention comprises: between 11 and 35 wt % chromium, between 0 and 30 wt % nickel, between 2 and 20 wt % copper, between 2 and 6 wt % silicon, between 4 and 8 wt % phosporous, between 0-10 wt % manganese, and at least 20 wt % iron.
    Type: Application
    Filed: March 16, 2009
    Publication date: January 20, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventors: Owe Mars, Ulrika Persson
  • Patent number: 7754144
    Abstract: An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 13, 2010
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Michael P Brady, Michael L Santella, Yukinori Yamamoto, Chain-tsuan Liu
  • Patent number: 7754305
    Abstract: An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 13, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Yukinori Yamamoto, Michael L Santella, Michael P Brady, Philip J Maziasz, Chain-tsuan Liu