Osmium Or Iridium Base Patents (Class 420/461)
  • Patent number: 11685970
    Abstract: An iridium alloy includes iridium, platinum, and tantalum. A content of the platinum in the iridium alloy falls within a range from 5 wt % to 30 wt %, and a content of the tantalum in the iridium alloy falls within a range from 0.3 wt % to 5 wt %.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: June 27, 2023
    Assignees: DENSO CORPORATION, ISHIFUKU METAL INDUSTRY CO., LTD.
    Inventors: Satoshi Hara, Nobuo Abe, Kenta Terai, Shunsuke Takeya, Hayato Yasuhara
  • Patent number: 11028501
    Abstract: A method for growing beta phase of gallium oxide (?-Ga2O3) single crystals from the melt contained within a metal crucible surrounded by a thermal insulation and heated by a heater. A growth atmosphere provided into a growth furnace has a variable oxygen concentration or partial pressure in such a way that the oxygen concentration reaches a growth oxygen concentration value (C2, C2?, C2?) in the concentration range (SC) of 5-100 vol. % below the melting temperature (MT) of Ga2O3 or at the melting temperature (MT) or after complete melting of the Ga2O3 starting material adapted to minimize creation of metallic gallium amount and thus eutectic formation with the metal crucible. During the crystal growth step of the ?-Ga2O3 single crystal from the melt at the growth temperature (GT) the growth oxygen concentration value (C2, C2?, C2?) is maintained within the oxygen concentration range (SC).
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: June 8, 2021
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Zbigniew Galazka, Reinhard Uecker, Detlef Klimm, Matthias Bickermann
  • Patent number: 10081855
    Abstract: The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a ?? phase having an L12 structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: September 25, 2018
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU TECHNO ARCH CO., LTD.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Kunihiro Tanaka, Muneki Nakamura, Koichi Sakairi
  • Patent number: 9605334
    Abstract: The present invention is a heat-resistant material comprising a Rh-based alloy, wherein the Rh-based alloy is a high heat-resistant and high strength alloy comprising a Rh-based alloy where Al and W as essential additive elements are added to Rh (0.2 to 15.0 mass % of Al, 15.0 to 45.0 mass % of W and Rh as the remainder), and a ?? phase (Rh3 (Al, W)) having an L12 structure is dispersed as a strengthening phase in a matrix. The Rh-based alloy of the present invention can be further improved in workability and high temperature oxidation characteristics by optionally adding B, C, Mg, Ca, Y, La or misch metals, Ni, Co, Cr, Fe, Mo, Ti, Nb, Ta, V, Zr, Hf, Ir, Re, Pd, Pt or Ru as an additive element. The Rh-based alloy of the present invention is a heat-resistant material having excellent high-temperature-resistant characteristics and a good balance of factors such as weight.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 28, 2017
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Yoshikazu Takaku, Toshihiro Omori
  • Patent number: 9063173
    Abstract: The present invention provides an iridium alloy suitable for a wire rod for probe pins, with zirconium as an additive element contained as an essential element and with aluminum and/or copper further added. In this iridium alloy, the additive concentration of zirconium is 100 to 500 ppm and the total additive concentration of aluminum and copper is 10 to 500 ppm. The present invention will be able to meet such requirements placed on a material for probe pins as that further miniaturization thereof would be demanded in the future and that use environment thereof becomes severe.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: June 23, 2015
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Tomokazu Obata
  • Publication number: 20150125338
    Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: March 12, 2012
    Publication date: May 7, 2015
    Inventors: Heather Murdoch, Christopher A. Schuh
  • Publication number: 20140348203
    Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Heather A. Murdoch, Christopher A. Schuh
  • Patent number: 8802151
    Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 12, 2014
    Assignee: BASF SE
    Inventors: Nikolay A. Grigorenko, Michael Muehlebach, Florian Muehlebach
  • Patent number: 8716168
    Abstract: Electrode catalysts for fuel cells, a method of manufacturing the same, a membrane electrode assembly (MEA) including the same, and a fuel cell including the MEA are provided. The electrode catalysts include a first catalyst alloy containing palladium (Pd), cobalt (Co), and phosphorus (P), a second catalyst alloy containing palladium (Pd) and phosphorus (P), and a carbon-based support to support the catalysts.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-jong Yoo, Kyung-jung Kwon, Chan-ho Pak, Victor Roev, Kang-hee Lee, Seon-ah Jin
  • Patent number: 8613788
    Abstract: The addition of 0.5 to 30 ppm boron and 0.5 to 20 ppm calcium to iridium and the Zr- and Hf-free alloys thereof and rhodium and the Zr- and Hf-free alloys thereof surprisingly increases the creep rupture strength at high temperatures, in particular around 1,800° C.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 24, 2013
    Assignee: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Uwe Hortig, Verena Baier, Harald Manhardt, Oliver Warkentin, David Francis Lupton
  • Publication number: 20130213107
    Abstract: The present invention is a metallic wire rod comprising iridium or an iridium-containing alloy and, the wire rod has in the cross section thereof biaxial crystal orientation of 50% or more of abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction. In the present invention, crystal orientation in the outer periphery from semicircle of the cross section which is the periphery of the wire rod is important, and in this zone, abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction is preferably not less than 50%.
    Type: Application
    Filed: December 15, 2011
    Publication date: August 22, 2013
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Koichi Sakairi, Kunihiro Tanaka, Muneki Nakamura, Fumie Seki
  • Publication number: 20130055625
    Abstract: Provided is a method for producing biodiesel fuel having an excellent oxidative stability and fluidity at low temperature, wherein the method provides selective hydrogenation of a poly-unsaturated fatty acid alkyl ester to the mono-unsaturated fatty acid alkyl ester while inhibiting the formation of the trans-isomer, and a biodiesel fuel composition. In the method for producing biodiesel fuel, a fatty acid alkyl ester prepared from fat and/or waste edible oil by transesterification reaction, and/or (2) a fatty acid alkyl ester treated by esterification reaction of a fatty acid is hydrogenated in the presence of a hydrogenation catalyst containing at least one of noble metals selected from those of Groups 8-10 in the periodic table under low hydrogen pressure.
    Type: Application
    Filed: February 18, 2011
    Publication date: March 7, 2013
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Makoto Toba, Yuji Yoshimura, Yoko Abe
  • Patent number: 8367266
    Abstract: A porous catalyst layer formed from discrete particles of unsupported metal, wherein at least 80%, suitably at least 90%, of the discrete particles have a mass of from 1 to 1000 zeptograms, and wherein the catalyst layer has a metal volume fraction of less than 30% and a metal loading of less than 0.09 mg/cm2 is disclosed. The catalyst layer is suitable for use in fuel cells and other electrochemical applications.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: February 5, 2013
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Ian Roy Harkness, Jonathan David Brereton Sharman, Edward Anthony Wright
  • Patent number: 8338051
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 25, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Publication number: 20120283336
    Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 8, 2012
    Applicant: BASF SE
    Inventors: Nikolay A. Grigorenko, Andreas Muehlebach, Michael Muehlebach, Florian Muehlebach
  • Publication number: 20120282132
    Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 8, 2012
    Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
  • Publication number: 20120270072
    Abstract: An apparatus and associated method are generally directed to a magnetic shield capable of screening magnetic flux with in-plane anisotropy. Various embodiments of the present invention may have at least one magnetic shield. The shield may be constructed of a Cobalt-Iridium compound capable of providing in-plane anisotropy along a longitudinal plane of the shield.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 25, 2012
    Applicant: SEAGATE TECHNOLOGY LLC.
    Inventors: James Gary Wessel, Bin Lu, Werner Scholz
  • Publication number: 20120262048
    Abstract: A spark plug comprises a shell having a substantially cylindrical threaded portion for threadable engagement in a cylinder head of an internal combustion engine, an insulator disposed coaxially in the shell, a center electrode disposed coaxially in the insulator, a side ground electrode having a first end coupled to the shell and a second end facing an end of the center electrode to define a spark discharge gap therebetween, and an electrode tip portion secured to either the side ground electrode or the center electrode proximate the spark discharge gap. The tip portion is formed from an alloy comprising from about 60 to about 70 percent by weight iridium, from about 30 to about 35 percent by weight rhodium, from 0 to about 10 percent by weight nickel, from about 3500 to about 4500 parts per million tantalum, and from about 100 to about 200 parts per million zirconium.
    Type: Application
    Filed: October 4, 2011
    Publication date: October 18, 2012
    Inventors: Eric P. Passman, Jeffrey T. Boehler, Edgar A. Leone
  • Publication number: 20120244032
    Abstract: In order to produce a coating on a substrate, the substrate is placed adjacent to a target. Material is cold ablated off the target by focusing a number of consecutive laser pulses on the target, thus producing a number of consecutive plasma fronts that move at least partly to the direction of said substrate. The time difference between said consecutive laser pulses is so short that constituents resulting from a number of consecutive plasma fronts form a nucleus on a surface of the substrate where a mean energy of said constituents allows the spontaneous formation of a crystalline structure.
    Type: Application
    Filed: October 4, 2010
    Publication date: September 27, 2012
    Applicant: PICODEON LTD OY
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Jukka Häyrynen
  • Publication number: 20120235555
    Abstract: A method for producing a spark plug which contains an inner conductor, an insulator surrounding the inner conductor, a spark plug body surrounding the insulator, and two electrodes forming an ignition gap. The first electrode is a center electrode connected to the inner conductor in an electrically conducting manner and the second electrode is a ground electrode connected to the spark plug body in an electrically conducting manner. An iridium component which contains more than 95 percent by weight of iridium is welded onto one of the electrodes. An iridium component that is punched out of an iridium sheet and has a thickness that is less in size than its diameter is also employed.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Applicant: BorgWarner BERU Systems GmbH
    Inventors: Werner Niessner, Christian Mayer, Alexander Schenk
  • Patent number: 8029628
    Abstract: An object of the present invention is to provide a material for a precious metal tip of a spark plug, which has more excellent durability, particularly oxidation wear resistance than a conventional one. The precious metal alloy for the spark plug according to the present invention contains 0.2 to 6.0 wt. % Cr as an essential component, further at least any one of Fe or Ni, and the balance being Ir. Here, the amount of Fe and Ni to be added is preferably 2.0 to 12.0 wt. % in total. According to the present invention, the surface may be oxidized to form an oxide layer made from a Cr—Fe oxide, a Cr—Ni oxide or a Cr—Fe—Ni oxide. The oxide layer is formed by a diffusion treatment by heating the precious metal alloy at 300 to 900° C. in an oxidative atmosphere, and preferably has a thickness of 5 to 100 ?m.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: October 4, 2011
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Kunihiro Tanaka, Koichi Sakairi, Kenichi Kurihara
  • Patent number: 7875569
    Abstract: A supported catalyst includes a carbonaceous catalyst support and first metal-second metal alloy catalyst particles adsorbed on the surface of the carbonaceous catalyst support, wherein the difference between a D10 value and a D90 value is in the range of 0.1 to 10 nm, wherein the D10 value is a mean diameter of a randomly selected 10 wt % of the first metal-second metal alloy catalyst particles and the D90 value is a mean diameter of a randomly selected 90 wt % of the alloy catalyst particles. The supported catalyst has excellent membrane efficiency in electrodes for fuel cells due to uniform alloy composition of a catalyst particle and supported catalysts that do not agglomerate.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Victor Roev, Sang-hyuk Suh, Kyung-jung Kwon, Hae-kyoung Kim
  • Publication number: 20100329922
    Abstract: The addition of 0.5 to 30 ppm boron and 0.5 to 20 ppm calcium to iridium and the Zr- and Hf-free alloys thereof and rhodium and the Zr- and Hf-free alloys thereof surprisingly increases the creep rupture strength at high temperatures, in particular around 1,800° C.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: W.C. HERAEUS GMBH
    Inventors: Uwe Hortig, Verena Baier, Harald Manhardt, Oliver Warkentin, David Francis Lupton
  • Patent number: 7825057
    Abstract: The present invention relates to a process for preparing electrode catalyst materials for a polymer electrolyte membrane fuel cell (PEMFC), and particularly to a high-performance platinum-non-platinum mixed electrode catalyst (Pt—RuOs/C) having a physically mixed structure of RuOs alloy and platinum materials, which is prepared by adding a small amount of platinum (Pt) to RuOs alloy materials highly dispersed on a carbon support, where the amount of platinum used is drastically reduced as compared to the conventional platinum materials, thus lowering the manufacturing cost.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 2, 2010
    Assignee: Hyundai Motor Company
    Inventors: Nak Hyun Kwon, Yung Eun Sung, In Su Park, Yong Hun Cho, In Chul Hwang, Il Hee Cho
  • Patent number: 7815849
    Abstract: An iridium alloy is produced having at least 85% by weight iridium, at least 0.005% by weight molybdenum, 0.001 to 0.6% by weight hafnium and, optionally, rhenium, the sum of molybdenum and hafnium being between 0.002 and 1.2% by weight. The iridium alloy is produced in a process, in which an IrMo and an IrHf master alloy, respectively, are created in an electric arc and immersed into an iridium melt, optionally together with Re.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: October 19, 2010
    Assignee: W.C. Heraeus GmbH
    Inventors: Michael Koch, David Francis Lupton, Harald Manhardt, Tobias Mueller, Reinhold Weiland, Bernd Fischer
  • Publication number: 20100239453
    Abstract: The present invention provides an iridium alloy suitable for a wire rod for probe pins, with zirconium as an additive element contained as an essential element and with aluminum and/or copper further added. In this iridium alloy, the additive concentration of zirconium is 100 to 500 ppm and the total additive concentration of aluminum and copper is 10 to 500 ppm. The present invention will be able to meet such requirements placed on a material for probe pins as that further miniaturization thereof would be demanded in the future and that use environment thereof becomes severe.
    Type: Application
    Filed: November 17, 2008
    Publication date: September 23, 2010
    Inventor: Tomokazu Obata
  • Patent number: 7740798
    Abstract: Alloy compositions, including devices and instruments that include the compositions, are disclosed. The compositions have high hardness, strength, corrosion resistance, and biocompatibility. The compositions can be used to manufacture, for example, medical devices and products.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: June 22, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jonathan S. Stinson
  • Publication number: 20100111751
    Abstract: Processes are provided for recovering precious metals from refractory materials using thiosulfate lixiviants. The processes can employ heap leaching or lixiviants that include one or more blinding agents.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: PLACER DOME TECHNICAL SERVICES LIMITED
    Inventors: Ralph Peter Hackl, Jinxing Ji, Paul George West-Sells
  • Publication number: 20100087911
    Abstract: The invention relates to an implant with a base body composed entirely or in parts of a biocorrodible manganese alloy.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 8, 2010
    Inventor: Dr. Heinz Mueller
  • Patent number: 7666352
    Abstract: An iridium-based alloy which has L12-type intermetallic compounds dispersedly precipitated therein and has a basic composition including, in terms of mass proportion, 0.1 to 9.0% Al, 1.0 to 45% W, and Ir as the remainder. The component system containing 0.1 to 1.5% Al has L12-type intermetallic compounds dispersedly precipitated therein. The component system containing 1.5 to 9.0%, excluding 1.5%, Al has L12-type and B2-type intermetallic compounds dispersedly precipitated therein. Part of the Ir may be replaced with an element (X) (Co, Ni, Fe, Cr, Rh, Re, Pd, Pt, or Ru) and part of the Al and W may be replaced with an element (Z) (Ni, Ti, Nb, Zr, V, Ta, Hf, or Mo). The iridium-based alloy, which contains L12-type intermetallic compounds [1r3(Al,W) and [(Ir, X)3(Al, W, Z)] dispersedly precipitated therein, has a high melting point. The lattice constant mismatch between the L12-type intermetallic compounds, i.e.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: February 23, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katsunari Oikawa, Ikuo Ohnuma, Toshihiro Ohmori, Jun Sato
  • Publication number: 20090317289
    Abstract: The present invention has an object of providing a single-stage production method that enables the production of ultra fine metal nanoparticles and ordered alloy nanoparticles within solution. The production method includes irradiating a solution of a salt or complex of a metal element, thereby decomposing and/or reducing the salt or complex within the solution and generating metal nanoparticles having an average particle size within a range from 0.3 to 100 nm within the solution.
    Type: Application
    Filed: June 27, 2007
    Publication date: December 24, 2009
    Applicant: N.E. Chemcat Corporation
    Inventors: Takashi Ito, Hiroshi Sugai, Masato Watanabe
  • Patent number: 7481971
    Abstract: An iridium alloy consists essentially of iridium and at least one of W and Zr, and optionally Rh. When present, W comprises between 0.01 and 5 wt % of the alloy; when present in combination with W, Zr comprises between 0.01 and 0.5 wt % of the alloy; when present alone or in combination with Rh only, Zr comprises between 0.01 and 0.09 wt % of the alloy; and when present, Rh comprises between 0.1 and 5 wt % of the alloy. The alloys may be modified by the addition of platinum and other platinum group metals and base metals. The alloys demonstrate enhanced physical and chemical properties and are suitable for use as electrode materials in spark plugs and other high temperature applications.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: January 27, 2009
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Duncan Roy Coupland, Robin Hyde
  • Publication number: 20080213123
    Abstract: The invention relates to an iridium alloy of at least 85% by weight iridium, at least 0.005% by weight molybdenum, 0.001 to 0.6% by weight hafnium and, if necessary, rhenium, the sum of molybdenum and hafnium being between 0.002 and 1.2% by weight, and to a process for the production of an iridium alloy, an IrMo and an IrHf master alloy, respectively, being produced in the electric arc and immersed into an iridium melt, if necessary together with Re.
    Type: Application
    Filed: July 7, 2006
    Publication date: September 4, 2008
    Applicant: W.C. Heraeus GmbH
    Inventors: Michael Koch, David Francis Lupton, Harald Manhardt, Tobias Mueller, Reinhold Weiland, Bernd Fischer
  • Publication number: 20080206090
    Abstract: An iridium-based alloy which has Ll2-type intermetallic compounds dispersedly precipitated therein and has a basic composition including, in terms of mass proportion, 0.1 to 9.0% Al, 1.0 to 45% W, and Ir as the remainder. The component system containing 0.1 to 1.5% Al has L12-type intermetallic compounds dispersedly precipitated therein. The component system containing 1.5 to 9.0%, excluding 1.5%, Al has Ll2-type and B2-type intermetallic compounds dispersedly precipitated therein. Part of the Ir may be replaced with an element (X) (Co, Ni, Fe, Cr, Rh, Re, Pd, Pt, or Ru) and part of the Al and W may be replaced with an element (Z) (Ni, Ti, Nb, Zr, V, Ta, Hf, or Mo). The iridium-based alloy, which contains L12-type intermetallic compounds [1r3(Al,W) and [(Ir, X)3(Al, W, Z)] dispersedly precipitated therein, has a high melting point. The lattice constant mismatch between the L12-type intermetallic compounds, i.e.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito ISHIDA, Ryosuke KAINUMA, Katsunari OIKAWA, Ikuo OHNUMA, Toshihiro OHMORI, Jun SATO
  • Publication number: 20080166259
    Abstract: It is aimed at creating noble metal nanoparticles having novel shapes, sizes, and arrangements usable for catalysts, electrodes, and the like. Micelles made into rod-like shapes having semicylindrical cross-sections are formed on a carrier substrate in a self-creating manner and immobilized thereon; noble metal ions are added and diffused in the micelles to complex the micelles with noble metal ions; and a reducing agent is subsequently caused to act thereon to progress a reductive reaction of noble metal within the immobilized micelles as reaction fields, thereby growing single crystalline noble metal ultrathin-film nanoparticles on the carrier substrate by utilizing the fixed micelles having the shapes as templates, respectively.
    Type: Application
    Filed: March 1, 2006
    Publication date: July 10, 2008
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tsuyoshi Kijima, Hideya Kawasaki
  • Patent number: 7229510
    Abstract: A manganese alloy sputtering target characterized in that oxygen is 1000 ppm or less, sulfur is 200 ppm or less and a forged texture is provided, and a method for producing a forged manganese alloy target stably by eliminating the drawbacks of manganese alloy that it is susceptible to cracking and has a low rupture strength. A manganese alloy sputtering target which can form a thin film exhibiting high characteristics and high corrosion resistance while suppressing generation of nodules or particles is thereby obtained.
    Type: Grant
    Filed: February 18, 2002
    Date of Patent: June 12, 2007
    Assignee: Nippon Mining & Metals, Co., Ltd.
    Inventor: Yuichiro Nakamura
  • Patent number: 7214644
    Abstract: A method for producing a copper/palladium colloid catalyst useful for Suzuki couplings.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 8, 2007
    Assignee: Xerox Corporation
    Inventors: Jennifer A. Coggan, Nan-Xing Hu, H. Bruce Goodbrand, Timothy P. Bender
  • Patent number: 6982122
    Abstract: An alloy composition includes, in atomic percent: about 1 to about 10% of at least one element selected from the group consisting of Zr and Hf, balance Ir.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: January 3, 2006
    Assignee: UT-Battelle, LLC
    Inventors: Chain T. Liu, Easo P. George, Everett E. Bloom
  • Patent number: 6913657
    Abstract: A hard precious metal alloy member is constituted of a gold alloy, which has a gold Au content of from 37.50 to 98.45 wt %, and contains a hardening additive in a range of not less than 50 ppm but less than 15,000 ppm, wherein the hardening additive is constituted of gadolinium Gd only, or gadolinium Gd and at least one element selected from the group consisting of rare-earth elements other than Gd, alkaline-earth elements, silicon Si, aluminum Al, and boron B.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: July 5, 2005
    Inventor: Kazuo Ogasa
  • Patent number: 6875324
    Abstract: The present invention is directed to a precious metal sputtering target having a columnar crystallographic microstructure such that crystals are grown in a direction normal to the sputtering surface in order to solve conventional problems. The high-purity sputtering target of the present invention prevents chipping of a minute cluster mass that occurs in a sputtering target produced through casting or powder metallurgy; produces thin film of excellent quality; and has considerably reduced internal defects.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: April 5, 2005
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Noriaki Hara, Somei Yarita, Ken Hagiwara, Ritsuya Matsuzaka
  • Publication number: 20030162299
    Abstract: Emissive iridium (III) complexes suitable for use in an emissive layer of an OLED and having the structure: 1
    Type: Application
    Filed: February 8, 2002
    Publication date: August 28, 2003
    Applicant: Canon Kabushiki Kaisha
    Inventors: Bing R. Hsieh, Travis P. S. Thoms, Jian Ping Chen
  • Publication number: 20030136478
    Abstract: A high-melting superalloy made of iridium or rhodium or both thereof as a base and containing at least nickel together with at least one a metal selected from the metal group consisting of titanium, zirconium, hafnium, vanadium, niobium, and tantalum, wherein at least both phases of an fcc phase and an LI2 phase are formed in the texture, and an amount of the LI2 phase from 20 to 80% by volume.
    Type: Application
    Filed: February 1, 2000
    Publication date: July 24, 2003
    Inventors: Yoko Mitarai, Yuefeng Gu, Xihong Yu, Yoshikazu Ro, Shizuo Nakazawa, Hiroshi Harada
  • Patent number: 6511632
    Abstract: A cathode material of an electron beam device comprising 0.5 to 9.0% by weight of a rare-earth metal of the cerium group, 0.5 to 15.0% by weight of tungsten and/or rhenium, 0.5 to 10% by weight of hafnium and the balance of iridium is provided. Since the cathode material has excellent plasticity, it is easy to manufacture small-size emitters. Also, since the density of the electron emission of the cathode material is high and the working temperature is low, a long lifetime can be ensured. Also, the cathode material is useful as a cathode material of an electron beam device.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: January 28, 2003
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Seo Choi, Yoon-Chang Kim, Kyu-Nam Joo, Nikolay Osaulenko, Vladislav Shutovsky, Oleg Kultashev
  • Patent number: 6270593
    Abstract: Mn alloy materials for magnetic materials contain 500 ppm or less, preferably 100 ppm or less, oxygen, 100 ppm or less, probably 20 ppm or less, sulfur, and preferably a total of 1000 ppm or less, more preferably 500 ppm or less, impurities (elements other than Mn and the alloying component). The alloying component that forms an alloy with Mn is one or two or more elements selected from the group consisting of Fe, Ir, Pt, pd, Rh, Ru, Ni, Cr and Co. Sputtering targets formed from the Mn alloy materials for use in depositing magnetic thin film, and the thin films so produced.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: August 7, 2001
    Assignee: Japan Energy Corporation
    Inventors: Yuichiro Shindo, Tsuneo Suzuki
  • Patent number: 6127047
    Abstract: High temperature alloys resistant to degradation and oxidation are provided. In accordance with preferred embodiments, alloys comprising from about 0.1 to about 50 atomic percent silicon, from about 10 to about 80 atomic percent aluminum, and at least one metal selected from the group consisting of chromium, iridium, rhenium, palladium, platinum, rhodium, ruthenium, osmium, molybdenum, tungsten, niobium and tantalum are formed. Shaped bodies and structural members comprising such alloys are also described as are methods for their fabrication.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 3, 2000
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Wayne L. Worrell, Kang N. Lee
  • Patent number: 6071470
    Abstract: Refractory superalloys consist essentially of a primary constituent selected from the group consisting of iridium, rhodium, and a mixture thereof, and one or more additive elements selected from the group consisting of niobium, tantalum, hafnium, zirconium, uranium, vanadium, titanium and aluminum, and the superalloys having a microstructure containing an FCC-type crystalline structure phase and an L1.sub.2 -type crystalline structure phase are precipitated. Preferably the amount of additive element(s) is 2 to 22 atom %.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: June 6, 2000
    Assignee: National Research Institute For Metals
    Inventors: Yutaka Koizumi, Yoko Yamabe, Yoshikazu Ro, Tomohiro Maruko, Shizuo Nakazawa, Hideyuki Murakami, Hiroshi Harada
  • Patent number: 5853904
    Abstract: A high temperature article, for example a rocket nozzle suitable for liquid-fuelled rocket motors for satellites, is formed from an alloy which is a binary or tertiary alloy from the Pt-Ir-Rh system. Such alloys exhibit a good balance between ease and reliability of manufacture, cost of alloy and high temperature strength and oxidation resistance.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: December 29, 1998
    Assignee: Johnson Matthey Public Limited Company
    Inventors: William G. Hall, David C. Power
  • Patent number: 5846702
    Abstract: A new group of Os(II) and Os(III) compounds useful as redox mediators in electrochemical biosensors. These compounds have 1) low oxidation potential, 2) fast reaction kinetics between the electroactive center of an enzyme and the compound, 3) slow oxidation of osmium by oxygen, and 4) excellent solubility in aqueous medium. These mediators are particularly useful as a component of a reagent used in an electrochemical biosensor, wherein the biosensor is useful for measuring analytes from a biological fluid, such as blood.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: December 8, 1998
    Assignee: Boehringer Mannheim Corporation
    Inventors: Zhi David Deng, Gerald F. Sigler, Nigel A. Surridge, Christopher D. Wilsey, Robert J. McEnroe, Walter W. Jernigan, Rebecca W. Muddiman
  • Patent number: 5804400
    Abstract: A rapid single step assay suitable for the detection or quantification of enzymes, in particular, hydrolases, especially, aminopeptidases and esterases. The enzymatic reaction causes the cleavage of a metal ligand labelled hydrolase substrate. The cleaved ligand alters the electrochemiluminescence of bidentate aromatic heterocyclic nitrogen-containing ligand reagent. The change in electrochemiluminescence correlates to the presence of hydrolase activity present in the sample. The assay can be performed on an IGEN Origen.RTM. Analyzer.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: September 8, 1998
    Assignee: Igen International, Inc.
    Inventors: Mark Martin, Liwen Dong
  • Patent number: 5618390
    Abstract: A method of depositing a nitrogen-containing electrochromic iridium oxide film by sputtering iridium in an atmosphere comprising oxygen and nitrogen is disclosed for use in producing a transparent electrochromic article. The article includes electroconductive films, e.g., ITO, on two substrates, one of which has a superimposed electrochromic film, e.g., tungsten oxide, and the other of which has superimposed the iridium oxide film of the invention. An ion conductive layer between the electrochromic films completes the article.
    Type: Grant
    Filed: February 16, 1996
    Date of Patent: April 8, 1997
    Assignee: PPG Industries, Inc.
    Inventors: Phillip C. Yu, David L. Backfisch, Nada A. O'Brien, Bryant P. Hichwa