Aluminum Containing Patents (Class 420/445)
  • Patent number: 6720088
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: April 13, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Publication number: 20040052677
    Abstract: The present invention relates to a Ni base alloy having sufficient strength at high temperatures and high corrosion resistance at high temperatures in a high-temperature composite corrosive environment in which chlorination or sulfidation occurs simultaneously with high-temperature oxidation, without excessive cooling or surface protection. According to the present invention, a Ni base alloy having high-temperature strength and corrosion resistance includes Cr in a range of from 25 to 40 weight %, Al in a range of from 1.5 to 2.5 weight %, C in a range of from 0.1 to 0.5 weight %, W of 15 weight % or less, Mn of 2.0 weight % or less, Si in a range of from 0.3 to 6 weight %, Fe of 5 % or less, and Ni of rest except inevitable impurities. When strength at high temperatures is allowed to be small, W is in a range of from 0 to 8 %, and Si is in a range of from 0.3 to 1 % or from 1 to 6 %. In order to enhance strength at high temperatures, W is in a range of from 8 to 15, and Si is in a range of from 0.
    Type: Application
    Filed: October 3, 2003
    Publication date: March 18, 2004
    Inventors: Manabu Noguchi, Kei Matsuoka, Hiroshi Yakuwa, Akira Uchino, Hideyuki Sakamoto, Michio Okabe, Yoshiyuki Sawada, Shigeki Ueta
  • Patent number: 6702906
    Abstract: A Ni-base heat resistant alloy excellent in weldability and strength at elevated temperatures and suited for use in manufacturing cracking furnace tubes and reformer furnace tubes to be used in ethylene plants as well as a welded joint therefor is provided. The alloy of the invention is a Ni-base heat-resistant alloy, which comprises C: not more than 0.1%, Si: not more than 2%, Mn: not more than 2%, P: not more than 0.025%, S: not more than 0.005%, N: not more than 0.04%, Cr: 10 to 30%, Al: 2.1 to less than 4.5%, and Mo: 2.5 to 15% or W: 2.5 to 9% or Mo and W: 2.5 to 15% in total, and satisfies the relation (1) given below: (104Si+1980P+1980S+9Al+15Ti+11Nb+1.8W+11600B)≦{1.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 9, 2004
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazuhiro Ogawa, Kazuyuki Kitamura, Hirokazu Okada, Yoshitaka Nishiyama
  • Patent number: 6696176
    Abstract: A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: David B. Allen, Gregg P. Wagner, Brij B. Seth
  • Patent number: 6696017
    Abstract: The present invention relates to a Ni-base brazing alloy. The alloy has a good wettability toward a material to be brazed when melting, an excellent corrosion resistance and a high strength. The alloy is used for process of joining two pieces of metal such as stainless steel. The alloy contains Cr in an mount of 25 to 35% by weight, P in an amount of 4 to 8% by weight, Si in an amount of 3 to 6% by weight, wherein the total amount of P and Si is 9 to 11.5% by weight, at least one selected from a group consisting of Al, Ca, Y and misch metal in an amount of 0.01 to 0.10% by weight, and the balance of Ni and unavoidable impurities.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: February 24, 2004
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Shozo Nagai, Kanichi Tanaka, Kensuke Hidaka
  • Publication number: 20040005477
    Abstract: The invention relates to a product (1), in particular a gas-turbine blade (1), having a metallic basic body (2) to which a protective layer (3, 4) for protecting against corrosion is bonded. The protective layer (3, 4) has an inner layer (3) of a first MCrAlY alloy and an outer layer (45) having a second MCrAlY alloy, which is bonded to the inner layer (3). The second MCrAlY alloy is predominantly in the &ggr;-phase. The invention also relates to a process for producing a protective layer (3, 4) in which the outer layer (4) is produced by re-melting a region of the inner layer (3) or by deposition of an MCrAlY alloy from a liquid phase.
    Type: Application
    Filed: June 25, 2003
    Publication date: January 8, 2004
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Publication number: 20030231977
    Abstract: A nickel-chromium-molybdenum-copper alloy that is resistant to sulfuric acid and wet process phosphoric acid contains in weight percent 30.0 to 35.0% chromium, 5.0 to 7.6% molybdenum, 1.6 to 2.9% copper, up to 1.0% manganese, up to 0.4% aluminum, up to 0.6% silicon, up to 0.06% carbon, up to 0.13% nitrogen, up to 5.1% iron, up to 5.0% cobalt, with the balance nickel plus impurities.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 18, 2003
    Inventors: Paul Crook, Martin L. Caruso
  • Patent number: 6652991
    Abstract: The addition of small amounts of CeO2 and Cr to intermetallic compositions of NiAl and FeAl improves ductility, thermal stability, thermal shock resistance, and resistance to oxidation, sulphidization and carburization.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: November 25, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: You Wang, Weixing Chen
  • Publication number: 20030215350
    Abstract: A nickel-chromium-molybdenum alloy that is thermally stable and resistant to wet process phosphoric acid and chloride induced localized attack contains in weight percent 31.0 to 34.5% chromium, 7.0 to 10.0% molybdenum, up to 0.2% nitrogen, up to 3.0% iron, up to 1.0% manganese, up to 0.4% aluminum, up to 0.75% silicon, up to 0.1% carbon with the balance nickel plus impurities.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 20, 2003
    Inventor: Paul Crook
  • Publication number: 20030211356
    Abstract: The present invention relates to a metallic coating to be deposited on gas turbine engine components. The metallic coating comprises up to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.1 to 1.0 wt % yttrium, up to 0.6 wt % hafnium, up to 0.3 wt % silicon, 3.0 to 10 wt % tantalum, up to 9.0 wt % tungsten, 1.0 to 6.0 wt % rhenium, up to 10 wt % molybdenum, and the balance nickel.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Inventors: Russell Albert Beers, Allan A. Noetzel, Abdus Khan
  • Patent number: 6641929
    Abstract: An article protected by a protective coating includes a substrate made of a first nickel-base superalloy substrate material that is susceptible to the formation of a secondary reaction zone when overlaid by a diffusion aluminide coating or an aluminide overlay coating. A protective coating including a deposited coating at the substrate surface. The deposited coating is a second nickel-base superalloy different from the first nickel-base superalloy and which does not produce a secondary reaction zone when interdiffused with the first nickel-base superalloy. In one version, the deposited coating has a nominal composition, in weight percent, of about 3.1 percent cobalt, about 7.6 percent chromium, about 7.8 percent aluminum, about 5.45 percent tantalum, about 3.85 percent tungsten, about 1.65 percent rhenium, about 0.02 percent carbon, about 0.016 percent hafnium, about 0.015 percent boron, about 0.5 percent silicon, balance nickel and incidental impurities.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: November 4, 2003
    Assignee: General Electric Co.
    Inventors: Thomas Joseph Kelly, P. Kennard Wright, III
  • Patent number: 6638373
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: October 28, 2003
    Inventors: Lee Pike, Jr., Dwaine L. Klarstrom, Michael F. Rothman
  • Patent number: 6635362
    Abstract: Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: October 21, 2003
    Inventor: Xiaoci Maggie Zheng
  • Publication number: 20030170139
    Abstract: A fin and a tube for a high-temperature heat exchanger are made of a nickel-based alloy which contains 2.0 to 5.0% of Al and further contains, as required, at least one selected from the group consisting of 0.1 to 2.5% of Si, 0.8 to 4.0% of Cr, and 0.1 to 1.5% of Mn, the balance being Ni and unavoidable impurities.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 11, 2003
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventor: Akira Mitsuhashi
  • Patent number: 6565680
    Abstract: A superalloy weld composition includes: up to about 5.1 wt % Co; about 7.2 to about 9.5 wt % Cr; about 7.4 to about 8.4 wt % Al; about 4.3 to about 5.6 wt % Ta; about 0.1 to about 0.5 wt % Si; about 0.1 to about 0.5 wt % Hf; up to about 0.05 wt % C; up to about 0.05 wt % B; about 0 to about 2.2 Re; about 2.7 to about 4.4 wt % W; and balance Ni and typical impurities.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Charles Gitahi Mukira, Richard John Grylls, Thomas Joseph Kelly
  • Publication number: 20030084975
    Abstract: A single step heat treatment for Ni-Cr-Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 4 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 7, 2002
    Publication date: May 8, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom
  • Publication number: 20030079809
    Abstract: A nickel base super alloy composition wherein the ratio of molybdenum to tungsten or to the sum of tungsten and rhenium, 1 M ⁢   ⁢ o W ⁢   ⁢ o ⁢   ⁢ r , M ⁢   ⁢ o W + R ⁢   ⁢ e
    Type: Application
    Filed: July 30, 2002
    Publication date: May 1, 2003
    Inventors: Howard Merrick, Raymond C. Benn, Prabir R. Bhowal
  • Patent number: 6554920
    Abstract: An alloy and repair material comprising the alloy, articles comprising the alloy and repair material, and methods for repairing articles including provision of the alloy as repair material are described, with the alloy comprising ruthenium, nickel, aluminum, and chromium, wherein a microstructure of the alloy is essentially free of an L12-structured phase at temperatures greater than about 1000° C. and comprises an A3-structured phase and up to about 40 volume percent of a B2-structured phase.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: April 29, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Canan Uslu Hardwicke, Ji-Cheng Zhao, Charles Gitahi Mukira
  • Publication number: 20030070733
    Abstract: A single step heat treatment for Ni—Cr—Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 24 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 28, 2001
    Publication date: April 17, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom
  • Patent number: 6544668
    Abstract: Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: April 8, 2003
    Assignee: U. T. Battelle, LLC
    Inventors: Michael L. Santella, Jeffrey D. McNabb, Vinod K. Sikka
  • Publication number: 20030051783
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 7, 2002
    Publication date: March 20, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom, Michael F. Rothman
  • Publication number: 20030049155
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 28, 2001
    Publication date: March 13, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom, Michael F. Rothman
  • Publication number: 20030041930
    Abstract: The present invention relates to an improved single crystal nickel base superalloy and a process for making same. The single crystal nickel base superalloy has a composition comprising 3 to 12 wt % chromium, up to 3 wt % molybdenum, 3 to 10 wt % tungsten, up to 5 wt % rhenium, 6 to 12 wt % tantalum, 4 to 7 wt % aluminum, up to 15 wt % cobalt, up to 0.05 wt % carbon, up to 0.02 wt % boron, up to 0.1 wt % zirconium, up to 0.8 wt % hafnium, up to 2.0 wt % niobium, up to 1.0 wt % vanadium, up to 0.7 wt % titanium, up to 10 wt % of at least one element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, and mixtures thereof, and the balance essentially nickel. The single crystal nickel base superalloy has a microstructure which is pore-free and eutectic &ggr;-&ggr;′ free and which has a gamma prime morphology with a bimodal &ggr;′ distribution.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventors: Daniel P. DeLuca, Charles M. Biondo
  • Patent number: 6503345
    Abstract: High molybdenum, corrosion-resistant alloys are provided with greatly increased thermal stability by controlling the atom concentrations to be NiaMobXcYdZe, where: a is between about 73 and 77 atom percent b is between about 18 and 23 atom percent X is one or more required substitutional alloying elements selected from Groups VI, VII and VIII of the Periodic Table and c does not exceed about 5 atom percent for any one element, Y is one or more optional substitutional alloying elements which may be present and d does not exceed about one atom percent for any one element, Z is one or more interstitial elements and e is as low as possible, not exceeding about 0.2 atom percent in total; and the sum of c and d is between about 2.5 and 7.5 atom percent.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: January 7, 2003
    Assignee: Haynes International, Inc.
    Inventor: Dwaine L. Klarstrom
  • Patent number: 6482355
    Abstract: A Ni3Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: November 19, 2002
    Assignee: U T Battelle, LLC
    Inventors: Michael L. Santella, Vinod K. Sikka
  • Publication number: 20020164263
    Abstract: A nickel-base superalloy that is useful for making single crystal castings exhibiting outstanding stress-rupture properties, creep-rupture properties, and an increased tolerance for grain defects contains, in percentages by weight, from about 4.3% to about 5.3% chromium, (Cr), from about 9% to about 10% cobalt (Co), from about 0.6% to about 0.8% molybdenum (Mo), from about 8.4% to about 8.8% tungsten (W), from about 4.3% to about 4.8% tantalum (Ta), from about 0.6% to about 0.8% titanium (Ti), from about 5.6% to about 5.8% aluminum (Al), from about 2.8% to about 3.1% rhenium (Re), from about 0.9% to about 1.5% hafnium (Hf), from about 0.06% to about 0.08% carbon (C), from about 0.012% to about 0.020% boron (B), from about 0.004% to about 0.010% zirconium (Zr), the balance being nickel and incidental impurities.
    Type: Application
    Filed: March 1, 2001
    Publication date: November 7, 2002
    Inventors: Kenneth Harris, Jacqueline B. Wahl
  • Patent number: 6471791
    Abstract: The invention relates to a coating which contains large volumetric fractions, preferably from 20 to 90% by volume, of NiAl-&bgr; phase in a &ggr; matrix. It contains the following microalloying elements which increase the ductility of the coating (data in % by weight): 0.1-8 Fe and/or 0.1-8 Mo and/or 0.1-8 Ga, where the total Fe, Mo and Ga content is at most 10%. In addition, small amounts of Zr, C and/or B may be added to the alloy, strengthening the &bgr;/&ggr; phase boundaries.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: October 29, 2002
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Mohamed Nazmy, Hans Joachim Schmutzler
  • Patent number: 6468367
    Abstract: A superalloy weld composition, includes: about 2 to about 5 wt % Co; about 5 to about 15 wt % Cr; about 7 to about 10 wt % Al; about 4 to about 6 wt % Ta; about 0.5 to about 1.5 wt % Si; about 0.1 to about 0.5 wt % Hf; up to about 0.05 wt % C; up to about 0.05 wt % B; about 1.0 to about 2.0 Re; about 3 to about 4.5 wt % W; and balance Ni.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: October 22, 2002
    Assignee: General Electric Company
    Inventors: Charles Gitahi Mukira, Melvin Robert Jackson, Jon Conrad Schaeffer, William Scott Walston, Thomas Froats Broderick
  • Patent number: 6447716
    Abstract: Nickel-based alloy useful for welding, welding method, and welding electrode.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: September 10, 2002
    Assignees: Ugine-Savoie Imphy, Sprint Metal-Societe de Production Internationale de Trefiles
    Inventors: Ricardo Cozar, Albert Bruyere, Bernard Bonnefois
  • Patent number: 6410153
    Abstract: A nickel based single crystal superalloy comprising 6-11 wt % cobalt, 4.7-5.7 wt % chromium, 2.4-3.0 wt % molybdenum, 3.0-3.8 wt % tungsten, 3.0-3.8 wt % rhenium, 5.5-7.0 wt % aluminium, 5.0-6.0 wt % tantalum, 0.5-1.0 wt % niobium, 0-0.2 wt % hafnium, 0-150 ppm carbon, 0-100 ppm yttrium, 0-100 ppm lanthanum, 0-5 ppm sulphur and the balance nickel plus incidental impurities. The nickel based single crystal superalloy is suitable for use as a gas turbine engine turbine blade or turbine vane. It is of particular use on cooled turbine blades and turbine vanes which have ceramic thermal barrier coatings, because the superalloy is compatible with the ceramic thermal barrier coating to minimize spalling. The superalloy has lower density than other second generation single crystal superalloys but similar creep strength and oxidation resistance.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: June 25, 2002
    Assignee: Rolls-Royce plc
    Inventors: Robert W Broomfield, Colin N Jones
  • Publication number: 20020068008
    Abstract: A nickel alloy composition, having particular utility for forming an oxidation resistant blade tip on a turbine blade, preferably has a composition substantially as defined by the nominal composition Cr 4.5 wt %; Al 6 wt %; Co 4 wt %; Ta 6 wt %; Re 4 wt %; Hf 0.15 wt %; C 0.05 wt %; Si 0.1 wt %.; B 0.005 wt %; W 2 wt %; La 0.003-0.005 wt %; and Y 0.003 to 0.005 wt %; the remainder being nickel.
    Type: Application
    Filed: November 15, 2001
    Publication date: June 6, 2002
    Applicant: ROLLS-ROYCE PLC
    Inventors: Mark Henry Shipton, Robert W. Broomfield
  • Publication number: 20020057984
    Abstract: The invention relates to a creep-proof and corrosion-resistant nickel-based alloy for the use in high-temperature technology, comprising in wt-%
    Type: Application
    Filed: June 14, 2001
    Publication date: May 16, 2002
    Applicant: BOHLER EDELSTAHL GmbH
    Inventors: Markus Speidel, Josef Bernauer
  • Patent number: 6383448
    Abstract: A nickel-based superalloy includes from 1.4 to 4.4 wt. % of Cr, from 3 to 8 wt. % of Co, from 5 to 7.5 wt. % of W, from 4.8 to 7.5 wt. % of Re, from 6 to 9 wt. % of Ta, from 4.8 to 6 wt. % of Al, from 0.1 to 0.5 wt. % of Nb, from 0.8 to 1.8 wt. % of Hf, from 0.05 to 0.1 wt. % of C, from 0.01 to 0.05 wt. % of Y, from 0.005 to 0.15 wt. % of B, and balance Ni.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: May 7, 2002
    Assignee: The Chief Controller, Research & Development Organization
    Inventor: Niranjan Das
  • Patent number: 6375766
    Abstract: A nickel-base alloy containing a continuous matrix composed of a solid solution of chromium in nickel and a precipitate granularly dispersed in and coherent with the matrix and composed of an intermetallic nickel compound. The intermetallic nickel compound contains gallium that replaces aluminum and/or titanium partly or completely. The invention also relates to an article of manufacture containing a substrate formed of such a nickel-base alloy.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: April 23, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Norbert Czech
  • Patent number: 6355212
    Abstract: The invention is directed to anti-corrosive alloys and relates in particular to an alloy containing cobalt, chromium, aluminum, yttrium, silicon, a metal from the second main group, together with the corresponding oxide, in the following proportions: chromium (Cr) 26.0-30%; aluminum (Al) 5.5-13.0%; yttrium (Y) 0.3-1.5%; silicon (Si) 1.5-4.5%; metal from the second main group (magnesium, calcium, barium, strontium) 0.1-2.0%; oxide of the corresponding metal from the second main group 0.1-2.0%; cobalt (Co) remaining percentage. Preferably, tantalum (Ta) is also added in a proportion of 0.5-4.0%, and the remaining percentage of cobalt is replaced by a remaining percentage of Me, Me being understood to mean a metal which may be nickel (Ni) or iron (Fe) or cobalt (Co) or a composition comprising Ni—Fe—Co, Ni—Fe, Ni—Co, Co—Fe.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: March 12, 2002
    Assignee: Turbocoating SpA
    Inventor: Nelso Antolotti
  • Publication number: 20010026769
    Abstract: The present inventions offer a nickel-based single crystal alloy which has a high strength, is easy in conducting the solution heat treatment, hardly gives a harmful phase and is resistant to corrosion at high temperature.
    Type: Application
    Filed: June 7, 2001
    Publication date: October 4, 2001
    Inventors: Toshiharu Kobayashi, Yutaka Koizumi, Shizuo Nakazawa, Hiroshi Harada, Toshihiro Yamagata
  • Patent number: 6280857
    Abstract: A coating composition for superalloy structural parts, especially, for gas turbine vanes and blades, which has high resistance to oxidation and corrosion and has excellent mechanical behavior. The coating preferably comprises: 18 to 28 wt % of Co; 11 to 15 wt % of Cr; 11.5 to 14 wt % of Al; 1 to 8 wt % of Re; 1 to 2.3 wt % of Si; 0.2 to 1.5 wt % of Ta; 0.2 to 1.5 wt % of Nb; 0.3 to 1.3 wt % of Y; 0 to 1.5 wt % of Mg; 0 to 0.5 wt % of a total of La and La-series; 0 to 0.1 wt % of B; less than 0.1 wt % of Hf; and less than 0.1 wt % of C. The balance of the coating is Ni. A total of Y, La, and La-series is from 0.3 to 2.0 wt %, and a total of Si and Ta is equal to or less than 2.5 wt %.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: August 28, 2001
    Assignee: Alstom
    Inventors: Marianne Sommer, Hans-Peter Bossmann, Maxim Konter, Peter Holmes, Christoph Toennes, Hans Joachim Schmutzler
  • Patent number: 6280540
    Abstract: The C-type nickel base alloys of the type containing significant amounts of chromium (about 16 to 25%) and molybdenum (about 12 to 18%) may be improved by adding small but critical amounts of copper (about 1 to 3.5%) which their general corrosion resistance to a wide range of both oxidizing and non-oxidizing industrial media.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: August 28, 2001
    Assignee: Haynes International, Inc.
    Inventor: Paul Crook
  • Publication number: 20010013383
    Abstract: An Ni3Al-base heat-resistant alloy containing, in % by weight, 6.0 to 9.0% of Al, 2.0 to 15.0% of Cr and 0.5 to 3.0% of Zr, the balance being Ni and inevitable impurities, the alloy having a metal structure comprising Ni3Al as the main phase thereof. When required, the alloy may further contain over 0% to not more than 5.0% of W, over 0% to not more than 3.0% of Mo, over 0% to not more than 3.0% of Nb, over 0% to not more than 0.003% of B, over 0% to not more than 0.3% of C and 0.003 to 0.03% of N, wherein the combined amount of W, Mo and Nb is up to 5.0% if at least two of these elements are present.
    Type: Application
    Filed: February 6, 2001
    Publication date: August 16, 2001
    Applicant: KUBOTA CORPORATION
    Inventors: Makoto Takahashi, Takeshi Torigoe
  • Patent number: 6221181
    Abstract: The invention relates to a coating composition for superalloy structural parts, especially for gas turbine vanes and blades, which provides simultaneously excellent environmental resistance and highly improved thermomechanical behavior. The coating consists essentially of, by weight, 28-35% Co, 11-15% Cr, 10-13% Al, 0-1% Re, 1-2% Si, 0.2-1% Ta, 0.005-0.5% Y, 0-5% Ru, 0-1% Ca, 0-1% Mg, 0-0.5% La (or elements from the La series), 0-0.1% B, balance Ni and incidental impurities.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 24, 2001
    Assignee: ABB Research Ltd.
    Inventors: Hans-Peter Bossmann, Hans J. Schmutzler, Marianne Sommer, Christoph Sommer, Maxim Konter, Peter Holmes, Christoph Toennes
  • Patent number: 6210635
    Abstract: A composition comprises cobalt; chromium; carbon; boron; zirconium; aluminum; at least one refractory material; and nickel. The composition is used as a repair material for repairing superalloy articles in a repair process.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: April 3, 2001
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Aaron Todd Frost, Charles Gitahi Mukira, Ann Melinda Ritter, Paul Vincent Crimi, Raymond Alan White
  • Patent number: 6174598
    Abstract: A low noise magnetic recording medium having a high coercive force and adapted for use with a MR head. The magnetic recording medium comprises a non-magnetic substrate having thereon a first non-magnetic underlayer and a magnetic layer comprising a Co alloy provided on the non-magnetic underlayer. The non-magnetic underlayer comprises an alloy represented by the formula: (Ni50Al)100−XMX, wherein M is one of Cr (X=1-40 at %), Mo (X=1-50 at %), W (X=1-60 at %), V (X=1-35 at %), Zr (X=1-25 at %), Nb (X=1-35 at %) and Pd (X=1-25 at %), and when M includes two or more of Cr, Mo, W, V, Zr, Nb and Pd, X is from 1 to 60 at %.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: January 16, 2001
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Mikio Suzuki, Kazunori Onami, Hiroshi Kanazawa, Hiroshi Sakai
  • Patent number: 6127047
    Abstract: High temperature alloys resistant to degradation and oxidation are provided. In accordance with preferred embodiments, alloys comprising from about 0.1 to about 50 atomic percent silicon, from about 10 to about 80 atomic percent aluminum, and at least one metal selected from the group consisting of chromium, iridium, rhenium, palladium, platinum, rhodium, ruthenium, osmium, molybdenum, tungsten, niobium and tantalum are formed. Shaped bodies and structural members comprising such alloys are also described as are methods for their fabrication.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 3, 2000
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Wayne L. Worrell, Kang N. Lee
  • Patent number: 6106640
    Abstract: Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: August 22, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Chain T. Liu
  • Patent number: 6103383
    Abstract: A new nickel-chromium alloy having high rigidity, castability, corrosion and oxidation resistance and easy workability is disclosed. The alloy comprises from about 45 to 81% nickel by weight, from about 13 to 25% chromium by weight, from about 3 to 15% tungsten by weight, and silicon and aluminum in the range from about 1 to about 6% by weight each. The new alloy has a high concentration of tungsten.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: August 15, 2000
    Assignee: Jeneric/Pentron Incorporated
    Inventor: Arun Prasad
  • Patent number: 6096141
    Abstract: Carbide-forming elements are added to nickel-based superalloys so as to minimize grain defects, such as freckle and stray grain defects. More specifically, carbide-forming elements that form from the liquid in the mushy zone of the solidification front of single crystal (SC) and directionally solidified (DS) nickel-based superalloys are added so as to reduce the formation of freckle and stray grain defects in such alloys. A preferred nickel-based superalloy includes, by weight, between about 6.00%-9.25% tantalum, 4.75%-6.50% tungsten, at least about 2.75% rhenium, between about 5.00% to about 7.00% aluminum, at least about 0.10% hafnium and carbon in an amount sufficient (typically between about 0.10-0.15% by weight) to form carbides with other constituents to reduce significantly freckle formation in the mushy zone of the superalloy during casting.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: August 1, 2000
    Assignee: General Electric Co.
    Inventors: Warren Tan King, Tresa M. Pollock, Christine Louise Zemsky, Wendy Howard Murphy
  • Patent number: 6093369
    Abstract: An oxidation-resistant alloy for use in a high-temperature or thermal cycling environment. The alloy comprises a nickel-based matrix having a solid solution of 19-23% chromium and 3-6% aluminum. A self-healing, thermodynamically stable oxide layer is formed upon a surface of the alloy which is exposed to an oxidizing atmosphere over a range of temperatures for extended periods of time. The oxide layer protects the alloy from the oxidizing atmosphere. Additions of calcium and yttrium are made to the matrix to substantially remove or stabilize oxygen and sulfur dissolved in the molten alloy. These additions result in retention of about 0.005-0.05% of calcium and 0.01-0.06% yttrium in the cast alloy. The matrix further includes about 2-8% iron to inhibit nucleation and growth of a "gamma prime" nickel aluminum intermetallic compound which would otherwise adversely harden the alloy and cause local disturbance of a uniform distribution of aluminum. The alloy has a VHN below about 350.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: July 25, 2000
    Assignee: Hoskins Manufacturing Company
    Inventors: Bertie Forrest Hall, Jr., Stanley James Valykeo
  • Patent number: 6066291
    Abstract: Castings based on the nickel aluminide intermetallic alloy IC-221M were melted and poured with an addition of enough molybdenum to bring its concentration to 5 weight %. This resulted in a minimization or elimination of the nickel-zirconium eutectic phase in the dies machined and prepared from these castings. The benefit of eliminating or minimizing the nickel zirconium eutectic phase with the addition of measurable amounts of molybdenum (Mo) to the nickel aluminide (Ni.sub.3 Al) alloy is the increase in the useful service life of the tooling made from it; thus providing the advantages of increased productivity, enhanced quality and reduced costs in a manufacturing setting. Heat treatment of the dies machined and prepared from these castings was also undertaken. The heat treatment regimen includes solution treatment at 2100.degree. F. for 24 hours and aging from between 1150.degree. F. and 1300.degree. F. for between 12 to 24 hours.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: May 23, 2000
    Assignee: United Defense, L.P.
    Inventors: Chien-Hua Chen, Guy Monroe Maddox, Jr., John Edward Orth, Elliott Lee Turbeville
  • Patent number: 6060174
    Abstract: A substrate (12) such as a superalloy turbine component is coated with a basecoat (14) of the type MCrAlY which also contains boron, where the amount of boron in the basecoat is in a concentration gradient where more boron is present near the top (16) than the bottom (20) of the basecoat (14) and boron is present in an average amount of over 0.50 wt. % throughout the basecoat cross-section (14) of the composite (10).
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: May 9, 2000
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Stephen M. Sabol, John G. Goedjen
  • Patent number: 6054096
    Abstract: Improved compositions for fabricating nickel superalloy single crystal articles are described. The compositions are characterized by the substantial absence of carbon, boron, zirconium and vanadium and intentional additions of cobalt. The cobalt additions increase the stability of the compositions and provide enhanced heat treatability. Single crystal articles of these compositions have utility as gas turbine engine components.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: April 25, 2000
    Assignee: United Technologies Corporation
    Inventors: David N. Duhl, Alan D. Cetel