Noble Metal Containing Patents (Class 420/444)
  • Publication number: 20040109786
    Abstract: A composition of matter is about 1 to about 3 percent rhenium, from about 6 to about 9 percent aluminum, from 0 to about 0.5 percent titanium, from about 4 to about 6 percent tantalum, from about 12.5 to about 15 percent chromium, from about 3 to about 10 percent cobalt, from about 2 to about 5 percent tungsten, from 0 to about 0.2 percent hafnium, from 0 to about 1 percent silicon, from 0 to about 0.25 percent molybdenum, from 0 to about 0.25 percent niobium, balance nickel and minor elements. The composition is preferably made into a substantially single crystal article, such as a component of a gas turbine engine.
    Type: Application
    Filed: December 6, 2002
    Publication date: June 10, 2004
    Inventors: Kevin Swayne O'Hara, William Scott Walston, Charles Gitahi Mukira, Melvin Robert Jackson
  • Patent number: 6720088
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: April 13, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Publication number: 20040042927
    Abstract: A superalloy article has a composition consisting essentially of, in weight percent, from about 4 to about 12 percent cobalt, from about 3.5 to about 7 percent tungsten, from about 2 to about 9 percent chromium, from about 0.5 to about 4.5 percent tantalum, from about 5.5 to about 7.5 percent aluminum, from 0 to about 5.5 percent rhenium, from about 0.1 to about 1.2 percent titanium, from 0 to about 3 percent molybdenum, from 0 to about 3 percent ruthenium, from about 0.5 to about 2 percent columbium, about 0.01 percent maximum boron, about 0.07 percent maximum carbon, from about 0.3 to about 1 percent hafnium, about 0.01 percent maximum zirconium, about 0.03 percent maximum yttrium, from 0 to about 0.5 percent vanadium, about 0.01 percent maximum cerium, and about 0.01 percent maximum lanthanum, balance nickel and impurity elements. The article is preferably substantially a single crystal or oriented polycrystal in a shape such as a gas turbine blade.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 4, 2004
    Inventors: Kevin Swayne O'Hara, William Scott Walston, Earl Warren Ross
  • Publication number: 20030148140
    Abstract: A high temperature corrosion resistant alloy composition comprising, in addition to Ni, 0.1 to 12% by weight of Co, 10 to 30% by weight of Cr, 4 to 15% by weight of Al, 0.1 to 5% by weight of Y, and 0.5 to 10% by weight of Re. The high temperature corrosion resistant alloy composition has an excellent oxidation resistance and ductility and is suitable for use in a bonding layer of a thermal barrier coating material.
    Type: Application
    Filed: December 11, 2002
    Publication date: August 7, 2003
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hidetaka Oguma, Ikuo Okada, Taiji Torigoe, Kouji Takahashi
  • Publication number: 20030091459
    Abstract: A nickel-base superalloy that is useful for making single crystal castings exhibiting outstanding stress-rupture properties, creep-rupture properties, and an increased tolerance for grain defects contains, in percentages by weight, from about 4.7% to about 4.9% chromium, (Cr), from about 9% to about 10% cobalt (Co), from about 0.6% to about 0.8% molybdenum (Mo), from about 8.4% to about 8.8% tungsten (W), from about 4.3% to about 4.8% tantalum (Ta), from about 0.6% to about 0.8% titanium (Ti), from about 5.6% to about 5.8% aluminum (Al), from about 2.8% to about 3.1% rhenium (Re), from about 1.1% to about 1.5% hafnium (Hf), from about 0.06% to about 0.08% carbon (C), from about 0.012% to about 0.020% boron (B), from about 0.004% to about 0.010% zirconium (Zr), the balance being nickel and incidental impurities.
    Type: Application
    Filed: July 12, 2002
    Publication date: May 15, 2003
    Inventors: Kenneth Harris, Jacqueline B. Wahl
  • Patent number: 6554920
    Abstract: An alloy and repair material comprising the alloy, articles comprising the alloy and repair material, and methods for repairing articles including provision of the alloy as repair material are described, with the alloy comprising ruthenium, nickel, aluminum, and chromium, wherein a microstructure of the alloy is essentially free of an L12-structured phase at temperatures greater than about 1000° C. and comprises an A3-structured phase and up to about 40 volume percent of a B2-structured phase.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: April 29, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Canan Uslu Hardwicke, Ji-Cheng Zhao, Charles Gitahi Mukira
  • Publication number: 20030075247
    Abstract: The object of the present invention is to provide an Ni-based single crystal super alloy capable of improving strength by preventing precipitation of a TCP phase at high temperatures. This object is achieved by an Ni-based single crystal super alloy having a composition consisting of 5.0-7.0 wt % Al, 4.0-8.0 wt % Ta, 2.9-4.5 wt % Mo, 4.0-8.0 wt % W, 3.0-6.0 wt % Re, 0.01-0.50 wt % Hf, 2.0-5.0 wt % Cr, 0.1-15.0 wt % Co and 1.0-4.0 wt % Ru in terms of its weight ratio, with the remainder consisting of Ni and unavoidable impurities.
    Type: Application
    Filed: May 30, 2002
    Publication date: April 24, 2003
    Inventors: Yutaka Koizumi, Toshiharu Kobayashi, Tadaharu Yokokawa, Hiroshi Harada, Yasuhiro Aoki, Mikiya Arai, Shoju Masaki, Ryoji Kakiuchi, Kazuyoshi Chikugo
  • Publication number: 20030041930
    Abstract: The present invention relates to an improved single crystal nickel base superalloy and a process for making same. The single crystal nickel base superalloy has a composition comprising 3 to 12 wt % chromium, up to 3 wt % molybdenum, 3 to 10 wt % tungsten, up to 5 wt % rhenium, 6 to 12 wt % tantalum, 4 to 7 wt % aluminum, up to 15 wt % cobalt, up to 0.05 wt % carbon, up to 0.02 wt % boron, up to 0.1 wt % zirconium, up to 0.8 wt % hafnium, up to 2.0 wt % niobium, up to 1.0 wt % vanadium, up to 0.7 wt % titanium, up to 10 wt % of at least one element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, and mixtures thereof, and the balance essentially nickel. The single crystal nickel base superalloy has a microstructure which is pore-free and eutectic &ggr;-&ggr;′ free and which has a gamma prime morphology with a bimodal &ggr;′ distribution.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventors: Daniel P. DeLuca, Charles M. Biondo
  • Patent number: 6527880
    Abstract: Medium- and high-density articles are formed from melting and casting alloys containing tungsten, iron, nickel and optionally manganese and/or steel. In some embodiments, the articles have densities in the range of 8-10.5 g/cm3, and in other embodiments, the articles have densities in the range of 10.5-15 g/cm3. In some embodiments, the articles are ferromagnetic, and in others the articles are not ferromagnetic. In some embodiments, tungsten forms the largest weight percent of the alloy, and in other embodiments the alloy contains no more than 50 wt % tungsten. In some embodiments, the articles are shell shot.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: March 4, 2003
    Inventor: Darryl D. Amick
  • Publication number: 20020062886
    Abstract: A nickel-base single-crystal superalloy, essentially consists of, in percentages by weight, 4.0% to 11.0% of cobalt, 3.5% to less than 5.0% of chromium, 0.5% to 3.0% of molybdenum, 7.0% to 10.0% of tungsten, 4.5% to 6.0% of aluminum, 0.1% to 2.0% of titanium, 5.0% to 8.0% of tantalum, 1.0% to 3.0% of rhenium, 0.01% to 0.5% of hafnium, 0.01% to 0.1% of silicon, and a balance being nickel and inevitable impurity, a total amount of rhenium and chromium being not less than 4.0% and a total amount of rhenium, molybdenum, tungsten and chromium being not more than 18.0%.
    Type: Application
    Filed: August 30, 2001
    Publication date: May 30, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takehisa Hino, Yutaka Koizumi, Toshiharu Kobayashi, Shizuo Nakazawa, Hiroshi Harada, Yutaka Ishiwata, Yomei Yoshioka
  • Patent number: 6280857
    Abstract: A coating composition for superalloy structural parts, especially, for gas turbine vanes and blades, which has high resistance to oxidation and corrosion and has excellent mechanical behavior. The coating preferably comprises: 18 to 28 wt % of Co; 11 to 15 wt % of Cr; 11.5 to 14 wt % of Al; 1 to 8 wt % of Re; 1 to 2.3 wt % of Si; 0.2 to 1.5 wt % of Ta; 0.2 to 1.5 wt % of Nb; 0.3 to 1.3 wt % of Y; 0 to 1.5 wt % of Mg; 0 to 0.5 wt % of a total of La and La-series; 0 to 0.1 wt % of B; less than 0.1 wt % of Hf; and less than 0.1 wt % of C. The balance of the coating is Ni. A total of Y, La, and La-series is from 0.3 to 2.0 wt %, and a total of Si and Ta is equal to or less than 2.5 wt %.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: August 28, 2001
    Assignee: Alstom
    Inventors: Marianne Sommer, Hans-Peter Bossmann, Maxim Konter, Peter Holmes, Christoph Toennes, Hans Joachim Schmutzler
  • Patent number: 6177046
    Abstract: Improved Ni, Fe and Co based superalloys having excellent oxidation resistance and weldability. The superalloys are obtained by at least partially replacing the Ni in conventional superalloys with Pd. The alloys may also contain strengtheners and modifiers such as Co, W, Mo, V, Ti, Re, Ta, Nb, C, B, Zr, Y, and Hf. The superalloy has good strength, improved weldability and excellent oxidation resistance suitable for use in many aerospace and power generation turbine applications. A preferred embodiment comprises (in wt %) 1-9% (Al+Ti), 0-0.01% B, 0-0.15% C, 0-25% Co, 5-30% Cr, 0-10% Fe, 0-0.009% (Hf+Y+Sc), 1-15% (Mo+W), 0-8% (Nb+Ta), 40-68% Ni, 4-32% Pd, 0-10% (Re+Rh), 0-5% V, and 0-0.015% Zr.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: January 23, 2001
    Assignee: The Penn State Research Foundation
    Inventors: George Simkovich, Eric J. Whitney
  • Patent number: 6127047
    Abstract: High temperature alloys resistant to degradation and oxidation are provided. In accordance with preferred embodiments, alloys comprising from about 0.1 to about 50 atomic percent silicon, from about 10 to about 80 atomic percent aluminum, and at least one metal selected from the group consisting of chromium, iridium, rhenium, palladium, platinum, rhodium, ruthenium, osmium, molybdenum, tungsten, niobium and tantalum are formed. Shaped bodies and structural members comprising such alloys are also described as are methods for their fabrication.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 3, 2000
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Wayne L. Worrell, Kang N. Lee
  • Patent number: 6004408
    Abstract: The invention relates to precipitation hardened alloy compositions comprising the following elements, with the contents expressed in % by weight:______________________________________ nickel: .gtoreq.52.00% chromium: 20.50%-22.50% iron: 7.00%-13.00% molybdenum: 5.50%-7.0% copper: 1.00%-3.50% niobium: 2.65%-3.50% titanium: 1.0%-2.0% cobalt: 0-3.00% aluminum: 0-0.75% tungsten: 0-0.50% silicon: 0-0.20% manganese: 0-0.20% phosphorous: 0-0.03% carbon: 0-0.02% nitrogen: 0-0.02% magnesium: 0-0.005% sulfur: 0-0.005% ______________________________________the elements satisfying the following four relationships:X=(2.271% Ti+1.142% Cr+0.957% Mn+0.858% Fe+0.777% Co+0.717% Ni+2.117% Nb+1.550% Mo+1.655% W+1.90% Al+1.90% Si+0.615% Cu).ltoreq.93.5, the percentages for this relationship being in atomic %;Y=(% Mo+% W+% Cu).ltoreq.9, the percentages for this relationship being in % by weight;A=(0.65% Nb+1.25% Ti+2.20% Al).gtoreq.4.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: December 21, 1999
    Assignee: Aubert & Duval (societe anonyme)
    Inventor: Jacques Montagnon
  • Patent number: 5830415
    Abstract: The present invention provides a car exhaust purifying filter member which is high in the capacity to collect solid and liquid contents in exhausts and which has such high heat resistance as to be capable of withstanding heat when burned for cleaning and a method of manufacturing the same. A three-dimensional mesh-like metallic porous member made from Ni--Cr--Al and having a three-dimensional framework is heated at 800-1000 .degree. C. in the atmosphere to form on its surface a densely grown fibrous alumina crystal. This member is used as a filter member. Such a filter member shows excellent collecting capacity and corrosion resistance and can withstand high temperatures. Also, it is possible to firmly carry a catalyst on the fibrous alumina crystal formed on the surface. Because of its increased surface area, it has an increased catalyst carrying capacity.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: November 3, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Maeda, Masayuki Ishii, Hiroshi Yoshino, Shunsuke Ban
  • Patent number: 5728279
    Abstract: Target for a magnetron-cathode sputtering apparatus is made from a cobalt base alloy containing additional elements in such concentrations that intermetallic phases are formed with at least one of these elements and intermetallic phases are observed on the basis of the phase diagram in the state of equilibrium at the operating temperature of the target. The grain boundaries, sub-grain boundaries, twin-grain boundaries or slip bands of the cobalt mixed crystal forming the matrix are decorated with the elements forming the intermetallic phases. X-ray diffraction diagrams made from the target display reflections of an intermetallic phase which is largely absent in the cast state and which forms only during a heat treatment in the temperature range below the solidus temperature of the alloy by a solid state reaction.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: March 17, 1998
    Assignee: Leybold Materials GmbH
    Inventors: Martin Schlott, Martin Weigert, Kwei Teng, Bruce Gehman
  • Patent number: 5529642
    Abstract: A nickel-based alloy which is excellent not only in anti-corrosion properties but also in workability is disclosed. The alloy contains 15 to 35 weight % of chromium; 6 to 24 weight % of molybdenum; wherein the sum of chromium plus molybdenum is no greater than 43 weight %; 1.1 to 8 weight % of tantalum; and balance nickel and unavoidable impurities. The alloy may optionally include no greater than 0.1 weight % of nitrogen; no greater than 0.3 weight % of magnesium, no greater than 3 weight % of manganese, no greater than 0.3 weight % of silicon, no greater than 0.1 weight % of carbon, no greater than 6 weight % of iron, no greater than 0.1 weight % of zirconium, no greater than 0.01 weight % of calcium, no greater than 1 weight % of niobium, no greater than 4 weight % of tungsten, no greater than 4 weight % of copper, no greater than 0.8 weight % of titanium, no greater than 0.8 weight % of aluminum, no greater than 5 weight % of cobalt, no greater than 0.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: June 25, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Katsuo Sugahara, Hideo Kitamura, Saburo Wakita, Koji Toyokura, Yoshio Takizawa, Tsutomu Takahashi
  • Patent number: 5516381
    Abstract: A rotating blade or stationary vane of a gas turbine which is made of a nickel alloy containing Cr, Co, Mo, W, Ta, Al, Ti, C, B, Zr, and one or both of Mg and Ca. Additionally, the alloy may contain Hf, Pt, Rh and Re.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: May 14, 1996
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Hisataka Kawai, Ikuo Okada, Ichiro Tsuji, Koji Takahashi, Kensho Sahira, Akira Mitsuhashi
  • Patent number: 5455119
    Abstract: A coating composition comprising an alloy having the formula RCrAlR'R" wherein R is nickel, cobalt or the like; R' is yttrium or hafnium and R" is tantalum, rhenium and/or platinum, preferably mixed with an oxide dispersion such as alumina, to provide an improved class of coatings suitable for operating in high temperature oxidizing environments.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: October 3, 1995
    Assignees: Praxair S.T. Technology, Inc., Rolls-Royce PLC
    Inventors: Thomas A. Taylor, David F. Bettridge, Robert C. Tucker, Jr.
  • Patent number: 5449489
    Abstract: Turbine engine alloys modified by the addition of small amounts of gold are found to have improved properties over similar alloys that do not contain Au. These improved alloys have special application in gas turbines and jet engines. Preferred composition ranges are (36 to 45) wt % Ni-(25 to 32) wt % Fe-(16 to 21) wt % Cr-(0.3 to 0.4) wt % Al-(0.3 to 0.4) wt % Ti-(0.6 to 0.8) wt % Mn-(0.3 to 0.4) wt % Cu-(0.02 to 0.05) wt % C-(0.02 to 20) wt % Au and (44 to 56) wt % Fe-(20 to 26) wt % Ni-(12 to 16) wt % Cr-(1 to 1.3) wt % Mo-(1.7 to 2.2) wt % Ti-(0.2 to 0.3) wt % V-(0.15 to 0.21) wt % Al-(0.001 to 0.003) wt % B-(0.15 to 0.21) wt % Mn-(0.3 to 0.7) wt % Si-(0.02 to 0.05) wt % C-(0.02 to 20) wt % Au.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: September 12, 1995
    Assignee: Duke University
    Inventors: Roland Gettliffe, Franklin H. Cocks
  • Patent number: 5374393
    Abstract: Turbine engine alloys modified by the addition of small amounts of gold are found to have improved properties over similar alloys that do not contain Au. These improved alloys have special application in gas turbines and jet engines. A preferred composition range is (46 to 59) wt % Ni-(10 to 14) wt % Co-(15 to 20) wt % Cr-(1 to 1.5) wt % Al-(2.2 to 3.2) wt % Ti-(3.3 to 4.4) wt % Mo-(0.02 to 0.08) wt % C-(0.05 to 0.06) wt % Zr-(0.004 to 0.006) wt % B-(0.02 to 20) wt % Au.
    Type: Grant
    Filed: December 14, 1992
    Date of Patent: December 20, 1994
    Assignee: Duke University
    Inventors: Roland Gettliffe, Franklin H. Cocks
  • Patent number: 5077141
    Abstract: Disclosed are novel nickel base single crystal alloy compositions consisting essentially of, by weight, about 4.0-10.0% chromium, 1.5-6.0% cobalt, 1.0-12.0% molybdenum, 3.0-10.0% tungsten, 2.5-7.0% titanium, 2.5-7.0% aluminum, 3.0-10.0% tantalum, about 0.02%-1.5% of hafnium and/or about 0.02%-1.0% silicon, from about 0.02%-1.0% each of yttrium and/or lanthanum, from about 0.3% to about 8.0% rhenium; from about 0.2% to about 4.0% vanadium and/or from about 0.2% to about 4.0% niobium; from about 0.02% to about 3% platinum; from about 0 to about 1.0% boron, the balance nickel, and the balance nickel.Methods of thermal treatment and coating of the novel alloys to enhance their mechanical properties are also disclosed, as are articles produced by such methods.
    Type: Grant
    Filed: November 29, 1989
    Date of Patent: December 31, 1991
    Assignee: Avco Corporation
    Inventors: Subhash K. Naik, Vinod K. Nangia
  • Patent number: 4764435
    Abstract: A metal composition usable as a brazing material for bonding a metal to a non-oxide ceramic. The brazing material contains, at least, one or more metals selected from a first group of transition metals consisting of Pt, Pd, Rh, Ir, Ru and Os, and one or more metals selected from a second group of transition metals consisting of Cr, Mn, Fe, Co, Ni and Cu. The material may further contain one or more elements selected from a third group of elements consisting of B, C, Si and P.
    Type: Grant
    Filed: June 16, 1986
    Date of Patent: August 16, 1988
    Assignee: Nippondenso Co., Ltd.
    Inventors: Hiroki Hosizaki, Hirofumi Suzuki, Terutaka Kageyama
  • Patent number: 4719080
    Abstract: A superalloy composition and single crystal articles of the composition are described. The broad range is 3-12% Cr, 0-3% Mo, 3-10% W, 0-5% Re, 6-12% Ta, 4-7% Al, 0-15% Co, 0-0.045% C, 0-0.02% B, 0-0.1% Zr, 0-0.8% Hf, 0-2% Nb, 0-1% V, 0-0.7% Ti, 0-10% (Ru+Rh+Pd+Os+Ir+Pt), balance essentially Ni. An equation is presented to select the most useful specific compositions from within this range. An exemplary preferred composition is 5.0% Cr, 10.0% Co, 2.0% Mo, 6.0% W, 3.1% Re, 5.6% Al, 9.0% Ta, 0.1% Hf, balance essentially Ni.
    Type: Grant
    Filed: June 10, 1985
    Date of Patent: January 12, 1988
    Assignee: United Technologies Corporation
    Inventors: David N. Duhl, Alan D. Cetel
  • Patent number: 4683119
    Abstract: This invention relates to platinum group metal-containing alloys comprising, apart from impurities:(a) at least 40 wt. % nickel or at least 40 wt. % cobalt;(b) a trace to 30 wt. % chromium; and(c) a trace to 15 wt. % of one or more of the metals platinum, palladium, rhodium, iridium, osmium and ruthenium.
    Type: Grant
    Filed: March 2, 1981
    Date of Patent: July 28, 1987
    Assignee: Johnson Matthey & Company, Limited
    Inventors: Gordon L. Selman, Richard J. Midgley
  • Patent number: 4662920
    Abstract: Nickel alloys comprising less than 25% by volume of .gamma.' precipitate and containing 23 to 37% by weight of chromium and in addition a trace to 1.7% carbon, 0.3 to 4% by weight of platinum and/or 0.3 to 8% by weight of ruthenium, a trace to 1.5% by weight titanium and/or a trace to 1.5% aluminium the balance being nickel. The alloys combine improved corrosion resistance with high mechanical strength. Major improvements in mechanical strength seem to be obtained by adding small amounts of titanium and/or aluminium. The alloy is especially suited for use in contact with molten glass for example in a centrifugal spinner.
    Type: Grant
    Filed: November 13, 1984
    Date of Patent: May 5, 1987
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Duncan R. Coupland, Derek P. A. Pearson
  • Patent number: 4615864
    Abstract: Coatings for iron-, nickel- and cobalt-base superalloys. The coatings are applied in order to provide good oxidation and/or sulfidation and thermal fatigue resistance for the substrates to which the coatings are applied. The coatings consist essentially of, by weight, 10 to 50% chromium, 3 to 15% aluminum, 0.1 to 10% manganese, up to 8% tantalum, up to 5% tungsten, up to 5% reactive metal from the group consisting of lanthanum, yttrium and other rare earth elements, up to 5 percent of rare earth and/or refractory metal oxide particles, up to 12% silicon, up to 10% hafnium, and the balance selected from the group consisting of nickel, cobalt and iron, and combinations thereof. Additions of titanium up to 5% and noble metals up to 15% are also contemplated.
    Type: Grant
    Filed: April 23, 1982
    Date of Patent: October 7, 1986
    Assignee: Howmet Turbine Components Corporation
    Inventors: Louis E. Dardi, Srinivasan Shankar
  • Patent number: 4572750
    Abstract: The disclosed magnetic alloy essentially consists of 60-86% of nickel (Ni), .5-14% of niobium (Nb), 0.001-5% in sum of at least one element selected from the group consisting of gold, silver, platinum group elements, gallium, indium, thallium, strontium, and barium, and the balance of iron with a trace of impurities, which alloy renders magnetic properties suitable for recording-and-reproducing head upon specific heat treatment.
    Type: Grant
    Filed: June 25, 1984
    Date of Patent: February 25, 1986
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4451431
    Abstract: Disclosed are novel high temperature coatings which may be applied to turbine engine components to provide improved thermal fatigue resistance as well as improved oxidation and corrosion resistance. The compositions have one of the following general formulas:MCrAl+Rare Earth Metal (1)MCrAl+Rare Earth Metal+Noble Metal (2)MCrAl+Rare Earth Metal+Refractory Metal; or (3)MCrAl+Rare Earth Metal+Noble Metal+Refractory Metal (4)wherein M is a solid solution of molybdenum, tungstun or niobium in nickel, cobalt or nickel plus cobalt.
    Type: Grant
    Filed: October 25, 1982
    Date of Patent: May 29, 1984
    Assignee: Avco Corporation
    Inventor: Subhash K. Naik