Noble Metal Containing Patents (Class 420/483)
  • Publication number: 20140328717
    Abstract: The present invention is directed to a formulation of one or more low silver containing alloys (including those with silver content below 50 weight %, “w %”) that show one of the group of distinct pink, yellow and green colors and further demonstrate enhanced resistance to tarnish and other beneficial features described herein.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Inventor: Grigory RAYKHTSAUM
  • Publication number: 20140193655
    Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.
    Type: Application
    Filed: February 28, 2012
    Publication date: July 10, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Ikuya Kurosaki
  • Publication number: 20140030139
    Abstract: The present invention relates to a Cu—P—Ag—Zn brazing alloy, and more particularly, to a brazing alloy composed of copper (Cu), phosphorus (P), zinc (Zn), and silver (Ag), and including one or two or more elements of indium (In), gallium (Ga), boron (B), tin (Sn), silicon (Si), germanium (Ge), lithium (Li), nickel (Ni), and manganese (Mn). The present invention is composed of 1% by weight to 50% by weight of silver (Ag), 10% by weight to 35% by weight of zinc (Zn), 0.01% by weight to 4% by weight of phosphorus (P), and the remainder of copper (Cu).
    Type: Application
    Filed: July 30, 2013
    Publication date: January 30, 2014
    Applicant: ALCOMA METAL CO., LTD.
    Inventor: Chu Hyon Cho
  • Publication number: 20130248586
    Abstract: A brazing alloy is provided in the form of a wire, rod or preform, and is made of, in weight percent: 3-7.5% P, 0.1-1.9% Zn, 0-74.7% Ag, 0-80% Au, 0-10% Sn, 0-5% Ni, 0-3% each of Si, Mn, Li, and Ge, and the balance copper in an amount of at least 21.7%. In additional embodiments, Zn may be present in an amount of 0.6-1.9%. A method of torch brazing is also provided. The method includes forming the alloy into a wire or rod, placing the tip of the wire or rod in contact with a surface of a joint, heating the joint surface using a torch flame, and contacting the tip of the wire or rod to the heated joint surface to melt and flow the alloy onto the joint surface and into the joint under capillary action.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Inventor: Joseph W. Harris
  • Publication number: 20130129562
    Abstract: Pink colored metal alloys have a low gold content. The pink colored metal alloys of the present disclosure display a high level of tarnish resistance during extended use and wear, and have the appearance and properties comparable 10 karat (or above) gold alloys, which have a significantly higher gold content.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 23, 2013
    Applicant: HOOVER & STRONG, INC.
    Inventor: HOOVER & STRONG, INC.
  • Patent number: 8425697
    Abstract: A tin-free lead-free free-cutting magnesium brass alloy contains 56.0 to 64.0 wt % Cu, 1.05 to about 2.1 wt % Mg, 0.21 to 0.4 wt % P and other elements 0.002 to 0.9 wt % which contain at least two elements selected from Al, Si, Sb, rare earth elements, Ti and B and the balance being Zn with unavoidable impurities, accordingly a cutting percentage of the alloy is at least 80%. The process for producing such alloy is also proposed. The invented alloy is excellent in cuttability, castability, hot and cold workability, corrosion resistance, mechanical properties and weldability and particularly applicable in spare parts, forging and casting which need cutting and grinding process. The cost of necessary metal materials of the invented alloy is lower than lead-free free-cutting bismuth and antimony brass alloy and is equivalent to lead-contained brass alloy.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 23, 2013
    Assignee: Xiamen Lota International Co., Ltd.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20110224112
    Abstract: Sliding parts are made of Pb-free Cu-Bi based sintered material. The side in contact with a shaft is machined to a predetermined roughness. A number of Bi phases are present on the finished surface. Stable performance of Bi is to be exhibited. Machined sintered material covers a portion of the Bi phases. The ratio of the exposed surface area of the Bi phases is 0.5% or more relative to the area of the finished surface.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 15, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Ryo Mukai, Hiromi Yokota, Kao Mouri
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20100322818
    Abstract: A gold alloy having, expressed by weight, about 24.5 to 25.5% Au, about 19.0 to 23.0% Ag, about 43.0 to 47.0% Cu, about 6.0 to 10.0% Zn, about 0.05 to 0.30% Si, and about 0.005 to 0.03% Ir. Alternatively, a alloy having, expressed by weight, about 16-17% Au, about 19-23% Ag, about 50-55% Cu, about 6-10% Zn, about 0.05-0.30% Si, and about 0.005-0.03% Ir.
    Type: Application
    Filed: May 12, 2010
    Publication date: December 23, 2010
    Inventors: Todd Cleabert Bridgeman, Suzanne M. Dauck
  • Patent number: 7736448
    Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 15, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
  • Patent number: 7628872
    Abstract: A lead-free free-cutting copper-antimony alloy comprises in percentage by weight: 55 to 65% Cu, 0.3 to 2.0% Sb, 0.2 to 1.0% Mn, at least two elements selected from the group of Ti, Ni, B, Fe, Se, Mg, Si, Sn, P and rare-earth metal in amount of 0.1-1.0%, as well as balance Zn and unavoidable impurities. The brass alloys according to the present invention possess superior cutting property, weldability, corrosion resistance, dezincification resistance and high-temperature-oxidation resistance, and are suitable for use in drinking-water installations, domestic appliances, toy for children, fastener, etc. The process for producing such alloys is also proposed.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: December 8, 2009
    Assignee: Ningbo Powerway Alloy Material Co., Ltd.
    Inventors: Ming Zhang, Siqi Zhang, Jihua Cai, Haorong Lou, Xiao Xie
  • Publication number: 20090280026
    Abstract: A Cu—Zn—Si alloy includes, in % by weight, 70 to 80% of copper, 1 to 5% of silicon, to 0.5% of boron, up to 0.2% of phosphorus and/or up to 0.2% of arsenic, a remainder of zinc, plus inevitable impurities. Products using the alloy and processes for producing the alloy are also provided. The alloy is distinguished by an improved resistance to oxidation and by uniform mechanical properties.
    Type: Application
    Filed: June 3, 2009
    Publication date: November 12, 2009
    Applicant: DIEHL METALL STIFTUNG & CO. KG
    Inventors: HEINZ STROBL, KLAUS SCHWARM, HERMANN MAYER, NORBERT GAAG, ULRICH REXER, KLAUS MARSTALLER
  • Publication number: 20090239094
    Abstract: A Cu—Zn alloy strip and Sn plating strip thereof having improved thermal peel resistance of Sn Plating is provided. In a Cu—Zn alloy strip comprising 15 to 40% by mass of Zn and a balance of Cu and unavoidable impurities, the total concentration of P, As, Sb and Bi is regulated to 100 ppm by mass or less, the total concentration of Ca and Mg is regulated to 100 ppm by mass or less, and the concentrations of O and S are each regulated to 30 ppm by mass or less.
    Type: Application
    Filed: May 28, 2007
    Publication date: September 24, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventor: Takaaki Hatano
  • Patent number: 7569511
    Abstract: An alcohol steam reforming catalyst for generating hydrogen contains palladium, yttrium, and at least one of cerium and a metal oxide. The catalyst displays both an improved alcohol conversion rate and improved carbon dioxide selectivity. Methods of making and using the alcohol steam reforming catalyst are described.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 4, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Christopher R. Castellano, Ye Liu, Ahmad Moini, Gerald Stephen Koermer, Robert Joseph Farrauto
  • Publication number: 20090185945
    Abstract: A jewelry alloy that is approximately a 10% or 2.4 karat alloy that has similar color huge and shine and characteristics of 10 karat gold and higher. This alloy is considerably less expensive than traditional 10 karat gold and higher, but has all the similar working characteristics as working in sterling or 10 karat gold metal alloys. The alloy has the following compositions by weight; Gold 5.00-20.00%, Silver 35.00-55.00%, Copper 40.00-60.00%. In addition to its nice pink color and low cost it provides retailers with an affordable alloy for jewelry and provides jewelry craftsmen a low cost pink alloy that responds well to the jewelry manufacturing process (e.g., casting, milling, soldering, tooling, stone setting, polishing and plating).
    Type: Application
    Filed: January 13, 2009
    Publication date: July 23, 2009
    Inventor: RICHARD J. THIELEMANN
  • Publication number: 20080318076
    Abstract: Alloy for ornamental articles comprising a non-precious metal base and one or more precious metal alloying elements. The latter are present in an alloy, in combination or individually, with a content by weight chosen from the range of between 0.1/1000 and 100/1000. The content by weight produces concentrations of the precious metal alloying elements mainly in phase separation structures distributed around the particles of the crystal structure of the base. This particular nanometric distribution of the precious metal alloying elements imparts to the alloy a shininess which is comparable to that of precious metal alloys.
    Type: Application
    Filed: April 10, 2008
    Publication date: December 25, 2008
    Applicant: Silmar S.p.A.
    Inventor: Silverio CERATO
  • Publication number: 20080298998
    Abstract: A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities, wherein R{200} is 0.3 or more, in which the R{200} is a proportion of a diffraction intensity from a {200} plane of the following diffraction intensities and is represented by R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}), I{111} is a diffraction intensity from a {111} plane, I{200} is a diffraction intensity from a {200} plane, I{220} is a diffraction intensity from a {220} plane, and I{311} is a diffraction intensity from a {311} plane, each at the material surface.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 4, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroshi KANEKO, Tatsuhiko EGUCHI, Kuniteru MIHARA, Kiyoshige HIROSE
  • Patent number: 6716541
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02- 0.5%  The remainder is copper and includes impurities caused by smelting.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Jürgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Patent number: 6632300
    Abstract: A copper alloy having improved stress relaxation resistance is formed from a copper base alloy that consists, by weight, essentially of 1.8%-3.0% iron, 0.01%-1.0% zinc, 0.001 %-0.25% phosphorus, 0.1 %-0.35% magnesium and the balance is copper and unavoidable impurities. When compared to other copper base alloys that include iron, zinc and phosphorous, the disclosed alloy has improved resistance to stress relaxation. In addition, directionality of stress relaxation resistance (where stress relaxation resistance is typically poorer in a transverse strip direction relative to a longitudinal strip direction for a copper alloy that is strengthened by cold rolling) is reduced to being nearly equivalent, regardless of strip direction. The alloy is particularly useful for electronic applications, such as being formed into an electrical connectors.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: October 14, 2003
    Assignee: Olin Corporation
    Inventors: John F. Breedis, Dennis R. Brauer, Peter W. Robinson
  • Publication number: 20030044635
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: 1 nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02-0.
    Type: Application
    Filed: August 19, 2002
    Publication date: March 6, 2003
    Inventors: Udo Adler, Jurgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Patent number: 6413330
    Abstract: A lead-free free-cutting copper alloy having 69 to 79 percent, by weight, of copper; greater than 3 percent, by weight, of silicon; and a remaining percent, by weight, of zinc. The alloy preferable has greater than 3.0 percent and less than or equal to 4.0 percent, by weight, of silicon; and at least one element selected from among 0.02 to 0.4 percent, by weight, of bismuth, 0.02 to 0.4 percent, by weight, of tellurium, and 0.02 to 0.4 percent, by weight, of selenium. The alloy also preferable has at least one element selected from among 0.3 to 3.5 percent, by weight, of tin, 1.0 to 3.5 percent, by weight, of aluminum, and 0.02 to 0.25 percent, by weight, of phosphorus. In further embodiments, the alloy has at least one element selected from among 0.02 to 0.15 percent, by weight, of antimony, and 0.02 to 0.15 percent, by weight, of arsenic.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 2, 2002
    Assignee: Sambo Copper Alloy Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 5766377
    Abstract: A drinking water installation is made up of a source of drinking water and equipment for delivering the drinking water. In the equipment for delivering drinking water, a copper-zinc alloy which does not contain lead or bismuth is used. This alloy has a copper to zinc ratio of from 1.3 to 2.0 and contains at least one additive for improving the properties of the alloy. This alloy possesses superior machinability properties and yet does not pose the potential toxic hazard that lead- or bismuth-containing alloys do.
    Type: Grant
    Filed: September 16, 1996
    Date of Patent: June 16, 1998
    Assignee: Wieland-Werke AG
    Inventors: Gert Mueller, Harald Siegele, Michael Bohsmann
  • Patent number: 5340529
    Abstract: A gold based jewelry alloy is disclosed of preferably the 10 to 18 karat range containing primarily gold, copper, zinc and silver. This alloy is formulated to create a unique color, a mid-range hue with a fresh, soft appearance that is very complimenting to a variety of skin tones and gem stones. Aside from characteristics of appearance, the alloy disclosed has an increased hardness over standard yellow alloys for longer wear and improved polish holding characteristics. The alloy disclosed has excellent castability and formability and responds well to typical jewelry manufacturing processes (i.e., tooling, stone setting, soldering, remelting, forging and plating). The alloy contains about 40% to about 76% gold, about 20% to about 52% copper, about 0% to about 12% zinc and about 0% to about 12% silver.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: August 23, 1994
    Inventors: Troy C. DeWitt, Vicki A. DeWitt
  • Patent number: 5198154
    Abstract: A composition, which comprises copper alloy powder represented by a general formula Ag.sub.x Cu.sub.y M.sub.z (where M represents one or more metals selected from Pb, Bi and Zn; x, y and z are atomic ratio values, respectively; and 0.001.ltoreq.x.ltoreq.0.4, 0.6.ltoreq.y.ltoreq.0.999, 0.ltoreq.z.ltoreq.0.05 and x+y+z=1) having particle surface silver concentration higher than the average silver concentration thereof and a region in which a silver concentration increases toward the particle surface, glass frit and an organic vehicle, is useful for pastes for screen printing, electroconductive circuits, electrodes, electromagnetic wave shields and an electroconductive pastes for a resistance contacts.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: March 30, 1993
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Akinori Yokoyama, Tsutomu Katsumata, Hitoshi Nakajima
  • Patent number: 5045411
    Abstract: A gold based alloy containing gold, silver, copper, zinc, silicon, iron, boron, nickel and indium for the manufacture of gold articles is described which has a lower melting point, extended remelting capabilities, high resistance to cracking, improved color consistency and increased ductility.
    Type: Grant
    Filed: January 10, 1990
    Date of Patent: September 3, 1991
    Assignee: P.M. Refining, Inc.
    Inventors: Arthur D. Taylor, Malcolm Warren, Perry H. Berger
  • Patent number: 4587097
    Abstract: A metal alloy consisting essentially of about 4-16 atom percent manganese, 4-16 atom percent silicon, 0-16 atom percent tin, 0-20 atom percent zinc, 0-10 atom percent silver and about 0-10 atom percent indium, the balance being copper and incidental impurities. The alloy is adapted for brazing steels, cemented carbides to steels, copper and copper alloys to steels, copper to copper and copper alloys, and composite materials to steels and copper.
    Type: Grant
    Filed: June 22, 1984
    Date of Patent: May 6, 1986
    Assignee: Allied Corporation
    Inventors: Anatol Rabinkin, Amitava Datta
  • Patent number: 4464213
    Abstract: The retention of the beta brass phase structure (body-centered cubic) as gold atoms (molars) are substituted for copper atoms. Thus essentially the useful physical and working properties of the beta brasses are retained (hot forgeability, castability, some ductility etc.). As to chemical behavior, there is a definite nobleization effect of the beta brasses, i.e. all gold-containing beta golds are more tarnish resistant than the beta brasses, and the nobleization increases with gold content. However, of most importance from a commercial point of view, is that the low kt beta golds (4-kt, 6-kt) are more tarnish resistant than the 10-kt conventional jewelry alloys, and equal to those of 14-kt gold. In essence there is a tarnish resistance enhancement in going from alpha structure to beta structure kt for kt, in the jewelry range. Other noble metals (Pd, Pt, Ru, Rh, Os, Ir and Ag) may be used singly or in combinations with, or in lieu of, the gold.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: August 7, 1984
    Inventor: John P. Nielsen