Vanadium Containing Patents (Class 420/420)
  • Patent number: 11708630
    Abstract: A titanium alloy composition is provided. In weight percent (wt. %), the alloy includes 5.7 to 8.0% vanadium, 0.5 to 1.75% aluminum, 0.25 to 1.5% iron, 0.1 to 0.2% oxygen, up to 0.15% silicon, up to 0.1% carbon and less than 0.03% nitrogen is provided. In one form, the titanium alloy has a 0.2% yield strength between 600 to 850 MPa, an ultimate tensile strength between 700 to 950 MPa, a percent elongation to failure between 20 to 30%, a percent reduction in area between 40 to 80%, a Charpy U-notch impact energy between 30 to 70 J, and/or a Charpy V-notch impact energy between 40 to 150 J.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 25, 2023
    Assignee: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, Steven James, Paul Garratt, Matthew Thomas
  • Patent number: 11510758
    Abstract: An orthodontic appliance may include an archwire and multiple orthodontic brackets. The archwire may fit within a human mouth and contain multiple male connectors. Each orthodontic bracket may have a configuration that facilitates attaching the orthodontic bracket to a single tooth. Each orthodontic bracket may allow one of the male connectors to be locked into the orthodontic bracket with a snapping action. The male connector may be unable to slide with respect to the orthodontic bracket after being locked in the orthodontic bracket. A manual unlocking action may allow the male connector to disengage from the orthodontic bracket.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 29, 2022
    Assignee: University of Southern California
    Inventors: Behrokh Khoshnevis, Hongsheng Tong, Yong Chen, Philong John Pham, Robert Lee
  • Patent number: 10006300
    Abstract: A method for armoring TiAl vanes of turbomachines is disclosed. A TiAl vane is provided onto which a mixture of at least one hard material and at least one braze material is applied so that subsequently the mixture can be brazed on the TiAl vane by an inductive heating process. A TiAl vane for a turbomachine, in particular for an aircraft engine, is also disclosed. The TiAl vane includes a TiAl main part and an armor which consists of a mixture of hard materials and braze material.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: June 26, 2018
    Assignee: MTU Aero Engines AG
    Inventors: Bernd Daniels, Karl-Hermann Richter
  • Patent number: 10000838
    Abstract: Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: June 19, 2018
    Assignee: Titanium Metals Corporation
    Inventors: Roger Thomas, Yoji Kosaka, Steven James, Paul Garratt
  • Patent number: 9956629
    Abstract: A method and apparatus for forming a fastener for an aircraft. An annealed titanium alloy is provided with about 5.50 to about 6.75 weight percent aluminum, about 3.50 to about 4.50 weight percent vanadium, more than 0.20 weight percent oxygen, and more than 0.30 weight percent iron. Operations are performed to form the fastener for the aircraft from the annealed titanium alloy.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 1, 2018
    Assignee: THE BOEING COMPANY
    Inventor: Robert D. Briggs
  • Patent number: 9920399
    Abstract: A titanium alloy member with high strength and high proof stress not only in the surface but also inside, using a general and inexpensive ?-? type titanium alloy, and a production method therefor, are provided. The production method includes preparing a raw material made of titanium alloy, nitriding the raw material to form a nitrogen-containing raw material by generating a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the raw material, mixing the raw material and the nitrogen-containing raw material to yield a nitrogen-containing mixed material, sintering the nitrogen-containing mixed material to obtain a sintered titanium alloy member by bonding the material together and uniformly diffusing nitrogen in solid solution from the nitrogen-containing raw material to the entire interior portion of the sintered titanium alloy member, and hot plastic forming the sintered titanium alloy member.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 20, 2018
    Assignee: NHK SPRING CO., LTD.
    Inventors: Tohru Shiraishi, Yoshiki Ono, Yuji Araoka
  • Publication number: 20150056006
    Abstract: A welding wire formed of a trace boron titanium base alloy is provided, along with welds formed from the wire and articles comprising one or more of such welds. A method may include forming such a weld or welds from such a welding wire, and may also include non-destructively inspecting titanium alloy articles comprising one or more of such welds using ultrasonic waves to detect internal flaws.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Inventors: Jeffrey J. Bernath, Sesh A. Tamirisakandala
  • Patent number: 8961816
    Abstract: Getter devices based on powders of alloys particularly suitable for hydrogen and nitrogen sorption are described. Such alloys have a composition including zirconium, vanadium, titanium and, optionally, one or more elements selected from iron, chromium, manganese, cobalt, nickel and aluminum.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: February 24, 2015
    Assignee: Saes Getters S.p.A.
    Inventors: Alberto Coda, Alessandro Gallitognotta, Antonio Bonucci, Andrea Conte
  • Patent number: 8960610
    Abstract: A high-lift system of an aircraft has at least one drive unit, at least one load station as well as one or more transmissions for transmitting the drive energy of the drive unit to the at least one load station. One or more of the transmissions are made as transmission shafts from a material containing titanium or include a material containing titanium.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Liebherr-Aerospace Lindenberg GmbH
    Inventors: Reinhold Kleinhans, Stefan Huth, Werner Weiss, Bernd Schievelbusch
  • Publication number: 20140373680
    Abstract: The present disclosure is related to homogeneous alloys comprising titanium and 9% to less than 20% by weight of tungsten, wherein the alloy has a yield strength of at least 120,000 psi and ductility of least 20% elongation; and with further alloying an ultimate tensile strength of at least 200,000 psi and useful ductility of at least 2% elongation; and with the addition of ceramic particulate reinforcements can exhibit an ultimate tensile strength of at least 180,000 psi. Products and metal matrix composites comprising such homogeneous alloys are also disclosed. The metal matrix composites further comprise a discontinuous reinforcement chosen from TiC, TiB2, or TiB, particles or combinations of such particles. Method of making such alloys and composites as well as products made from such alloys and composites are also disclosed.
    Type: Application
    Filed: April 21, 2014
    Publication date: December 25, 2014
    Applicant: Dynamet Technology, Inc.
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Harvey Fisher, Patricia J. Schwartz
  • Publication number: 20140377119
    Abstract: A titanium alloy comprising an elevated level of oxygen is disclosed. The alloy may have 5.5 to 6.75 weight percent of aluminum, 3.5 to 4.5 weight percent of vanadium, 0.21 to 0.30 weight percent of oxygen, and up to 0.40% of weight percent of iron. The alloy may also have a minimum ultimate tensile strength of 130,000 psi, a minimum tensile yield strength of 120,000 psi, and a minimum ductility of 10% elongation. Also disclosed is a method for manufacturing components having the aforementioned alloy.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 25, 2014
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Patrick Connors, David Main, Harvey Fisher
  • Patent number: 8906295
    Abstract: A high strength near-beta titanium alloy including, in weight %, 5.3 to 5.7% aluminum, 4.8 to 5.2% vanadium, 0.7 to 0.9% iron, 4.6 to 5.3% molybdenum, 2.0 to 2.5% chromium, and 0.12 to 0.16% oxygen with balance titanium and incidental impurities is provided. An aviation system component comprising the high strength near-beta titanium alloy, and a method for the manufacture of a titanium alloy for use in high strength, deep hardenability, and excellent ductility applications are also provided.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: December 9, 2014
    Assignee: Titanium Metals Corporation
    Inventor: John Fanning
  • Publication number: 20140356221
    Abstract: Titanium alloy that is formed by subjecting titanium alloy to a treatment containing a hydrogen storing step for making the titanium alloy store hydrogen therein, a solution-treatment step for heating the titanium alloy having the hydrogen stored therein in the hydrogen storage step to apply a solution treatment to the hydrogen-stored titanium alloy, a cooling step for cooling the heated hydrogen-stored titanium alloy to develop martensitic transformation in the hydrogen-stored titanium alloy, a hot rolling step for heating the martensitic-transformed titanium alloy to a temperature which is not more than a predetermined transformation point and hot-rolling the martensitic-transformed titanium, and a dehydrogenation step for dehydrogenating the hot-rolled titanium alloy, thereby bringing the titanium alloy with the superplastic property.
    Type: Application
    Filed: May 22, 2014
    Publication date: December 4, 2014
    Applicants: THE JAPAN RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE, HONDA MOTOR CO., LTD.
    Inventors: Jun NAKAHIGASHI, Kyo TAKAHASHI
  • Patent number: 8876910
    Abstract: A method for selectively dissolving the beta (?) phase of a titanium alloy out of the surface of the alloy, thereby leaving behind a nano-scale porous surface having enhanced bonding properties with either a biological tissue, such as bone, or an adhesive material, such as a polymer or ceramic by immersing the alloy in an ionic aqueous solution containing high levels of hydrogen peroxide and then exposing the alloy to an electrochemical voltage process resulting in the selective dissolution of the beta phase to form a nano-topographic metallic surface.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: November 4, 2014
    Assignee: Syracuse University
    Inventors: Jeremy Gilbert, Zhijun Bai, Nithya Chandrasekaran
  • Publication number: 20140283364
    Abstract: A golf club head alloy includes 7-9.5 wt % of aluminum, 0.5-2 wt % of vanadium, 0.05-0.4 wt % of silicon, less than 0.4 wt % of iron, less than 0.15 wt % of oxygen, less than 0.1 wt % of carbon, less than 0.05 wt % of nitrogen, with the rest being titanium. The golf club head alloy has a density of 4.32-4.35 g/cm3. A method uses the golf club head alloy to produce a sheet material for a club head striking plate. The method includes smelting the golf club head alloy into a titanium alloy rod, and repeatedly heating the titanium alloy rod and forging the titanium alloy rod into a flat blank. The flat blank is hot rolled to form a thin blank, wherein the flat blank has a reduction ratio of 70-75%. The thin blank is cold rolled into an alloy sheet material, and the alloy sheet material is annealed to form a sheet material for a club head striking plate.
    Type: Application
    Filed: July 19, 2013
    Publication date: September 25, 2014
    Inventors: Ming-Jui Chiang, Chun-Fu Chang
  • Publication number: 20140271336
    Abstract: A nanostructured titanium alloy article is provided. The nanostructured alloy includes a developed structure that has been processed from a combination of severe plastic deformation and non-severe plastic deformation type thermomechanical processing steps, with at least 80% of grains in the developed structure having a grain size?1.0 microns.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: CRS HOLDINGS INC.
    Inventors: Gian Colombo, Venkata N. Anumalasetty, Graham McIntosh
  • Patent number: 8771590
    Abstract: The invention refers to the non-ferrous metallurgy, i.e. to the creation of the modern titanium alloys, having the high genericity. Titanium-base alloy contains aluminum, vanadium, molybdenum, chromium, iron, zirconium, oxygen and nitrogen. Herewith the components of the alloy have the following ratio by weight %; aluminun—4.0-6.0; vanadium—4.5-6.0; molybdenum—4.5-6.0; chromium—2.0-3.6; iron—0.2-0.5; zirconium—0.1-less than 0.7; oxygen—0.2 max; nitrogen—0.05 max; titanium—balance. Technical result—creation of the titanium alloy with the required strength and plastic properties. The alloy may be used to produce the wide range of the products including the large-size forgings and die-forgings as well as semiproducts of small section, such as bars and plates up to 75 mm thick.
    Type: Grant
    Filed: May 6, 2006
    Date of Patent: July 8, 2014
    Assignee: VSMPO-AVISMA Corporation
    Inventors: Vladislav Valentinovich, Igor Vasilievich Levin, Igor Jurievich Puzakov
  • Publication number: 20140010701
    Abstract: Alloys based on titanium aluminides, such as ? (TiAl) which may be made through the use of casting or powder metallurgical processes and heat treatments. The alloys contain titanium, 38 to 46 atom % aluminum, and 5 to 10 atom % niobium, and they contain composite lamella structures with B19 phase and ? phase there in a volume ratio of the B19 phase to ? phase 0.05:1 and 20:1.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Applicant: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Fritz Appel, Jonathan Paul, Michael Oehring
  • Patent number: 8597443
    Abstract: A method of forming an article from an ?-? titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the ?-? titanium alloy.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 3, 2013
    Assignee: ATI Properties, Inc.
    Inventors: John J. Hebda, Randall W. Hickman, Ronald A. Graham
  • Patent number: 8597442
    Abstract: A method of forming an article from an ??? titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the ??? titanium alloy.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 3, 2013
    Assignee: ATI Properties, Inc.
    Inventors: John J. Hebda, Randall W. Hickman, Ronald A. Graham
  • Patent number: 8551264
    Abstract: A method of manufacturing fine grain titanium alloy sheets that is suitable for superplastic forming (SPF) is disclosed. In one embodiment, a high strength titanium alloy comprising: Al: about 4.5% to about 5.5%, V: about 3.0% to about 5.0%, Mo: about 0.3% to about 1.8%, Fe: about 0.2% to about 0.8%, O: about 0.12% to about 0.25% with balance titanium is forged and hot rolled to sheet bar, which is then fast-cooled from a temperature higher than beta transus. According to this embodiment, the sheet bar is heated between about 1400° F. to about 1550° F. and rolled to intermediate gage. After reheating to a temperature from about 1400° F. to about 1550° F., hot rolling is performed in a direction perpendicular to the previous rolling direction to minimize anisotropy of mechanical properties. The sheets are then annealed at a temperature between about 1300° F. to about 1550° F. followed by grinding and pickling.
    Type: Grant
    Filed: June 17, 2012
    Date of Patent: October 8, 2013
    Assignee: Titanium Metals Corporation
    Inventors: Yoji Kosaka, Phani Gudipati
  • Publication number: 20130164168
    Abstract: This invention relates to production of ?-, near ?- and ?+?-titanium alloys from secondary raw materials, which are used mainly in manufacture of sheet material, structural parts and structural armor for defense and civil sectors. This alloy is characterized by the following chemical composition, weight percentage: 0.01-6.5Al, 0.01-5.5V, 0.05-2.0Mo, 0.01-1.5Cr, 0.1-2.5Fe, 0.01-0.5Ni, 0.01-0.5Zr, 0.01-0.25Si, oxygen—up to 0.3, carbon—up to 0.1, nitrogen—up to 0.07 and titanium—remainder. Blend is formulated based on the required tensile strength, while content of alloying elements is calculated based on design value of aluminum and molybdenum strength equivalents. The proposed alloy and the art of its manufacture helps to solve a problem of introduction of a wide range of titanium wastes to make a finished product with the required processing and structural behavior.
    Type: Application
    Filed: December 31, 2010
    Publication date: June 27, 2013
    Applicant: VSMPO-AVISMA CORPORATION
    Inventors: Vladislav Valentinovich Tetyukhin, Igor Vasilievich Levin, Igor Jurievich Puzakov, Natalia Jurievna Tarenkova, Natalya Igorevna Levina
  • Patent number: 8349248
    Abstract: A metallic material is made from at least one refractory metal or an alloy based on at least one refractory metal. The metallic material has an oxygen content of about 1,000 to about 30,000 ?g/g and the oxygen is interstitial.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: January 8, 2013
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Jens Trotzschel, Bernd Spaniol
  • Publication number: 20120202085
    Abstract: An alpha-beta Ti alloy having improved mechanical and ballistic properties formed using a low-cost composition is disclosed. In one embodiment, the Ti alloy composition, in weight percent, is 4.2 to 5.4% aluminum, 2.5 to 3.5% vanadium, 0.5 to 0.7% iron, 0.15 to 0.19% oxygen and balance titanium. The exemplary Ti alloy exhibits a tensile yield strength of at least about 120,000 psi and an ultimate tensile strength of at least about 128,000 psi in both longitudinal and transverse directions, a reduction in area of at least about 43%, an elongation of at least about 12% and about a 0.430-inch-thick plate has a V50 ballistic limit of about 1936 fps. The Ti alloy may be manufactured using a combination of recycled and/or virgin materials, thereby providing a low-cost route to the formation of high-quality armor plate for use in military systems.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 9, 2012
    Applicant: TITANIUM METALS CORPORATION
    Inventor: John Fanning
  • Publication number: 20120189487
    Abstract: The present invention provides a ?-type titanium alloy that includes, by mass %, when Al: 2 to 5%, 1) Fe: 2 to 4%, Cr: 6.2 to 11%, and V: 4 to 10%, 2) Fe: 2 to 4%, Cr: 5 to 11%, and Mo: 4 to 10%, or 3) Fe: 2 to 4%, Cr: 5.5 to 11%, and Mo+V (total of Mo and V): 4 to 10% in range, and a balance of substantially Ti. These include Zr added in amounts of 1 to 4 mass %. Furthermore, by making the oxygen equivalent Q 0.15 to 0.30 or leaving the alloy in the work hardened state or by applying both, the tensile strength before aging heat treatment can be further increased.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 26, 2012
    Inventors: Kazuhiro TAKAHASHI, Hideki Fujii, Kenichi Mori
  • Publication number: 20120177532
    Abstract: A method of forming an article from an a-13 titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the ??? titanium alloy.
    Type: Application
    Filed: September 12, 2011
    Publication date: July 12, 2012
    Applicant: ATI Properties, Inc.
    Inventors: John J. Hebda, Randall W. Hickman, Ronald A. Graham
  • Publication number: 20120118444
    Abstract: A titanium alloy having at least 4% by weight aluminum and at least 0.1% by weight oxygen, the alloy also including at least one element selected from vanadium, molybdenum, chromium, and iron. The titanium alloy also includes hafnium in a proportion by weight of at least 0.1%.
    Type: Application
    Filed: June 8, 2010
    Publication date: May 17, 2012
    Applicant: MESSIER-DOWTY SA
    Inventors: Francis Soniak, Jean-Michel De Monicault
  • Publication number: 20120107132
    Abstract: A titanium alloy having high strength, fine grain size, and low cost and a method of manufacturing the same is disclosed. In particular, the inventive alloy offers a strength increase of about 100 MPa over Ti 6-4, with a comparable density and near equivalent ductility. The inventive alloy is particularly useful for a multitude of applications including components of aircraft engines. The Ti alloy comprises, in weight percent, about 6.0 to about 6.7% aluminum, about 1.4 to about 2.0% vanadium, about 1.4 to about 2.0% molybdenum, about 0.20 to about 0.42% silicon, about 0.17 to about 0.23% oxygen, maximum about 0.24% iron, maximum about 0.08% carbon and balance titanium with incidental impurities.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Applicant: TITANIUM METALS CORPORATION
    Inventors: Roger Thomas, Paul Garratt, John Fanning
  • Publication number: 20120076611
    Abstract: An article of manufacture selected from a titanium alloy fastener and a titanium alloy fastener stock including an alpha/beta titanium alloy comprising, in percent by weight: 3.9 to 5.4 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.3 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; titanium; and up to a total of 0.3 of other elements. In certain embodiments, article of manufacture has an ultimate tensile strength of at least 170 ksi (1,172 MPa) and a double shear strength of at least 103 ksi (710.2 MPa). A method of manufacturing a titanium alloy fastener and a titanium alloy fastener stock comprising the alpha/beta alloy is disclosed.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Applicant: ATI Properties, Inc.
    Inventor: David J. Bryan
  • Publication number: 20120076612
    Abstract: An article of manufacture selected from a titanium alloy fastener and a titanium alloy fastener stock including an alpha/beta titanium alloy comprising, in percent by weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.3 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; titanium; and up to a total of 0.3 of other elements. In certain embodiments, article of manufacture has an ultimate tensile strength of at least 170 ksi (1,172 MPa) and a double shear strength of at least 103 ksi (710.2 MPa). A method of manufacturing a titanium alloy fastener and a titanium alloy fastener stock comprising the alpha/beta alloy is disclosed.
    Type: Application
    Filed: October 13, 2010
    Publication date: March 29, 2012
    Inventor: David J. Bryan
  • Publication number: 20120076686
    Abstract: An alpha/beta titanium alloy comprising, in percent by weight based on total alloy weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.30 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; up to 0.015 hydrogen ; titanium; and up to a total of 0.30 of other elements. A non-limiting embodiment of the alpha/beta titanium alloy comprises an aluminum equivalent value in the range of 6.4 to 7.2, exhibits a yield strength in the range of 120 ksi (827.4 MPa) to 155 ksi (1,069 MPa), exhibits an ultimate tensile strength in the range of 130 ksi (896.3 MPa) to 165 ksi (1,138 MPa), and exhibits a ductility in the range of 12 to 30 percent elongation.
    Type: Application
    Filed: May 16, 2011
    Publication date: March 29, 2012
    Applicant: ATI Properties, Inc.
    Inventors: David J. Bryan, John V. Mantione, Thomas D. Bayha
  • Publication number: 20110318220
    Abstract: A cold rolled titanium alloy plate with a sufficient cold workability and excellent superplasticity characteristics is provided. The cold rolled titanium alloy plate consists of, by mass %, Al of 2.0 to 4.0% and V of 4.0 to 9.0%, one element selected from Zr of not more than 2.0% and Sn of not more than 3.0% and the balance being Ti and impurities, a ratio of ?/? is not less than 0.3 and not more than 0.6; where “?” is an area of a phase in the plate and “?” is an area of ? phase in the plate, and the plate has an elongation at break in a tensile test conducted at 800° C. exceeds 200%.
    Type: Application
    Filed: July 11, 2011
    Publication date: December 29, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventor: Atsuhiko KURODA
  • Publication number: 20110268602
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian, Herng-Jeng Jou
  • Patent number: 8048240
    Abstract: A method of forming an article from an ??? titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the ??? titanium alloy.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 1, 2011
    Assignee: ATI Properties, Inc.
    Inventors: John J. Hebda, Randall W. Hickman, Ronald A. Graham
  • Publication number: 20110091350
    Abstract: Disclosed herein are reactors and methods for forming alloys based on titanium-aluminium or alloys based on titanium-aluminium inter-metallic compounds. The reactor comprises a first section having an inlet through which precursor material comprising titanium subchlorides and aluminium can be introduced. The first section is heatable to a first temperature at which reactions between the titanium subchlorides and aluminium can occur, and further comprises a gas outlet via which any gaseous by-product formed can be removed. The reactor also comprises a second section which can be heated to a second temperature at which reactions of material transferred from the first section can occur to form the titanium-aluminium based alloy, a gas driver adapted in use to cause any gaseous by-product formed in the reactions in the second section to move in a direction towards the first section, and an intermediate section between the first and second sections.
    Type: Application
    Filed: April 21, 2009
    Publication date: April 21, 2011
    Inventor: Jawad Haidar
  • Patent number: 7910052
    Abstract: A near-beta titanium alloy having higher strength than ‘Ti-17’ is provided, while suppressing cost increase. Such a near-&bgr; titanium alloy consists of, in weight percent, 0.5-7% of V, 0.5-2.5% of Fe, 0.5-5% of Mo, 0.5-5% of Cr, 3-7% of Al, and the balance of Ti and impurities. When the weight % of V content is expressed as XV, the weight % of Fe content is expressed as XFe, the weight % of Mo content is expressed as XMo, and the weight % of Cr content is expressed as XCr; the value of XV+2.95XFe+1.5 XMo+1.65XCr is 9-17%.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: March 22, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Satoshi Matsumoto
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20100329919
    Abstract: A titanium base alloy powder having lesser amounts of aluminum and vanadium with an alkali or alkaline earth metal being present in an amount of less than about 200 ppm. The alloy powder is neither spherical nor angular and flake shaped. 6/4 alloy is specifically disclosed having a packing fraction or tap density between 4 and 11%, as is a method for making the various alloys.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Inventors: Lance E. Jacobsen, Adam John Benish
  • Publication number: 20100322817
    Abstract: It is an object of the invention to provide a titanium alloy material that exerts excellent corrosion resistance at a low cost in non-oxidizing environment such as a sulfuric acid environment, high temperature neutral chloride environment, or high temperature neutral chloride environment containing fluoride, a structural member using the titanium alloy material, and a container for radioactive waste using the titanium alloy material. Disclosed are a titanium alloy containing ruthenium (Ru): 0.005-0.10 mass %, palladium (Pd): 0.005-0.10 mass %, nickel (Ni): 0.01-2.0 mass %, chromium (Cr): 0.01-2.0 mass %, vanadium (V): 0.01-2.0 mass %, with the remainder including titanium (Ti) and inevitable impurities, and a structural member and a container for radioactive waste using the titanium alloy material.
    Type: Application
    Filed: April 30, 2010
    Publication date: December 23, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinji SAKASHITA, Kyosuke FUJISAWA
  • Publication number: 20100316525
    Abstract: A hot-forged TiAl-based alloy having excellent oxidation resistance and high strength at high temperatures, and a process for producing such an alloy. A TiAl-based alloy comprising Al: (40+a) atomic % and Nb: b atomic %, with the remainder being Ti and unavoidable impurities, wherein a and b satisfy formulas (1) and (2) below. 0?a?2??(1) 3+a?b?7+a??(2) Also, a TiAl-based alloy comprising Al: (40+a) atomic % and Nb: b atomic %, and further comprising one or more elements selected from the group consisting of V: c atomic %, Cr: d atomic % and Mo: e atomic %, with the remainder being Ti and unavoidable impurities, wherein a to e satisfy formulas (3) to (9) shown below. 0?a?2??(3) 3+a?b+1.0c+1.8d+3.
    Type: Application
    Filed: January 30, 2009
    Publication date: December 16, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Kentaro Shindo, Toshimitsu Tetsui, Masao Takeyama
  • Publication number: 20100290944
    Abstract: A titanium alloy for making a golf club head includes aluminum in an amount of greater than 8.0 wt % and not more than 10.0 wt %, molybdenum in an amount of greater than 0 wt % and not more than 2 wt %, vanadium in an amount of greater than 0 wt % and not more than 2 wt %, silicon in an amount of greater than 0 wt % and not more than 2 wt %, and a balance of titanium, based on a total weight of the alloy. A golf club head made by the titanium alloy is also disclosed.
    Type: Application
    Filed: June 29, 2010
    Publication date: November 18, 2010
    Inventors: Chon-Chen Lin, Shun-Fu Hu, Yen-Chi Hsu
  • Patent number: 7785429
    Abstract: The present disclosure describes methods of heat treating Ti-based alloys and various improvements that can be realized using such heat treatments. In one exemplary implementation, the invention provides a method of forming a metal member that involves forming an alloy into a utile shape and cooling the alloy from a first temperature above a beta transus temperature of the alloy to a second temperature below the beta transus temperature at a cooling rate of no more than about 30° F./minute. If so desired, the alloy my be treated for a period of about 1-12 hours at about 700-1100° F. Titanium alloys treated according to aspects of the invention may have higher tensile strengths and higher fracture toughness than conventional wrought, mill-annealed Ti 64 alloy.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: August 31, 2010
    Assignee: The Boeing Company
    Inventor: Robert D. Briggs
  • Publication number: 20100074795
    Abstract: The present invention provides a ?-type titanium alloy keeping the content of the relatively expensive ?-stabilizing elements such as V or Mo down to a total of 10 mass % or less and reducing the effects of composition segregation of Fe and Cr and thereby able to keep the Young's modulus and density relatively low. The ?-type titanium alloy of the present invention comprises, by mass %, when Al: 2 to 5%, 1) Fe: 2 to 4%, Cr: 6.2 to 11%, and V: 4 to 10%, 2) Fe: 2 to 4%, Cr: 5 to 11%, and Mo: 4 to 10%, or 3) Fe: 2 to 4%, Cr: 5.5 to 11%, and Mo+V (total of Mo and V): 4 to 10% in range, and a balance of substantially Ti. These include Zr added in amounts of 1 to 4 mass %. Furthermore, by making the oxygen equivalent Q 0.15 to 0.30 or leaving the alloy in the work hardened state or by applying both, the tensile strength before aging heat treatment can be further increased.
    Type: Application
    Filed: October 24, 2007
    Publication date: March 25, 2010
    Inventors: Kazuhiro Takahashi, Hideki Fujii, Kenichi Mori
  • Patent number: 7670445
    Abstract: A titanium alloy contains vanadium, from 10 to 20% by weight; aluminum, from 0.2 to 10% by weight; and a balance essentially titanium, and the alloy has a microstructure including a martensite phase. Alternatively, the titanium alloy contains vanadium, from 10 to 20% by weight; aluminum, from 0.2 to 10% by weight; and a balance essentially titanium, and the alloy has a microstructure including a ? phase capable of transforming into a martensite phase by cold working or cooling under a room temperature.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 2, 2010
    Assignees: Nissan Motor Co., Ltd., Tohoku University
    Inventors: Fumihiko Gejima, Takuro Yamaguchi, Shuji Hanada, Hiroaki Matsumoto, Sadao Watanabe
  • Publication number: 20100047076
    Abstract: A beta titanium alloy comprises 25 wt % vanadium, 15 wt % chromium, 2 wt % aluminium, up to 0.15 wt % oxygen, 0.1 to 0.3 wt % carbon and the balance titanium plus incidental impurities. The carbon is present in the form of titanium carbide precipitates distributed throughout the beta titanium alloy matrix, the titanium carbide precipitates refine the grain size of the beta titanium alloy matrix and remove oxygen from the beta titanium alloy matrix to reduce precipitation of alpha titanium in the beta titanium alloy matrix to increase the ductility of the beta titanium alloy. The alloy is useful for gas turbine engine compressor blades (10), compressor vanes, compressor casings etc.
    Type: Application
    Filed: January 8, 2009
    Publication date: February 25, 2010
    Inventors: Yue G. Li, Paul A. Blenkinsop
  • Publication number: 20090169416
    Abstract: A (?+?) type Ti alloy contains 7 wt % to 8.5 wt % of Al, 0.5 wt % to 1.5 wt % of V, 1 wt % to 3 wt % of Mo, 1 wt % to 3 wt % Cr, 0.3 wt % to 1 wt % of Fe, 0.05 wt % to 0.1 wt % of rare earth element, Ti, and unavoidable impurities. The Ti alloy can be produced by varmelting, forging, rolling and casting pressure processing or powder metallurgy. The total amount of impurities of C, H, O, and N is not higher than 0.25 wt %. V, Mo, and rare earth elements are added in forms of Al—V intermediate alloy, Al—Mo intermediate alloy, and La—Ce mixed rare earth, respectively. The room-temperature tensile strength and yield strength of the Ti alloy are higher than those of Ti—6Al—4V by more than 30%, the high-temperature strength is superior to that of Ti—6Al—4V, density and cost are lower than those of Ti—6Al—4V.
    Type: Application
    Filed: October 24, 2007
    Publication date: July 2, 2009
    Inventor: Shi-Qiong Li
  • Publication number: 20090074606
    Abstract: The present invention relates to a low density titanium alloy, containing: 7.1 to 10.0 mass % of Al; 0.1 to 3.0 mass % of Fe; 0.01 to 0.3 mass % of O; 0.5 mass % or less of N; 0.5 mass % or less of C; and a remainder being Ti and inevitable impurities; a golf club head using the alloy; and a production method for a low density titanium alloy part using the alloy. The alloy of the invention may further contain 0.01 to 2.0 mass % of V. The alloy of the invention has higher specific strength as compared to the Ti-6Al-4V alloy, is excellent in hot workability, and is reduced in cost.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHA
    Inventors: Michiharu Ogawa, Toshiharu Noda
  • Patent number: 7479194
    Abstract: A damage tolerant microstructure for a lamellar alloy, such as a lamellar ?TiAl alloy, is provided in accordance with the present invention. The alloy comprises a matrix and a plurality of grains or lamellar colonies, a portion of which exhibit a nonplanar morphology within said matrix. Each of the lamellar colonies contains a multitude of lamella with irregularly repeating order. The ?TiAl platelets have a triangular (octahedral) unit cell and stack with ? twins. The ?2Ti3Al platelets are irregularly interspersed. The unit cell for ?2Ti3Al is hexagonal. Each of the layers has a curved, nonplanar structure for resisting crack formation and growth.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: January 20, 2009
    Assignee: United Technologies Corporation
    Inventor: Daniel P. DeLuca
  • Publication number: 20080304998
    Abstract: A method of hardening the outer surface of a titanium or titanium alloy substrate under standard atmospheric conditions. The method comprises focusing an electromagnetic beam from a laser generating apparatus, absent the disposition of a chemical compound, onto at least a portion of the substrate to heat it to a point below the melting point of the substrate. The treated substrate has a substantial increased harness and durability compared to an untreated surface of titanium or titanium alloy.
    Type: Application
    Filed: June 5, 2007
    Publication date: December 11, 2008
    Inventor: Christopher R. Goodman
  • Publication number: 20080210345
    Abstract: The invention refers to the non-ferrous metallurgy, i.e. to the creation of the modern titanium alloys, having the high genericity. Titanium-base alloy contains aluminum, vanadium, molybdenum, chromium, iron, zirconium, oxygen and nitrogen. Herewith the components of the alloy have the following ratio by weight %; aluminun—4.0-6.0; vanadium—4.5-6.0; molybdenum—4.5-6.0; chromium—2.0-3.6; iron—0.2-0.5; zirconium—0.1-less than 0.7; oxygen—0.2 max; nitrogen—0.05 max; titanium—balance. Technical result—creation of the titanium alloy with the required strength and plastic properties. The alloy may be used to produce the wide range of the products including the large-size forgings and die-forgings as well as semiproducts of small section, such as bars and plates up to 75 mm thick.
    Type: Application
    Filed: May 6, 2006
    Publication date: September 4, 2008
    Inventors: Vladislav Valentinovich Tetyukhin, Igor Vasilievich Levin, Igor Jurievich Puzakov