Nickel Containing Patents (Class 420/485)
  • Publication number: 20100047112
    Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.
    Type: Application
    Filed: February 14, 2008
    Publication date: February 25, 2010
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Akira Fugono, Hiroshi Sakamoto
  • Patent number: 7666246
    Abstract: Hard phase particles including Co alloy particles, carbide alloy particles, and silicide particles are dispersed substantially uniformly throughout a matrix composed of Cu self-fluxing alloy of a cladded portion. The cladded portion contains 6 to 15% by weight of Co, 3 to 8% by weight of one of Cr and Mo, 0.3 to 1% by weight of W, 0.5 to 1.8% by weight of Fe, 8 to 15% by weight of Ni, 0.08 to 0.2% by weight of C, 1.5 to 4% by weight of Si, 0.5 to 0.8% by weight of Al, and 0.1 to 0.3% by weight of P, and inevitable impurities and Cu as a balance. The hard phase particles have an average particle diameter of 8 to 20 ?m and a particle size distribution width of 0.1 to 100 ?m, and to occupy 10 to 20% in an arbitrary cross section of the cladded portion.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: February 23, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shogo Matsuki, Yositaka Tsujii
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Patent number: 7628873
    Abstract: A beryllium copper alloy is provided, having a thickness “t” in a range from 0.05 mm to 0.5 mm and having an alloy composition consisting by weight (or mass %), of Cu100?(a+b)NiaBeb, wherein 1.0?a?2.0, 0.15?b?0.35, and 5.5 ?a/b?6.5. The beryllium copper alloy also exhibits a 0.2% proof stress equal to or above 650 MPa, an electric conductivity equal to or above 70% IACS, and a bending formability defined by a ratio of R/t=0, wherein “R” is a maximum bend radius before cracking at a bent portion when the beryllium copper alloy is bent into a V shape at a right angle.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 8, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Ota, Naokuni Muramatsu
  • Publication number: 20090257909
    Abstract: A copper alloy strip material for electrical/electronic equipment includes a copper alloy containing 2.0 to 5.0 mass % Ni, 0.43 to 1.5 mass % Si, and a remaining component formed of Cu and an unavoidable impurity. Three types of intermetallic compounds A, B, and C comprising Ni and Si in a total amount of 50 mass % or more are contained. The intermetallic compound A has a compound diameter of 0.3 ?m to 2 ?m, the intermetallic compound B has a compound diameter of 0.05 ?m to less than 0.3 ?m, and the intermetallic compound C has a compound diameter of more than 0.001 ?m to less than 0.05 ?m.
    Type: Application
    Filed: September 12, 2007
    Publication date: October 15, 2009
    Inventors: Kuniteru Mihara, Tatsuhiko Eguchi
  • Patent number: 7582173
    Abstract: Disclosed is a single-phase amorphous alloy having an enhanced ductility. The single-phase amorphous alloy has a composition range of A100-a-bBaCb where a and b are respectively 0<a<15, 0?b?30 in atomic percent. Here, A includes at least one element selected from the group consisting of Be, Mg, Ca, Ti, Zr, Hf, Pt, Pd, Fe, Ni, and Cu. B includes at least one element selected from the group consisting of Y, La, Gd, Nb, Ta, Ag, Au, Co, and Zn. C includes at least one element selected from the group consisting of Al, In, Sn, B, C, Si, and P.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 1, 2009
    Assignee: Yonsei University
    Inventors: Eun Soo Park, Jong Hyun Na, Hye Jung Chang, Ju Yeon Lee, Byung Joo Park, Won Tae Kim, Do Hyang Kim
  • Publication number: 20090202861
    Abstract: A copper-based deposited alloy strip for a contact material has a maximum value of a difference not larger than 100 MPa among three of tensile strengths, that are a tensile strength in a rolling direction thereof, a tensile strength in a direction crossing the rolling direction with an angle of 45 degrees, and a tensile strength in a direction crossing the rolling direction with an angle of 90 degrees. A process for producing the copper-based deposited alloy strip for a contact material includes the steps of: performing a solution heated treatment on a copper alloy strip; and performing an aging heat treatment on the copper alloy strip.
    Type: Application
    Filed: September 13, 2007
    Publication date: August 13, 2009
    Inventors: Kuniteru Mihara, Masato Ohno, Naofumi Tokuhara, Tatsuhiko Eguchi
  • Publication number: 20090183803
    Abstract: A copper base alloy having an improved combination of yield strength and electrical conductivity consisting essentially of between about 1.0 and about 6.0 weight percent Ni, up to about 3.0 weight percent Co, between about 0.5 and about 2.0 weight percent Si, between about 0.01 and about 0.5 weight percent Mg, up to about 1.0 weight percent Cr, up to about 1.0 weight percent Sn, and up to about 1.0 weight percent Mn, the balance being copper and impurities, the alloy processed to have a yield strength of at least about 137 ksi, and an electrical conductivity of at least about 25% IACS.
    Type: Application
    Filed: December 17, 2008
    Publication date: July 23, 2009
    Inventors: Ralph A. Mutschler, Peter William Robinson, Derek E. Tyler, Andrea Kaufler, Hans-Achim Kuhn, Uwe Hofmann
  • Publication number: 20090035174
    Abstract: The invention provides Cu—Ni—Si alloys containing Co, and having excellent strength and conductivity. A copper alloy for electronic materials in accordance with the invention contains about 0.5-about 2.5% by weight of Ni, about 0.5-about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si ([Ni+Co]/Si ratio) satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co (Ni/Co ratio) satisfies the formula: about 0.5?Ni/Co?about 2.
    Type: Application
    Filed: March 23, 2006
    Publication date: February 5, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Publication number: 20080314612
    Abstract: A conductor of an electric cable for wiring, containing a copper alloy material containing 1.0 to 4.5 mass % of Ni, 0.2 to 1.1 mass % of Si, and the balance of Cu and unavoidable impurities, in which the copper alloy material has an average grain diameter of 0.2 to 5.0 ?m.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 25, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Isao Takahashi, Tatsuhiko Eguchi
  • Publication number: 20080298998
    Abstract: A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities, wherein R{200} is 0.3 or more, in which the R{200} is a proportion of a diffraction intensity from a {200} plane of the following diffraction intensities and is represented by R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}), I{111} is a diffraction intensity from a {111} plane, I{200} is a diffraction intensity from a {200} plane, I{220} is a diffraction intensity from a {220} plane, and I{311} is a diffraction intensity from a {311} plane, each at the material surface.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 4, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroshi KANEKO, Tatsuhiko EGUCHI, Kuniteru MIHARA, Kiyoshige HIROSE
  • Patent number: 7413619
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 19, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takenori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Publication number: 20080175746
    Abstract: The present invention provides Corson alloy having remarkably improved properties, in particular, by bringing out the effect of added Cr more efficiently. A copper alloy for electronic materials comprising 2.5-4.5% by mass of Ni; 0.50-1.2% by mass of Si; 0.0030-0.2% by mass of Cr; balance Cu and inevitable impurities, wherein the weight ratio of Ni to Si is in the range of 3 to 7 and the content of carbon is 50 ppm by mass or less is provided.
    Type: Application
    Filed: January 18, 2007
    Publication date: July 24, 2008
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Publication number: 20080075625
    Abstract: The invention relates to a conductive material consisting of an alloy that contains copper, for use as a plug-in or clip connection. Said material comprises a cover layer that is deposited on at least some sections of the contact surface, said layer consisting at least of a support layer and an adhesive layer. The anti-friction layer has a carbon content greater or less than 40 and less than or equal to 70 atomic percent.
    Type: Application
    Filed: June 15, 2005
    Publication date: March 27, 2008
    Applicants: OC OERLIKON BALZERS AG, WIELAND-WERKE AG
    Inventors: Thomas Jabs, Michael Scharf, Martin Grischke, Orlaw Massler
  • Patent number: 7291231
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a discontinuous network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 6, 2007
    Assignee: Metglas, Inc.
    Inventors: Shinya Myojin, Richard L. Bye, Nicholes J. DeCristofaro, David W. Millure, Gary A. Schuster
  • Patent number: 7214644
    Abstract: A method for producing a copper/palladium colloid catalyst useful for Suzuki couplings.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 8, 2007
    Assignee: Xerox Corporation
    Inventors: Jennifer A. Coggan, Nan-Xing Hu, H. Bruce Goodbrand, Timothy P. Bender
  • Patent number: 7180176
    Abstract: Heat dissipating plate (4) made of copper-base alloy is proposed that exhibits high degree of flatness after joining in the step of assembling power semiconductor modules, IC packages, etc., that will not crack in the solder (3) joint if subjected to heat cycles during joining or in an environment of use, and that has high heat conductivity and cost effectiveness. The heat dissipating plate (4) uses a copper-base alloy having a 0.2% yield strength of at least 300 N/mm2 which is characterized in that the 0.2% yield strength after heating at 400° C. for 10 minutes is at least 90% of the 0.2% yield strength before heating and that said copper-base alloy has a heat conductivity of at least 350 W/m·K and contains at least one element of the group consisting of Fe, Co and Ni plus P in a total amount of 0.01–0.3%; the heat dissipating plate (4) is 10–200 mm long on each side, 0.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: February 20, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hideki Endou, Shingo Yanase
  • Patent number: 6764556
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 20, 2004
    Inventors: Shinya Myojin, Richard L. Bye, Nicholas J. Decristofaro, Jeng S. Lin, David W. Millure, Joseph G. Cox, Jr., Dale R. Walls, Gary B. A. Schuster
  • Publication number: 20040079456
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 29, 2004
    Applicants: Onlin Corporation, Wieland Werke A.G.
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 6716541
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02- 0.5%  The remainder is copper and includes impurities caused by smelting.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Jürgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Publication number: 20040042928
    Abstract: A high strength copper alloy is made of a prescribed material composed of Cu and inevitable impurities as well as titanium (Ti) at 0.1 to 4 weight percent, wherein it is possible to further include at least one of Ag, Ni, Fe, Si, Sn, Mg, Zn, Cr, and P at a prescribed weight percent ranging from 0.01 to 2 in total. In a manufacturing method, the material is subjected to cold rolling, precipitation treatment, and additional cold rolling sequentially, wherein the reduction rate of the additional cold rolling is set to 3% or more, and the total reduction rate of the cold rolling and the additional cold rolling ranges from 15% to 50%, so that a ratio of yield strength versus tensile strength is set to 0.9 or more. In addition, it is possible to perform stress relaxation annealing after the additional cold rolling upon heating of the material for a prescribed time.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Inventors: Fumiaki Sasaki, Yozo Tsugane
  • Publication number: 20030165396
    Abstract: The invention relates to use of a hardenable copper alloy containing 0.1% to 0.5% beryllium and 0.5% to 2% nickel for the production of broad side plates for thin slab continuous casting molds at casting speeds of at least 2 to 6 m/min and higher.
    Type: Application
    Filed: April 2, 2003
    Publication date: September 4, 2003
    Inventors: Gereon Fehlemann, Gerhard Kohlert
  • Publication number: 20030155050
    Abstract: A high-strength and high-conductivity copper alloy is disclosed which contains essentially of: (a) from 0.5 to 2.5 wt % of Ni; (b) from 0.5 to 2.5 wt % of Co; (c) from 0.5 to 0.8 wt % of Si; (d). from 0.05 to 0.15 wt % of either Mg or P or both; and (e) the balance of Cu. The amounts of Co, Ni, and Si satisfy the following equations: 2%≦(Ni+Co)≦4%, and 0.8≦(Ni/4+Co/6)/Si≦1.2. The new copper alloy exhibits substantially improved electrical conductivity, greater than 65% IACA, than the commercially available C7025 copper alloy, while maintaining a satisfactory tensile strength (greater than 600 MPa), and, thus, can be most advantageously used for preparing leadframes for use in high pin-number (greater than 100 pins) IC application.
    Type: Application
    Filed: April 21, 2003
    Publication date: August 21, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jin-Yaw Liu, Yu-Lian Sha, I-Ching Lee, Mao-Ying Teng, Ray-Iun Liu, Ren-Der Jean
  • Patent number: 6605371
    Abstract: A brazing alloy according to the present invention has a melting point equivalent to that of a copper brazing filler and is excellent in corrosion- and oxidation-resistance. The brazing alloy consists essentially of Mn, Ni and Cu, and has a composition in terms of weight percentage which, when plotted on a diagram as shown in FIG. 1, falls within a range defined by: the point A (37% Mn, 63% Ni, 0% Cu), the point B (18% Mn, 27% Ni, 55% Cu); the point C (42% Mn, 3% Ni, 55% Cu); the point D (50% Mn, 3% Ni, 47% Cu); and the point E (50% Mn, 50% Ni, 0% Cu), wherein Mn=50% is exclusive.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masami Ueda, Masaaki Ishio, Hidetoshi Noda, Tsuyoshi Hasegawa
  • Patent number: 6475635
    Abstract: A copper alloy sliding material which can bring about superior resistance to fatigue as well as good anti-seizure property without containing any Pb. The copper alloy sliding material is made to have the structure in which both of the hard copper alloy phase and the soft copper alloy phase coexist in a mixture state. On the surface of the sliding material, the soft copper alloy phase comes to have a shape more concave than that of the hard copper alloy phase when receiving a load or when being in a sliding wear relation, in which concave portions is retained lubricant with the result that the anti-seizure property is enhanced. Further, since the soft phase and the hard phase are made of the same copper alloy, the wettability thereof becomes good, and Ni and etc. contained in the hard copper alloy phase are diffused into the soft copper alloy phase, so that the hardness of the boundary portion defined between the phases come to be gradually varied.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: November 5, 2002
    Inventors: Kenji Sakai, Naohisa Kawakami, Satoru Kurimoto, Takashi Inaba, Koichi Yamamoto, Takayuki Shibayama
  • Publication number: 20020127133
    Abstract: A copper alloy material for parts of electronic and electric machinery and tools contains 1.0 to 3.0 mass % of Ni, 0.2 to 0.7 mass % of Si, 0.01 to 0.2 mass % of Mg, 0.05 to 1.5 mass % of Sn, 0.2 to 1.5 mass % of Zn, and less than 0.
    Type: Application
    Filed: November 2, 2001
    Publication date: September 12, 2002
    Inventors: Takayuki Usami, Takao Hirai
  • Patent number: 6428635
    Abstract: An alloy capable of forming a (100) [001] cube-texture by thermo-mechanical techniques has 5 to 45 atomic percent nickel with the balance being copper. The alloy is useful as a conductive substrate for superconducting composites where the substrate is coated with a superconducting oxide. A buffer layer can optionally be coated on the substrate to enhance deposition of the superconducting oxide. Methods for producing the alloys, substrates, and superconductors are included.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 6, 2002
    Assignees: American Superconductor Corporation, The Regents of the University of California
    Inventors: Leslie G. Fritzemeier, Elliott D. Thompson, Edward J. Siegal, Cornelis Leo Hans Thieme, Robert D. Cameron, James L. Smith, W. Larry Hults
  • Patent number: 6413649
    Abstract: The present invention is directed to brazing filler metals that can be used in the infiltration brazing of porous matrix materials without the need for a flux. The brazing filler metals contain two different Group II metals and a third metal of Group 9 and 10. A particular brazing filler metal of the invention contains silver, copper, and nickel. The invention is also directed to composite materials formed by infiltration of the brazing material into a porous matrix, and to methods for preparing the composite materials. The invention is further directed to composite articles fabricated from composite materials, including steel bearings or bushings, and to methods of preparing the composite articles.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: July 2, 2002
    Assignee: The Morgan Crucible Company plc
    Inventors: David J. Kepniss, Toshimasa Oyama
  • Patent number: 6391163
    Abstract: The present invention provides a method and apparatus for forming a copper layer on a substrate, preferably using a sputtering process. The sputtering process involves bombarding a conductive member of enhanced hardness with ions to dislodge the copper from the conductive member. The hardness of the target may be enhanced by alloying the copper conductive member with another material and/or mechanically working the material of the conductive member during its manufacturing process in order to improve conductive member and film qualities. The copper may be alloyed with magnesium, zinc, aluminum, iron, nickel, silicon and any combination thereof.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 21, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Murali Abburi, Murali Narasimhan, Seshadri Ramaswami
  • Publication number: 20020029827
    Abstract: A high-strength and high-conductivity copper alloy is disclosed which contains essentially of: (a) from 0.5 to 2.5 wt % of Ni; (b) from 0.5 to 2.5 wt % of Co; (c) from 0.5 to 0.8 wt % of Si; (d) from 0.05 to 0.15 wt % of either Mg or P or both; and (e) the balance of Cu. The amounts of Co, Ni, and Si satisfy the following equations: 2%<(Ni+Co)<4%, and 0.8<(Ni/4+Co/6)/Si<1.2. The new copper alloy exhibits substantially improved electrical conductivity, greater than 65% IACA, than the commercially available C7025 copper alloy, while maintaining a satisfactory tensile strength (greater than 600 MPa), and, thus, can be most advantageously used for preparing leadframes for use in high pin-number (greater than 100 pins) IC application.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 14, 2002
    Inventors: Jin-Yaw Liu, Yu-Lian Sha, I-Ching Lee, Mao-Ying Teng, Ray-Iun Liu, Ren-Der Jean
  • Publication number: 20020012603
    Abstract: A copper alloy of high strength and high electroconductivity which is excellent in characteristics such as strength, electroconductivity and bending formability required as copper alloys for use in electric and electronic parts such as lead frames, terminals and connectors, as well as excellent in the characteristics such as softening resistance, shearing formability.
    Type: Application
    Filed: May 21, 2001
    Publication date: January 31, 2002
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (kobe Steel, Ltd.)
    Inventor: Yosuke Miwa
  • Publication number: 20020007879
    Abstract: An unwrought continuous cast Cu—Ni—Sn spinodal alloy and a method for producing the same is disclosed. The Cu—Ni—Sn spinodal alloy is characterized by an absence of discontinuous &ggr;′ phase precipitate at the grain boundaries, ductile fracture behavior during tensile testing, high strength, excellent wear and corrosion resistance, superior bearing properties, and contains from about 8-16 wt. % nickel, from about 5-8 wt. % tin, and a remainder copper.
    Type: Application
    Filed: November 3, 1995
    Publication date: January 24, 2002
    Inventors: WILIAM D. NIELSEN JR., WILLIAM D. NIELSEN SR.
  • Publication number: 20020005235
    Abstract: A material for manufacturing containers to hold metallic melts, such as a crucible for melting and remelting installations, which has both favorable thermomechanical properties as well as outstanding weldability. The material is a copper alloy in the non-hardened condition, consisting of 0.2 to 1.5% nickel, 0.002 to 0.12% of at least one element of the group including phosphorus, aluminum, manganese, lithium, calcium, silicon and boron, the balance being copper and impurities resulting from the production process. For a targeted increase in strength, the copper alloy can also contain up to 0.3% zirconium.
    Type: Application
    Filed: September 10, 2001
    Publication date: January 17, 2002
    Applicant: KM Europa Metal AG
    Inventors: Thomas Helmenkamp, Dirk Rode, Hans-Gunter Wobker
  • Patent number: 6334915
    Abstract: A copper alloy sheet comprises 0.4 to 2.5 wt % of Ni, 0.05 to 0.6 wt % of Si, 0.001 to 0.05 wt % of Mg, and the balance being Cu and inevitable impurities wherein an average grain size in the sheet is in the range of 3 to 20 &mgr;m and a size of an intermetallic compound precipitate of Ni and Si is in the range of 0.3 &mgr;m or below. If necessary, the sheet may further comprise one or more of 0.01 to 5 wt % of Zn, 0.01 to 0.3 wt % of Sn, 0.01 to 0.1 wt % of Mn, and 0.001 to 0.1 wt % of Cr. It is preferred that when an X-ray diffraction intensity from {200} plane in the surface of said sheet is taken as I{200}, an X-ray diffraction intensity from {311} plane is taken as I{311}, and an X-ray diffraction intensity from {220} plane is taken as I{220}, the following equation is satisfied [I{200}+I{311}]/I{220}≧0.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 1, 2002
    Assignee: Kabushiki Kaish Kobe Seiko Sho
    Inventors: Tetsuzo Ogura, Takashi Hamamoto, Masahiro Kawaguchi
  • Publication number: 20010001641
    Abstract: A valve seat (2) is formed by build-up cladding by irradiating a laser beam on a copper alloy powder (4) provided in the rim of a port (3) formed in an engine cylinder head (1). The copper alloy powder (4) consists of copper (Cu), 6-9 wt % nickel (Ni), 1-5 wt % silicon (si), and 1-5 wt % of one of molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb) and vanadium (V). Due to this composition, the valve seat (2) has few microcracks and excellent abrasion resistance.
    Type: Application
    Filed: February 22, 1999
    Publication date: May 24, 2001
    Applicant: Ryuji Ninomiya
    Inventors: RYUJI NINOMIYA, TAKESHI OJIRO, KOICHI MIYAKE, MAKOTO KANO, KENJI TSUSHIMA, HIDENOBU MATSUYAMA, KENJI SUZUKI
  • Patent number: 6103188
    Abstract: We provide a new copper microalloy with high-conductivity, excellent heat resistance and high strain strength, which can be obtained by conventional continuous or semi-continuous casting, which essentially consists of at least one element selected from the following list:______________________________________ 5-800 mg/Kg Pb (lead) 10-100 mg/Kg Sb (antimony) 5-1000 mg/Kg Ag (silver) 5-700 mg/Kg Sn (tin) 1-25 mg/Kg Cd (cadmium) 1-30 mg/Kg Bi (bismuth) 20-500 mg/Kg Zn (zinc) 10-400 mg/Kg Fe (iron) 15-500 mg/Kg Ni (nickel) 1-15 mg/Kg S (sulfur) ______________________________________in all cases, with 20-500 mg/Kg O (oxygen). The alloy is suitable for all the applications that require an electrical conductivity similar to that of pure copper, but with a better heat resistance, better mechanical properties and lower standard deviation values in strain strength.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: August 15, 2000
    Assignee: La Farga Lacambra, S.A.
    Inventors: Jose Oriol Guixa Arderiu, Miquel Garcia Zamora, Ferran Espiell Alvarez, Miquel Angel Fernandez Lopez, Araceli Esparducer Broco, Merce Segarra Rubik, Josep M.sup.a Chimenos Ribera
  • Patent number: 6083328
    Abstract: A hardenable copper alloy, suitable as a material for manufacturing casting rolls and casting wheels that are subjected to changing temperature stresses, is disclosed. The hardenable copper alloy comprises 1.0 to 2.6% nickel, 0.1 to 0.45% beryllium, and the remainder of copper, inclusive of impurities resulting from manufacturing and the customary processing additives, and has a Brinell hardness of at least 200 and an electric conductivity of over 38 m/.OMEGA. mm.sup.2.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: July 4, 2000
    Assignee: KM Europa Metal AG
    Inventors: Horst Gravemann, Thomas Helmenkamp
  • Patent number: 6001196
    Abstract: A higher order beryllium-nickel-copper alloy a process for making the same, and an article of manufacture comprising the alloy, the alloy being represented by the formula (0.15-0.5% Be) +(0.40-1.25% Ni)+(0-0.25% Sn)+[(0.06-1% Zr) and/or (0.06-1% Ti)], the balance copper, where the sum of % Zr and % Ti is generally within a range of 0.06% and 1%, the alloy being characterized by improved electrical conductivity, bend formability and stress relaxation resistance without sacrificing strength.
    Type: Grant
    Filed: October 28, 1996
    Date of Patent: December 14, 1999
    Assignee: Brush Wellman, Inc.
    Inventors: John C. Harkness, Shelley J. Wolf
  • Patent number: 5955176
    Abstract: A slider suspension system for use in a magnetic recording disk file comprised of a laminated suspension positioned between an actuator arm and a read/write slider. The laminated suspension is comprised of a conductor layer, a dielectric layer and a support layer. The conductor layer is comprised of a high strength conductive copper alloy selected from the group consisting of Cu--Ni--Si--Mg alloy, Be--Cu--Ni alloy, and Cu--Ti alloy, wherein the conductive layer has a thickness less than or equal to eighteen microns. The dielectric layer is comprised of an electrically insulating material such as a polyimide. The support layer is comprised of a rigid material such as stainless steel.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: September 21, 1999
    Assignee: International Business Machines Corporation
    Inventors: A. David Erpelding, Darrell D. Palmer, Surya Pattanaik, Oscar J. Ruiz
  • Patent number: 5938864
    Abstract: A copper alloy material excellent in the resistance to corrosion caused by lubricating oils containing sulfur-based additives. The alloy comprises from over 5 to 50% Ni, 0.1-2% Ag and the balance consisting substantially of Cu, and optionally contains at least one member selected among (1) up to 20% Sn, up to 0.5% P, up to 5% Al, up to 1% Si, up to 5% Mn, up to 30% Zn, up to 10% Fe and/or up to 1% Sb, (2) up to 30% in total of Pb and/or Bi, (3) up to 30% in total of graphite MoS.sub.2. WS.sub.2 and/or BN, (4) up to 20% in total of Al.sub.2 O.sub.3, SiC, SiO.sub.2. Fe.sub.3 P, AlN, Si.sub.3 N.sub.4, TiC, WC, BN, NiB and/or FeB, and (5) 0.001-1% S.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: August 17, 1999
    Assignee: Taiho Kogyo Co., LTd.
    Inventors: Takashi Tomikawa, Toshihiko Kira, Soji Kamiya
  • Patent number: 5935719
    Abstract: A leadframe and method of fabrication of the leadframe. A leadframe is formed from one of copper or copper-based material and a coating of palladium is formed over the leadframe. Optionally, a layer of from about 10 to about 95 percent copper by weight and the remainder palladium is deposited between the leadframe and the coating of palladium. The coating of palladium is from about 3 to about 10 microinches and preferably about 3 microinches. The palladium/copper layer is from about 5 to about 40 microinches and preferably about 10 microinches. A semiconductor device is fabricated by providing a copper or copper-based lead frame and forming a layer of palladium over the leadframe. Optionally, a layer of palladium and copper is formed between the leadframe and the layer of palladium.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: August 10, 1999
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C. Abbott
  • Patent number: 5858125
    Abstract: A magnetoresistive material of the present invention has a structure in which many clusters are surrounded by a crystal phase of Cu and/or Ag, where each cluster has a grain size of 20 nm or less and composed of an amorphous phase containing at least one ferromagnetic metal element T as a main component selected from Fe, Co and Ni, and at least one element M selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: January 12, 1999
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 5675883
    Abstract: The invention relates to a method of manufacturing a copper-nickel-silicon alloy with a composition Cu (balance), Ni 1.5-5.5%, Si 0.2-1.05, Fe 0-0.5% and Mg 0-0.1% (all in percent by weight), and use of the alloy for pressure-englazable casings. The method permits an alloy with a very high elastic limit with very good conductivity and good cold reformability and differs from the conventional method of manufacturing such alloys by heating to about 950.degree. C. and fairly rapid cooling after a preceding cold rolling operation. An improvement in the properties can be achieved by ageing of the alloy at 300.degree. C. to 600.degree. C. for several hours.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: October 14, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5658401
    Abstract: A copper-zinc alloy for semi-finished products and articles which are highly loaded and subjected to extreme wear especially synchronizing rings. The alloy possesses a composition of 40 to 65% Cu, 8 to 25% Ni, 2.5 to 5% Si, 0 to 3% Al, 0 to 3% Fe, 0 to 2% Mn and 0 to 2% Pb, with the balance being zinc and unavoidable impurities. The Ni:Si ratio is about 3 to 5:1, and the structure consists of at least 75% .beta.-phase, with the balance .alpha.-phase, in the absence of a .gamma.-phase. Nickel silicides occur predominantly as a round intermetallic phase. The alloy provides quite substantially higher levels of resistance to wear.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: August 19, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5516484
    Abstract: A copper-nickel based alloy, having reduced break-out during casting and reduced cracking during processing in solid state, which consists essentially of 3.1 to 25 wt. % of Ni, 0.1 to 1.5 wt. % of Mn, 0.0001 to 0.0093 wt. % of B, 0.01 to 0.7 wt. % of Si, and from 3 to 10 wt. % of Sn and the remainder being Cu and unavoidable elements.
    Type: Grant
    Filed: February 7, 1995
    Date of Patent: May 14, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5507885
    Abstract: A copper-based alloy, viz. a dezincification-resistant brass, excels in various properties such as resistance to dezincification, hot forgeability and machinability and, therefore, tolerates use particularly in the atmosphere of a corrosive aqueous solution. The brass of one species has a composition of 59.0 to 62.0 wt % of Cu, 0.5 to 4.5 wt % of Pb, 0.05 to 0.25 wt % of P, 0.5 to 2.0 wt % of Sn, 0.05 to 0.30 wt % of Ni, with or without 0.02 to 0.15 wt % of Ti, and the balance of Zn and unavoidable impurities. The brass of another species has a composition of 61.0 to 63.0 wt % of Cu, 2.0 to 4.5 wt % of Pb, 0.05 to 0.25 wt % of P, 0.05 to 0.30 wt % of Ni, with or without 0.02 to 0.15 wt % of Ti, and the balance of Zn and unavoidable impurities.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: April 16, 1996
    Assignee: Kitz Corporation
    Inventors: Sadao Sakai, Setsuo Kaneko, Kazuaki Yajima, Kazuhiko Kobayashi
  • Patent number: 5441696
    Abstract: A copper-nickel based alloy, which comprises 3 to 25 wt % of Ni, 0.1 to 1.5 t % of Mn, 0.0001 to 0.01 wt % of B and the rest being Cu and an unavoidable element.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 15, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5437745
    Abstract: An alloy composition used in the manufacture of extension cables, comprises by weight 25.00% to 35.00% of nickel, 0.10% to 1.00% of manganese, 0.10% to 1.75% of cobalt, less than 0.25% of iron, and the balance being of copper. A thermoelement, of a thermocouple extension cable, manufactured from this composition exhibits a resistivity of approximately 240 ohms per circular mil foot. Hence, the loop resistivity of the cable, where the other thermoelement is made from copper, is generally less than 310 ohms per circular mil foot and the calibration accuracy of the cable from 0.degree. to 100.degree. C. is within .+-.2.5.degree. C.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Thermo Electric Corporation
    Inventors: Douglas E. Frank, Ted Wang
  • Patent number: 5387293
    Abstract: A copper base alloy for terminals that is of the Cu-Ni-Sn-P or Cu-Ni-Sn-P-Zn system and that has a tensile strength of at least 50 kgf/mm.sup.2, a spring limit of at least 40 kgf/mm.sup.2, a stress relaxation of not more than 10% and a conductivity of at least 30% IACS is provided. Terminals the spring portion or the entire part of which is produced from that copper base alloy, having an insertion/extraction force of 0.2-3 kgf and a resistance of not more than 3 m.OMEGA. at low voltage and current as initial performance, with the added characteristic that the terminals will experience not more than 20% stress relaxation are also provided. The alloy is superior to the conventional bronze, phosphor bronze and Cu-Sn-Fe-P alloys for terminals in terms of tensile strength, spring limits, stress relaxation characteristic and conductivity and, hence, the terminals manufactured from those alloys have higher performance and reliability than the terminals made of the conventional copper base alloys for terminals.
    Type: Grant
    Filed: March 24, 1993
    Date of Patent: February 7, 1995
    Assignees: Dowa Mining Co., Ltd., Yazaki Corporation, Nihon Bell Parts Co., Ltd.
    Inventors: Takayoshi Endo, Kenji Takenouchi, Mikio Nishihata, Toshio Asano, Akira Sugawara
  • Patent number: 5378294
    Abstract: The invention relates to low-nickel copper alloys to be used as brazing filler metals, which alloys also contain phosphorus, tin and possibly small amounts of manganese. The alloys are produced by means of atomization methods. Their advantages are low liquidus temperature and narrow mushy zone, high joint strength and good corosion properties. The alloys are cadmium free and economical in price and they are mainly used for brazing copper and its alloys.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: January 3, 1995
    Assignee: Outokumpu Oy
    Inventor: Petri T. Rissanen