Titanium, Zirconium, Or Hafnium Containing Patents (Class 420/426)
  • Patent number: 11198927
    Abstract: The present invention relates to Nb-based refractory alloys that are less expensive and less dense than some of the current Nb-based refractory alloys, have similar or better ductility, strength specific yield strength and oxidation resistance when compared to current Nb-based refractory alloys. Such Nb-based refractory alloys typically continue to be compatible with current coating systems for Nb-based refractory alloys. Such Nb-based refractory alloys are disclosed herein.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: December 14, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Kevin J. Chaput, Oleg M. Senkov, Todd M. Butler
  • Publication number: 20150125338
    Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: March 12, 2012
    Publication date: May 7, 2015
    Inventors: Heather Murdoch, Christopher A. Schuh
  • Publication number: 20150004337
    Abstract: The present invention provides a cold sprayed layer of tungsten, molybdenum, titanium, zirconium, or of mixtures of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of tungsten, molybdenum, titanium, zirconium with other metals, wherein the cold spayed layer has an oxygen content of below 1,000 ppm.
    Type: Application
    Filed: July 4, 2014
    Publication date: January 1, 2015
    Inventors: STEFAN ZIMMERMANN, UWE PAPP, HEINRICH KREYE, TOBIAS SCHMIDT
  • Patent number: 8778262
    Abstract: One aspect is an alloy consisting of niobium, zirconium, tantalum, and tungsten. The alloy is formed with a melt metallurgical route such that all four metals solidify as a homogeneous alloy having no inclusions more than 10 ?m in size.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: July 15, 2014
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Herwig Schiefer, Christoph Vogt, Heiko Specht, Jens Troetzschel
  • Publication number: 20130177470
    Abstract: One aspect is an alloy consisting of niobium, zirconium, tantalum, and tungsten. The alloy is formed with a melt metallurgical route such that all four metals solidify as a homogeneous alloy having no inclusions more than 10 ?m in size.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 11, 2013
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventor: Heraeus Precious Metals GmbH & Co. KG
  • Patent number: 8349248
    Abstract: A metallic material is made from at least one refractory metal or an alloy based on at least one refractory metal. The metallic material has an oxygen content of about 1,000 to about 30,000 ?g/g and the oxygen is interstitial.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: January 8, 2013
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Jens Trotzschel, Bernd Spaniol
  • Publication number: 20120231048
    Abstract: The present invention relates to a medical device or implant made at least in part of a high-strength, low-modulus metal alloy comprising niobium, tantalum, and at least one element selected from the group consisting of zirconium, tungsten, and molybdenum. The medical devices according to the present invention provide superior characteristics with regard to biocompatibility, radio-opacity and MRI compatibility.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: HERAEUS PRECIOUS METALS GMBH & CO. KG
    Inventors: Jürgen WACHTER, Jens TRÖTZSCHEL, Randolf VON OEPEN
  • Publication number: 20120035059
    Abstract: The invention relates to an assembly (1, 35, 71) of metal elements constituting a precursor for a superconductor. The assembly comprises at least one conductor element (5, 41, 73) adapted to provide a superconducting filament in the finished superconductor, and at least one doping element (7, 43, 75) providing a doping source for doping the conductor element. The invention also relates to a method suitable for producing a superconductor.
    Type: Application
    Filed: December 22, 2009
    Publication date: February 9, 2012
    Applicant: LUVATA ESPOO OY
    Inventor: Jukka Somerkoski
  • Patent number: 7994692
    Abstract: A highly heat resistant wire based on niobium or tantalum or niobium tantalum alloy for single-side socket lamps is enriched, according to the invention, with phosphorus and converted into an annealed state. The wire exhibits a yield strength Rp 0.2 of at least 200 MPa or a tensile strength Rm of at least 300 MPa. For the production of a frame for single-side socket lamps, a metal based on niobium or tantalum or an alloy thereof is doped with phosphorus and the doped metal is cold shaped into a wire, this wire is annealed and formed into a frame. This frame is used for the simultaneous current supply and holding of a burner in a single-side socket lamp.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 9, 2011
    Assignee: W. C. Heraeus GmbH
    Inventor: Bernd Spaniol
  • Publication number: 20110182766
    Abstract: A first multi phase niobium silicide alloy composition consists essentially of: from 15 to 24 at % of Si; from 0 to 25 at % of one or more sp outer electron configuration element which is not Si; from 1 to 26 at % of one or more sd outer electron configuration element which is not Nb; and a balance of Nb, interstitials and impurities. This alloy may be used to increase the creep resistance of an article, for example a gas turbine engine blade. A second multi phase niobium silicide alloy composition consists essentially of: from 1 to 24 at % of Si; from 0 to 34 at % of one or more sp outer electron configuration element which is not Si; from 19.5 to 48.5 at % of one or more sd outer electron configuration element which is not Nb or Cr; from 0.5 to 9 at % Cr; and a balance of Nb, interstitials and impurities. This alloy may be used to increase the creep resistance and/or to increase the oxidation resistance of an article, for example a gas turbine engine blade.
    Type: Application
    Filed: June 17, 2009
    Publication date: July 28, 2011
    Inventor: Panos Tsakiropoulos
  • Patent number: 7938854
    Abstract: Medical devices, such as stents, and methods of making the devices are disclosed. In some embodiments, a medical device includes an alloy having tantalum, tungsten, zirconium and niobium. For example, the alloy can include from about 20% to about 40% by weight of tantalum, from about 0.5% to about 9% by weight of tungsten, and from about 0.5% to about 10% by weight of zirconium.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 10, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jonathan S. Stinson, Barry O'Brien, Steven E. Walak
  • Publication number: 20100228336
    Abstract: Medical devices, such as stents, and methods of making the devices are disclosed. In some embodiments, a medical device includes an alloy having tantalum, tungsten, zirconium and niobium. For example, the alloy can include from about 20% to about 40% by weight of tantalum, from about 0.5% to about 9% by weight of tungsten, and from about 0.5% to about 10% by weight of zirconium.
    Type: Application
    Filed: May 20, 2010
    Publication date: September 9, 2010
    Inventors: Jonathan S. Stinson, Barry O'Brien, Steven E. Walak
  • Patent number: 7727273
    Abstract: Medical devices, such as stents, and methods of making the devices are disclosed. In some embodiments, a medical device includes an alloy having tantalum, tungsten, zirconium and niobium. For example, the alloy can include from about 20% to about 40% by weight of tantalum, from about 0.5% to about 9% by weight of tungsten, and from about 0.5% to about 10% by weight of zirconium.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: June 1, 2010
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: Jonathan S. Stinson, Barry O'Brien, Steven E. Walak
  • Patent number: 7704335
    Abstract: A refractory composition is described, containing niobium, silicon, titanium, and at least one of rhenium and ruthenium. The amount of silicon in the composition is at least about 9 atom %, and the amount of titanium present is less than about 26 atom %, based on total atomic percent. Turbine engine components formed from such a composition are also disclosed.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: April 27, 2010
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Laurent Cretegny, Pazhayannur Ramanathan Subramanian, Melvin Robert Jackson
  • Publication number: 20100092333
    Abstract: A hydrogen-permeable Nb—Ti—Ni alloy having a composition represented by Nb100-x-yTixNiy, wherein 10?x?60, and 10?y?50 by atomic %, with an oxygen content of 1000 ppm or less in an as-cast state, which comprises (a) a hydrogen-permeable primary phase containing 70 atomic % or more of Nb and 10 atomic % or less of Ni, and (b) a eutectic phase having a particle phase comprising Nb and Ti as main components with a small Ni content and having an average particle size of about 5 ?m or less, which is dispersed in a matrix phase comprising 60 atomic % or more in total of Ni and Ti and having hydrogen embrittlement resistance, the alloy having a structure substantially free from an intermetallic compound phase.
    Type: Application
    Filed: March 7, 2008
    Publication date: April 15, 2010
    Applicant: HITACHI METALS, LTD
    Inventors: Kazuhiro Yamamura, Masahiro Tobise, Toshihiro Uehara, Akihiro Toji
  • Publication number: 20100086434
    Abstract: The present invention relates to a niobium alloy for capacitors comprising as an alloy component from 0.01 to 10 atom of at least one element selected from the group consisting of the elements belonging to Groups 2 to 16 of the periodic table and further comprising diniobium mononitride crystals of from 0.1 to 70 mass %, wherein a powder of the niobium alloy has an average particle size of 0.05 to 5 ?m and a BET specific surface area of 0.5 to 40 m2/g, a granulated product of the niobium alloy having an average particle size of 10 to 500 ?m, a sintered body of the powder of the niobium alloy or granulated product thereof, a capacitor and a producing method thereof using the sintered body. A niobium capacitor using the powder of the niobium alloy of the present invention or a granulated product thereof has high capacitance and small leakage current value and is excellent in high-temperature property and heat resistance property.
    Type: Application
    Filed: December 3, 2009
    Publication date: April 8, 2010
    Applicant: SHOWA DENKO K.K
    Inventors: Kazuhiro OMORI, Kazumi Naito
  • Patent number: 7682473
    Abstract: A method for forming a finished implant prosthesis which comprises: (a) providing an unforged alloy consisting essentially of Ti(x %)Al(y %)Nb wherein x is between about 45 to 54% by atoms, y is between about 15 to 25% by atoms and the balance is niobium; (b) forging the alloy at an elevated temperature below a melting point of the alloy in a shape which is an implant preform; and (c) machining the implant preform to provide a machined implant; and (d) finishing the exposed surfaces of the implant so as to provide the exposed surfaces with a finish which provides biocompatibility, to thereby form the implant prosthesis.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: March 23, 2010
    Assignee: Board of Trustees of Michigan State University
    Inventor: Carl J. Boehlert
  • Patent number: 7632455
    Abstract: Niobium alloy compositions and systems comprising the niobium alloy composition are provided. The niobium alloy compositions comprises between about 10 atomic % and about 30 atomic % of titanium, between about 7 atomic % and about 20 atomic % of silicon, between about 5 atomic % and about 20 atomic % of molybdenum, between about 2 atomic % and about 10 atomic % of chromium, between about 2 atomic % and about 10 atomic % of aluminum, between about 3 atomic % and about 7 atomic % of zirconium, between about 1 atomic % and about 7 atomic % of carbon, between about 1 atomic % and about 6 atomic % of hafnium, and niobium.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: December 15, 2009
    Assignee: UES, Inc.
    Inventors: Sarath Menon, Madan Mendiratta
  • Patent number: 7597842
    Abstract: An Nb—Ti—Co alloy having both good hydrogen permeability and good hydrogen embrittlement resistance comprises one of Fe, Cu or Mn as a fourth element, incorporating from 1 to 14 mol %. The content of Mn, if any, is preferably from 1 to 9 mol %. The desired hydrogen permeability can be attained by the (Nb, Ti) phase and the desired hydrogen embrittlement resistance can be attained by the CoTi phase, making is possible to obtain excellent hydrogen permeability and excellent hydrogen embrittlement resistance. None of Fe, Cu or Mn can impair these properties. Fe, Cu or Mn can replace some of the Co elements. Fe, Cu or Mn enhances the workability of the alloy.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 6, 2009
    Assignees: The Japan Steel Works, Ltd., National University Corporation Kitami Institute of Technology
    Inventors: Kiyoshi Aoki, Kazuhiro Ishikawa, Tsuyoshi Sasaki, Toshiki Kabutomori
  • Patent number: 7514036
    Abstract: A (Nb, Ti) phase in an Nb—Ti—Co alloy is composed of a granular structure. The Nb—Ti—Co alloy is preferably subjected to heat treatment at 800° C. or more so that the eutectic structure in the casted state can be changed to a granular structure. The Nb—Ti—Co alloy used there is preferably NbxTi(100-x-y)Coy, (x?70, 20?y?50 (mol %)). By properly predetermining the heating temperature and time, the resulting alloy exhibits improved hydrogen permeability in combination with a good hydrogen embrittlement resistance characteristic in the CoTi phase, making it possible to provide a practical hydrogen permeable membrane having an advantageously high performance.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 7, 2009
    Assignees: The Japan Steel Works, Ltd., National University Corporation Kitami Institute of Technology
    Inventors: Kiyoshi Aoki, Kazuhiro Ishikawa, Tsuyoshi Sasaki, Toshiki Kabutomori
  • Patent number: 7325293
    Abstract: A multi-filament superconducting wire in which the filaments comprise zirconia-stabilized ultra-fine grain Nb3Sn. The superconducting wire is formed by wire-drawing a preform comprising a metallic matrix and at least one niobium alloy rod having zirconium and oxygen in solid solution and heat treating the drawn wire in the presence of tin to yield at least one continuous filament comprising ultra-fine grain Nb3Sn having semi-coherent ZrO2 precipitates disposed therein. The ZrO2 precipitates serve to stabilize the ultra-fine grain microstructure of the Nb3Sn at temperatures up to 1100° C. and allows Nb3Sn to maintain the ultra-fine grain microstructure when heat treated at temperatures that are greater than those previously used. By using higher temperatures to form Nb3Sn, the time required for heat treatment can be significantly reduced.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, Theodore McCall Evenden, Judson Sloan Marte, Thomas Robert Raber
  • Patent number: 7219412
    Abstract: The invention includes superconducting titanium-containing compositions having less than 200 ppm, by weight, of a combined total of interstitial materials selected from the group consisting of nitrogen, oxygen, carbon and hydrogen. The invention also includes methods of forming superconducting titanium-containing superconducting compositions containing less than 100 ppm, by weight, of a combined total of interstitial materials selected from the group consisting of nitrogen, oxygen, carbon and hydrogen.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: May 22, 2007
    Assignee: Honeywell International Inc.
    Inventors: Yun Xu, Stephen P. Turner, Mathew S. Cooper, Wei Guo, David B. Love, Edward Cawley
  • Patent number: 6913655
    Abstract: A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: July 5, 2005
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Patent number: 6855652
    Abstract: A structurally reinforced panel and a method of forming the panel are disclosed. The reinforcement includes a fibrous woven material in a bondable plastic matrix.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: February 15, 2005
    Assignee: L&L Products, Inc.
    Inventors: Christopher Hable, Michael J. Czaplicki
  • Patent number: 6767653
    Abstract: A turbine component comprises a substrate; and a crystalline coating disposed on a surface of the substrate, wherein the crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating. A method of making a turbine component comprises disposing a coating composition on a substrate, wherein the coating composition comprises tin and yttrium in an amount greater than or equal to about 0.1 atomic percent based upon the total coating composition. A crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: July 27, 2004
    Assignee: General Electric Company
    Inventors: Bernard Bewlay, Melvin Jackson, Ji-Cheng Zhao
  • Publication number: 20040062676
    Abstract: Alloys for use as stents which consist essentially of niobium (Nb), tantalum (Ta) and zirconium (Zr).
    Type: Application
    Filed: May 28, 2003
    Publication date: April 1, 2004
    Applicant: W.C. HERAEUS GmbH & CO. KG
    Inventors: Jens Trotzschel, Jurgen Wachter, Frank Kruger, Matthias Frericks
  • Publication number: 20030066578
    Abstract: A niobium-silicide refractory metal intermetallic composite adapted for use in a turbine component. The niobium-silicide refractory metal intermetallic composite comprises: between about 19 atomic percent and about 24 atomic percent titanium; between about 1 atomic percent and about 5 atomic percent hafnium; between about 16 atomic percent and about 22 atomic percent silicon; between about 7 atomic percent and about 14 atomic percent chromium; from about 1.5 atomic percent to about 3 atomic percent tin; and a balance of niobium. The niobium silicide refractory intermetallic composite contains a tetragonal phase, which comprises a volume fraction from 0.35 to 0.5 of the niobium silicide refractory intermetallic composite, and a hexagonal M3Si5 silicide phase (wherein M is at least one of Nb and Hf) which comprises a volume fraction comprises less than 0.25 of the niobium silicide refractory intermetallic composite.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Applicant: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Patent number: 6521356
    Abstract: An environmentally resistant coating for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system having turbine components comprising at least one Nb-based RMIC, the environmentally resistant coating disposed on a surface of the Nb-based RMIC, and a thermal barrier coating disposed on an outer surface of the environmentally resistant coating. Methods of making a turbine component having the environmentally resistant coating and coating a Nb-based RMIC substrate with the environmentally resistant coating are also disclosed.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: February 18, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6447623
    Abstract: A two-phase niobium-based silicide composite exhibits creep resistance at temperatures equal to or greater than 1150° C. The niobium-based silicide composite comprises at least silicon (Si) hafnium (Hf), titanium (Ti), and niobium (Nb). The concentration ratio of Nb:(Hf+Ti) is equal to or greater than about 1.4.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: September 10, 2002
    Assignees: General Electric Company, Brown University Research Foundation
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Clyde Leonard Briant
  • Patent number: 6428910
    Abstract: A refractory metal intermetallic composition comprising titanium (Ti), hafnium (Hf), silicon (Si), aluminum (Al), chromium (Cr), germanium (Ge), tin (Sn), iron (Fe), and a balance of niobium (Nb) for use in composite structures having applications in turbine components.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 6, 2002
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao, Reed Roeder Corderman
  • Patent number: 6419765
    Abstract: A niobium-silicide refractory metal intermetallic composite having enhanced material characteristics, such as oxidation resistance, creep resistance, and toughness, and turbine components made therefrom.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: July 16, 2002
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Patent number: 6409848
    Abstract: A niobium-based silicide composite exhibiting creep resistance at temperatures equal to or greater than 1150° C. The niobium-based silicide composite comprises at least silicon (Si), hafnium (Hf), titanium (Ti), and niobium (Nb). A concentration ratio of Nb:(Hf+Ti) is equal to or greater than about 1.4. The niobium-based silicide composite exhibits a creep rate less than about 5×10−8s−1 at temperatures up to about 1200° C. and at a stress of about 200 MPa.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: June 25, 2002
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Melvin Robert Jackson
  • Publication number: 20020064476
    Abstract: A niobium powder comprising at least one element selected from the group consisting of chromium, molybdenum, tungsten, boron, aluminum, gallium, indium, thallium, cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, bismuth, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium; a sintered body of the niobium powder; and a capacitor comprising a sintered body as one electrode, a dielectric material formed on the surface of the sintered body, and counter electrode provided on the dielectric material.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 30, 2002
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Patent number: 6238491
    Abstract: The present invention is a medical implant or device fabricated, in any manner, from a niobium (Nb)—titanium (Ti)—zirconium (Zr)—Molybdenum (Mo) alloy (NbTiZrMo alloy). The implant or device has components at least partially fabricated from a metal alloy comprising a) between about 29 and 70 weight percent Nb; b) between about 10 and 46 weight percent Zr; c) between about 3 and 15 weight percent Mo; and a balance of titanium. The inventive alloy provides for a uniform beta structure which is corrosion resistant, and can be readily processed to develop high-strength and low-modulus, with the ability for conversion oxidation or nitridization surface hardening of the medical implant or device.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: May 29, 2001
    Assignee: DaviTech, Inc.
    Inventors: James A. Davidson, Lee H. Tuneberg
  • Patent number: 5942055
    Abstract: A silicide-based composite toughened with a niobium-based metallic phase and further containing a silicon-modified chromium-based Laves-type phase to promote oxidation resistance. The silicide-based composite generally contains one or more silicide intermetallic phases, each of which is an M.sub.5 Si.sub.3 -type or an M.sub.3 Si-type phase where M is at least Nb+Ti+Hf. The niobium-based metallic phase contains at least niobium, titanium, hafnium, chromium, aluminum and silicon. The silicon-modified Laves-type phase is of the Cr.sub.2 M type where M is Nb+Ti+Hf. The silicide-based composite is formulated to contain greater than 25 volume percent of the niobium-based metallic phase, the balance being the silicide intermetallic phases and the silicon-modified Laves-type phase.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: August 24, 1999
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 5932033
    Abstract: A silicide-based composite toughened with a niobium-based metallic phase, and further containing a phase that significantly improves the oxidation resistance of the composite. The oxidation-resistant phase is a chromium-based Laves-type phase modified with silicon, which has been shown to greatly increase the oxidation resistance of silicide-based composites at temperatures of up to 1200 C. The oxidation-resistant silicide-based composite generally contains one or more silicide intermetallic phases, each of which is an M.sub.5 Si.sub.3 -type phase where M is Nb+Ti+Hf. The niobium-based metallic phase contains niobium, titanium, hafnium, chromium, aluminum and silicon. The silicon-modified Laves-type phase is of the Cr.sub.2 M type where M is Nb+Ti+Hf. A silicide-based composite contains, in atomic percent, about 12-25% titanium, about 6-12% hafnium, about 15-25% chromium, about 1-8% aluminum and about 12-20% silicon, with the balance essentially niobium.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: August 3, 1999
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 5833773
    Abstract: Nb-base alloys that include Ti, Hf, Cr, Al and Si as alloy constituents have a microstructure that includes a metallic solid solution phase and a mixture of intermetallic silicide phases. The metal silicide phases include an M.sub.3 Si silicide, where M comprises Nb, Ti or Hf, and an M.sub.5 (Si, Al).sub.3 silicide, where M comprises Nb, Ti or Hf. These alloys have mechanical properties such as low temperature fracture toughness, high temperature fracture strength, high temperature stress rupture strength and high temperature creep resistance, that meet or exceed those of certain Ni-base superalloys.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: November 10, 1998
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Melvin Robert Jackson
  • Patent number: 5741376
    Abstract: High temperature melting niobium-titanium-chromium-aluminum-silicon alloys having a wide range of desirable microstructures, excellent microstructural and morphological properties, superior oxidation resistance at temperatures from 1000.degree. C. to 1500.degree. C., and good low temperature toughness and good high temperature strength and creep resistance are described which comprise generally two- or three-or four-phase alloys systems having compositions (31-41)Nb-(26-34)Ti-(8-10)Cr-(6-12)Al-(9-18)Si. Two-phase beta+Nb.sub.5 Si.sub.3 -base alloys can be obtained by increasing the Nb/Ti ratio, while three-phase beta+Nb.sub.5 Si.sub.3 -base+Ti.sub.5 Si.sub.3 -base alloys or four-phase beta+Nb.sub.5 Si.sub.3 -base+Ti.sub.5 Si.sub.3 -base +Ti.sub.3 Si-base alloys can be obtained by decreasing the Nb/Ti ratio.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: April 21, 1998
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventors: P. R. Subramanian, Madan G. Mendiratta, Dennis M. Dimiduk
  • Patent number: 5721061
    Abstract: Si-Fe-Cr base coating alloys that significantly promote the oxidation resistance of niobium-base alloys and intermetallic materials when deposited and reaction bonded to the niobium-base material. The coating alloys are deposited and then reaction bonded to a niobium-base material to yield an oxidation-resistant coating comprising an interaction layer containing at least one oxidation-resistant Si-Fe-Nb-Cr intermetallic phase.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: February 24, 1998
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Ann Melinda Ritter
  • Patent number: 5580431
    Abstract: A composite wire microelectrode for making electro-chemical measurements, and method of making same. The microelectrode includes an inner conductive sensing wire and an outer tube that is oxidized to form a dielectric, self-healing oxide layer around the sensing wire.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: December 3, 1996
    Assignee: Associated Universities, Inc.
    Inventors: Hugh S. Isaacs, Antonio J. Aldykiewicz, Jr.
  • Patent number: 5522945
    Abstract: A method for making triniobium tin superconductor with improved critical current density is disclosed where an annealed niobium-base substrate is passed through a tin alloy bath containing tin, copper, and bismuth, to coat the substrate with tin and then annealing the coated substrate to form triniobium tin superconductor. A tin alloy bath containing up to twenty weight percent copper and up to one weight percent bismuth is disclosed.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: June 4, 1996
    Assignee: General Electric Company
    Inventors: Melissa L. Murray, Mark G. Benz, Bruce A. Knudsen
  • Patent number: 5486242
    Abstract: Tantalum-based and niobium-based alloys made up entirely of a crystalline medium exhibiting a substantially continuous centered cubic structure, comprising an intermetallic compound of formula Ti.sub.2 AlMo, and having the following compositions on an atomic basis:______________________________________ Ta + Cr 20 to 35% Cr 0 to 5% Ti 20 to 40% Al 8 to 20% Mo 8 to 20%, ______________________________________wherein the concentration of Ta is less than 30%; and ______________________________________ Nb + Cr 20 to 60% Cr 0 to 5% Ti 20 to 40% Al 8 to 20% Mo 8 to 20%. ______________________________________ .
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: January 23, 1996
    Assignee: Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Shigehisa Naka, Tasadduq Khan, Andre Walder, Michel Marty, Christophe Delaunay, Pierre Thevenin
  • Patent number: 5482577
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from refractory metals of Mo. W, Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy oxidation resistance.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: January 9, 1996
    Assignees: Koji Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5460663
    Abstract: Amorphous alloys having an extremely high corrosion resistance comprise Cr and at least one element selected from Ta and Nb, as essential components, and are spontaneously passive owing to the formation of stable protective films, even in very corrosive environments such as poorly oxidizing concentrated hydrochloric acid. The amorphous alloy may further include one or more elements appropriately selected from other alloying elements of Al, Ti, Zr, Fe, Co, Ni, Cu, Mo and W. The amorphous alloys have advantageous properties, such as very high corrosion resistance, high corrosion resistance at elevated temperatures and high wear resistance, and, therefore are useful in chemical plants or other industrial and domestic applications.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: October 24, 1995
    Assignee: YKK Corporation
    Inventors: Koji Hashimoto, Jinhan Kim, Hideaki Yoshioka, Hiroki Habazaki, Asahi Kawashima, Katsuhiko Asami
  • Patent number: 5423680
    Abstract: A dental alloy is provided which is free of palladium, gallium and copper and which is compatible with a wide variety of composites and porcelain compositions. The alloy has a melting range of between about 870.degree. C. and 1230.degree. C. and a coefficient of thermal expansion of between 15.5.times.10.sup.-6 and 17.5.times.10.sup.-6 in/in/.degree. C. when heated from room temperature to 500.degree. C. The alloy contains between about 40 and 80 percent by weight gold, between 5 and 50 percent by weight of thermal expansion adjuster, between two and 15 percent by weight strengthener and oxide former, up to about 1.5 percent by weight grain refiner, and up to about 0.25 percent by weight deoxidizer.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: June 13, 1995
    Assignee: Jeneric/Pentron, Incorporated
    Inventor: Arun Prasad
  • Patent number: 5380375
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of Cr and at least one element selected from refractory metals of Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: January 10, 1995
    Assignees: Koji Hashimoto, Yoshida Kogyo K.K.
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5316865
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance -Ti.sub.40-48 -Al.sub.12-22 -Hf.sub.0.5-6.The reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same Crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: May 31, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5296309
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance -Ti.sub.32-48 -Al.sub.8-16 -Cr.sub.2-12.The reinforcement may be in the form Of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: March 22, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5284618
    Abstract: A niobium and titanium based alloy having a density less than 6.5 and possessing a high resistance to oxidation at high temperatures in the region of 900.degree. C. has a chemical composition comprising, in atomic percentages:more than 24% Nbfrom 30 to 48% Tifrom 21 to 38% Aland possibly up to 8% of at least one of Cr, Mo, V and Zr.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: February 8, 1994
    Assignees: Association pour la Recherche et le Developpement des Methodes et Processus Industriels "A.R.M.I.N.E.S.", Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A."
    Inventors: Michel L. Allouard, Yves C. Bienvenu, Christophe Delaunay, Christian A. B. Ducrocq, Gerard Lemaitre, Michel Marty, Andre Walder
  • Patent number: 5273831
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based cladding alloy are provided. The cladding is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance -Ti.sub.27-40.5 -Al.sub.4.5-10.5 -Hf.sub.1.5-5.5 V.sub.0-6 Cr.sub.4.5-8.5 Zr.sub.0-1 C.sub.0-0.5,where each metal of the metal/metal composite has a body centered cubic crystal structure, andwherein the ratio of concentrations of Ti to Nb (Ti/Nb) is greater than or equal (.gtoreq.) to 0.5, andwherein the maximum concentration of the Hf+V+Al+Cr additives is less than or equal (.ltoreq.) to the expression:16.5+5.times.Ti/Nb.The reinforcement may be in the form of plates, sheets or rods of the higher strength, higher temperature niobium based reinforcing alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: December 28, 1993
    Assignee: General Electric Company
    Inventors: Melvin R. Jackson, Mark G. Benz, John R. Hughes