Magnesium Containing Patents (Class 420/541)
  • Publication number: 20040182482
    Abstract: There is disclosed a DC cast alloy of composition (in wt %): Fe 0.8-1.5 Si 0.7-0.95 Mn 0.2-0.5 Zn 0.2-0.8 Mg up to 0.2 Cu up to 0.2 Ti<0.1 B<0.01 C<0.01. Unavoidable impurities up to 0.05 each, 0.15 total AI balance. Also disclosed is a method of DC casting the alloy to form an ingot.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 23, 2004
    Inventors: Alan Gray, Andrew David Howells
  • Patent number: 6783729
    Abstract: Aluminum alloy die castings combine good as-cast strength with good as-cast ductility, without any heat treatment. The alloy comprises 2.75 5.25 wt. % magnesium, 1.85-3.15 wt. % zinc, 0.65-1.2 wt. % manganese, 0.10-0.18 wt. % iron, less than 0.10 wt. % copper, less than 0.10 wt. % silicon, less than 0.20 wt. % titanium and the balance aluminum and incidental impurities and furthermore the percent by weight magnesium is greater than or equal to the percent by weight zinc. A particularly high strength version of the alloy comprises 4.75%-5.25 wt. % magnesium and 2.85-3.15 wt. % zinc. A particularly high ductility version of the alloy comprises 2.75-3.25 wt. % magnesium, 1.85 2.5 wt. % zinc.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: August 31, 2004
    Assignee: Alcan International Limited
    Inventors: J. Fred Major, Lawrence Purdon
  • Patent number: 6783869
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 31, 2004
    Assignee: MIBA Gleitlager Aktiengesellschaft
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Patent number: 6773664
    Abstract: An aluminum-magnesium alloy for casting operations consisting of, in weight percent, Mg 2.7-6.0, Mn 0.4-1.4, Zn 0.10-1.5, Zr 0.3 max., V 0.3 max., Sc 0.3 max., Ti 0.2 max., Fe 1.0 max., Si 1.4 max., balance aluminum and inevitable impurities. The casting alloy is particularly suitable for application in die-casting operations. Further the invention relates to the method of use of the casting alloy for die-casting automotive components.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: August 10, 2004
    Assignees: Corus Aluminium Voerde GmbH, Corus Aluminium Walzprodukte GmbH
    Inventors: Martinus Godefridus Johannes Spanjers, Desikan Sampath, Alfred Johann Peter Haszler
  • Publication number: 20040118492
    Abstract: The invention refers to an aluminium alloy, a clad or unclad material for brazed products containing said alloy as a core, as well as a method of producing materials to be used in brazed products from said alloy. The material is suitable for controlled atmosphere brazing (CAB) using fluxes that manage higher Mg levels in the materials. The alloy is intended as a fin-stock material for brazed products, such as heat exchangers.
    Type: Application
    Filed: October 14, 2003
    Publication date: June 24, 2004
    Inventor: Torkel Stenqvist
  • Patent number: 6695935
    Abstract: Aluminum-magnesium alloy product for welded mechanical construction, having the following composition, in weight percent: Mg 3.5-6.0, Mn 0.4-1.2, Zn 0.4-1.5, Zr 0.25 max., Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max., Cu 0.4 max.; one or more selected from the group: Bi 0.005-0.1, Pb 0.005-0.1, Sn 0.01-0.1, Ag 0.01-0.5, Sc 0.01-0.5, Li 0.01-0.5, V 0.01-0.3, Ce 0.01-0.3, Y 0.01-0.3, and Ni 0.01-0.3; others (each) 0.05 max., (total) 0.15 max.; and balance aluminum.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Publication number: 20030190252
    Abstract: A method of casting an aluminum base alloy to provide a cast product having improved hot crack resistance in the as-cast condition, the method comprising providing a melt of an aluminum base alloy comprised of 2.0 to less than 3.5 wt. % Zn, 2.5 to less than 4 wt. % Mg, a maximum of 2 wt. % total Fe and Mn in combination, max. 0.3 wt. % Si, max. 0.6 wt. % Cu, optionally up to 0.5 wt. % Cr, dissolved Ti in the range of about 0.005 to 0.1 wt. %, and an undissolved nucleating agent in the range of about 0.002 to 0.1 wt. % for grain refining, the balance comprised of aluminum, incidental elements and impurities. A nucleating agent selected from the group consisting of metal carbides, aluminides and borides is added to the melt to provide an undissolved nucleating agent therein, in the range of 0.002 to 0.1 wt. % for grain refining. The said alloy is solidified to provide a cast product having a grain size of less than 125 microns and free of hot cracks.
    Type: Application
    Filed: March 13, 2001
    Publication date: October 9, 2003
    Inventor: Geoffrey K. Sigworth
  • Publication number: 20030165397
    Abstract: An aluminium-based alloy consisting of 0.05-1.00% by weight of iron, 0.05-0.60% by weight of silicon, less than 0.50% by weight of copper, up to 1.20% by weight of manganese, 0.02 to 0.20% by weight of zirconium, up to 0.50% by weight of chromium, 0.02 to 1.00% by weight of zinc, 0.02 to 0.20% by weight of titanium, 0.02 to 0.20% by weight of vanadium, up to 2.00% by weight of magnesium, up to 0.10% by weight of antimony, up to 0.02% by weight of incidental impurities and the balance aluminium, the total amount of Ti plus Cr plus V being less than 0.3% by weight and the amount of V being lower than the amount of Cr, said aluminium-based alloy exhibiting high corrosion resistance and high extradability.
    Type: Application
    Filed: April 24, 2003
    Publication date: September 4, 2003
    Inventors: Lars Auran, Trond Furu, Ole Daaland
  • Publication number: 20030156967
    Abstract: The present invention relates to the chemical composition of alloys, in particular naturally hard semifinished-material alloys, which are intended to be used in this form as material for semifinished materials.
    Type: Application
    Filed: November 12, 2002
    Publication date: August 21, 2003
    Inventors: Valentin Georgijevich Davydov, Yuri Filatov, Blanka Lenczowski, Viktor Yelagin, Valeri Zakarov
  • Publication number: 20030145912
    Abstract: Aluminium-magnesium alloy in the form of a rolled product or an extrusion, having the following composition in weight percent: 1 Mg >3.0-4.5 Mn   0.4-1.2 Zn   0.4-1.7 Zr   0.05-0.25 Cr   0.3 max. Ti   0.2 max. V   0.2 max. Li   0.5 max. Sc   0.5 max. Fe   0.5 max. Si   0.5 max. Cu   0.15 max. Ag   0.4 max. others (each) max. 0.05 (total) max. 0.15 balance aluminium.
    Type: Application
    Filed: November 20, 2002
    Publication date: August 7, 2003
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath, Jean Pierre Jules Baekelandt, Job Anthonius Van Der Hoeven
  • Publication number: 20030111139
    Abstract: Aluminum alloy die castings combine good as-cast strength with good as-cast ductility, without any heat treatment. The alloy comprises 2.75 5.25 wt. % magnesium, 1.85-3.15 wt. % zinc, 0.65-1.2 wt. % manganese, 0.10-0.18 wt. % iron, less than 0.10 wt. % copper, less than 0.10 wt. % silicon, less than 0.20 wt. % titanium and the balance aluminum ant-d Incidental impurities and furthermore the percent by weight magnesium is greater than or equal to the percent by weight zinc. A particularly high strength version of the alloy comprises 4.75%-5.25 wt. % magnesium and 2.85-3.15 wt. % zinc. A particularly high ductility version of the alloy comprises 2.75-3.25 wt. % magnesium, 1.85 2.5 wt. % zinc.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 19, 2003
    Inventors: J. Fred Major, Lawrence Purdon
  • Publication number: 20030102060
    Abstract: An extrudable, drawable and brazeable aluminum alloy that has improved corrosion resistance and is suitable for use in thin-wall fluid-carrying tube lines. Preferred alloys consist essentially of, by weight, about 0.17 to about 0.22% iron, about 0.06 to about 0.10% silicon, about 0.30 to about 0.70% manganese, about 0.10 to about 0.30% magnesium, and about 0.19 to about 0.25% zinc, with the balance aluminum and incidental impurities.
    Type: Application
    Filed: April 3, 2002
    Publication date: June 5, 2003
    Inventors: Ole Daaland, Lars Auran, Trond Furu
  • Patent number: 6531004
    Abstract: Weldable, high-magnesium-content aluminum-magnesium alloy consisting of at least 5-6% w/w magnesium (Mg), 0.05-0.15% w/w zirconium (Zr), 0.05-0.12% w/w manganese (Mn), 0.01-0.2% w/w titanium (Ti), 0.05-0.5% w/w of one or more elements from the scandium group and/or terbium (Tb), wherein at least scandium (Sc) is included, 0.1-0.2% w/w copper (Cu) and/or 0.1-0.4% w/w zinc (Zn), along with aluminum (Al), and unavoidable contamination does not exceed 0.1% w/w silicon (Si).
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: March 11, 2003
    Assignee: EADS Deutschland GmbH
    Inventors: Blanka Lenczowski, Viktor Yelagin, Rainer Rauh, Valeri Zakharov, Yuri Filatov
  • Publication number: 20030031580
    Abstract: Rolled or extruded products for welded constructions made of AlMgMn type aluminum alloy. These products contain, in % by weight, 3.0<Mg<5.0, 0.75<Mn<1.0, Fe<0.25, Si<0.25, 0.02<Zn<0.40, optionally one or more of the elements Cr, Cu, Ti, Zr such that Cr<0.25, Cu<0.20, Ti<0.20, Zr<0.20, other elements <0.05 each and <0.15 in total, wherein Mn+2Zn>0.75. In the welded state, these products have improved mechanical strength and resistance to fatigue without unfavorable consequences with regard to toughness and corrosion resistance, and are particularly suitable for naval construction, for industrial vehicles and for bicycle frames made of welded tubes.
    Type: Application
    Filed: July 5, 2002
    Publication date: February 13, 2003
    Inventors: Guy-Michel Raynaud, Jean-Luc Hoffmann, Laurent Cottignies, Georges Pillet
  • Patent number: 6471794
    Abstract: An aluminum alloy fin material for brazing which is composed of an aluminum alloy comprising above 0.1 wt % to 3 wt % of Ni, above 1.5 wt % to 2.2 wt % of Fe, and 1.2 wt % or less of Si, and at least one selected from the group consisting of 4 wt % or less of Zn, 0.3 wt % or less of In, and 0.3 wt % or less of Sn, and further comprising, optionally, at least one selected from the group consisting of co, Cr, Zr, Ti, Cu, Mn, and Mg in given amounts, the balance being unavoidable impurities and aluminum, wherein a ratio of the grain length in the right angle direction/the grain length in the parallel direction is 1/30 or less, an electric conductivity is 50 to 55 %IACS, and a tensile strength is 170 to 280 MPa.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: October 29, 2002
    Assignees: The Furukawa Electric Co., Ltd., Denso Corporation
    Inventors: Takeyoshi Doko, Akira Kawahara, Sunao Fukuda, Yoshihiko Kamiya, Masaki Shimizu, Kenji Negura
  • Patent number: 6461566
    Abstract: An aluminum-based alloy having the following composition, % w/w: Lithium 1.5-1.9 Magnesium 4.1-6.0 Zinc 0.1-1.5 Zirconium 0.05-0.3  Manganese 0.01-0.8  Hydrogen 0.9 × 10−5-4.5 × 10−5 and at least one element selected from the following group: Beryllium 0.001-0.2  Yttrium 0.01-0.5 Scandium 0.01-0.3 Aluminum Remainder The process of heat treating the alloy includes the steps of quenching the alloy from a temperature of 400-500° C. in cold water or air, stretched-adjusting it to increase ductility up to 0 2 %, and a three stage heat treatment, in which in stage 1 the alloy is heated at 80-90° C. over the course of 3-12 h, in stage 2 it is heated at 110-185° C. over the course of 10-58 h, and in stage 3 it is heated at 90-110° C. for 14 h, or at a cooling rate of 2-8° C. C/h.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: October 8, 2002
    Assignees: Eads Deutschland GmbH, Viam (All Russian Institute of Aviation Materials)
    Inventors: Thomas Pfannenmüller, Erwin Loechelt, Peter-Jürgen Winkler, Sergej Mikhajlovich Mozharovskij, Dmitrij Sergejevich Galkin, Elena Glebovna Tolchennikova, Vladimir Mikhajlovich Chertovikov, Valentin Georgijevich Davydov, Evgenij Nikolajevich Kablov, Larisa Bagratovna Khokhlatova, Nikolay Ivanovich Kolobnev, Iosif Naumovich Fridlyander
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6440581
    Abstract: An improved performance welding bar placed in a welding machine for the welding of thermoplastic material of low and high density, suitable for both the lower welding bar (11) and the upper welding bar (12) among which bars (11, 12) the material is moved along by at least one pair of lower (14) and upper (15) supply rollers, placed on top of each other, the two welding bars (11, 12) moved backwards and forwards between themselves by a control group (20), wherein each welding bar (11, 12) is made from a magnesium-zinc aluminum alloy, within which the percentage of zinc to be found is between 5.0-6.5% and the percentage of magnesium to be found is between 2.0-3.0%. According to the invention the use of a magnesium zinc aluminum alloy is provided for, for a welding bar in a welding machine of thermoplastic material, wherein the bar is continually activated by a forward and/or backward movement with regards to a second similar welding bar.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: August 27, 2002
    Assignee: Elba S.p.A.
    Inventor: Francesco Dragoni
  • Patent number: 6416884
    Abstract: The disclosure relates to an aluminium-base weld filler alloy having the following composition in weight percent: Mg 5.0-6.5, Mn 0.4-1.2, Zn 0.4-<2.0, Zr 0.05-0.3, Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max., Cu 0.25 max., balance Al and inevitable impurities. Further, the disclosure relates to a method of manufacturing an aluminium-base weld wire, and to a method of constructing welded constructions.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: July 9, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6403232
    Abstract: A core material of an aluminum brazing sheet restricts Mg to less than 0.3 wt % and Fe to not more than 0.2 wt %, and contains more than 0.2 wt % and not more than 1.0 wt % of Cu, 0.3 to 1.3 wt % of Si, 0.3 to 1.5 wt % of Mn and the balance of Al and inevitable impurities. A brazing filler material is formed on one surface of the core material by Al—Si based aluminum alloy. Also, a cladding material is formed on the other surface of the core material, and contains less than 0.2 wt % of Si, 2.0 to 3.5 wt % of Mg, not less than 0.5 wt % and less than 2.0 wt % of Zn and the balance of Al and inevitable impurities. Further, the value (cladding material hardness)/(the core material hardness) that is a ratio of the hardness of the cladding material to the hardness of the core material is not more than 1.5.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: June 11, 2002
    Assignees: Kobe Alcoa Transportation Products Ltd., Denso Corporation
    Inventors: Tadashi Okamoto, Osamu Takezoe, Takahiko Nagaya, Yasuaki Isobe, Taketoshi Toyama, Sunao Fukuda
  • Publication number: 20020056493
    Abstract: The invention relates to an aluminum-based alloy, in particular an alloy from the Al—Li—Mg system, with the following chemical composition, %w/w: 1 Lithium 1.5-1.9 Magnesium 4.1-6.0 Zinc 0.1-1.5 Zirconium 0.05-0.3  Manganese 0.01-0.8  Hydrogen 0.9 × 10−5-4.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 16, 2002
    Applicant: DAIMLERCHRYSLER AG
    Inventors: Thomas Pfannenmuller, Erwin Loechelt, Peter-Jurgen Winkler, Sergej Mikhajlovich Mozharovskij, Dmitrij Sergejevich Galkin, Elena Glebovna Tolchennikova, Vladimir Mikhajlovich Chertovikov, Valentin Georgijevich Davydov, Evgenij Nikolajevich Kablov, Larisa Bagratovna Khokhlatova, Nikolay Ivanovich Kolobnev, Iosif Naumovich Fridlyander
  • Publication number: 20020015658
    Abstract: An aluminum-copper-zinc alloy having ancillary additions of lithium. The alloy composition includes from about 5 to 13 wt % zinc and from about 0.01 to 1.0 wt % lithium.
    Type: Application
    Filed: June 3, 1999
    Publication date: February 7, 2002
    Inventors: ROBERTO J. RIOJA, GARY H. BRAY, JAMES T. STALEY, DIANA K. DENZER
  • Patent number: 6342111
    Abstract: An energy-absorbing member of extruded aluminum alloy which is composed of Mg (0.5-1.6 wt %), Zn (4.0-7.0 wt %), Ti (0.005-0.3 wt %), Cu (0.05-0.6 wt %), and at least one of the following elements: Mn (0.2-0.7 wt %), Cr (0.03-0.3 wt %), and Zr (0.05-0.25 wt %), with the remainder being Al and inevitable impurities, said energy-absorbing member having a hollow cross-section and fiber structure and being one which has undergone averaging treatment.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 29, 2002
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshiyuki Meki, Masakazu Hirano
  • Publication number: 20020007881
    Abstract: An aluminum-based, corrosion resistant, alloy comprising: 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.
    Type: Application
    Filed: April 13, 1999
    Publication date: January 24, 2002
    Inventors: OLE DAALAND, LARS AURAN, TROND FURU
  • Patent number: 6338817
    Abstract: An aluminum extruded door beam includes an outer flange, an inner flange, and at least one web for connecting the outer flange and the inner flange. The outer corners at the extended ends of the outer flange have a radius R of 2.5 mm or less. The outward corners at the connections between the web and the inner flange and between the web and the outer flange have a radius R of 2 mm to 4 mm. The radius of the outward corners at the connections between the web and the inner flange and between the web and the outer flange is 1.5 to 2 times the width of the web. The length of the extended ends of the outer flange is 1 to 2 times the radius R of the outward corner at the connections between the web and the outer and inner flanges. The aluminum alloy extruded door beam material contains 0.8 to 1.5% by weight (hereinafter the same) of Mg and 4 to 7% of Zn, and the recrystallization surface layer has a thickness of 50 &mgr;m or less.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: January 15, 2002
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Yamashita, Masakazu Hirano
  • Patent number: 6337147
    Abstract: Improved shape and strength of the weld in a welded structure are obtained by use of a weldable aluminum product comprising a structural component which is a sheet, a plate or an extruded body and is made of an aluminum alloy containing not more than 1.5 wt % Zn. This component has, adhered on at least one side, a cladding layer made of an AA7xxx-series alloy having a corrosion potential lower than that of the alloy of the structural component. The alloy of the structural component is preferably an AA5xxx-series alloy containing Mg in the range 2 to 6 wt %.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: January 8, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Klaus Alfons Mechsner
  • Patent number: 6315842
    Abstract: A mold for plastics made of a rolled, extruded or forged AlZnMgCu aluminum alloy product >60 mm thick, and having a composition including, in weight %: 5.7 < Zn < 8.7 1.7 < Mg < 2.5 1.2 < Cu < 2.2 Fe < 0.14 Si < 0.11 0.05 < Zr < 0.15 Mn < 0.02 Cr < 0.02 with Cu+Mg<4.1 and Mg>Cu, other elements<0.05 each and<0.10 in total, the product being treated by solution heat treating, quenching and aging to a T6 temper.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Pechiney Rhenalu
    Inventors: Ravi Shahani, Jean-Francois Verdier, Phlilippe Lassince, Guy-Michel Raynaud, Christophe Sigli, Pierre Sainfort
  • Patent number: 6302973
    Abstract: Aluminium-magnesium-zinc-silicon alloy, preferably in the form of a plate or a sheet or an extrusion, having the following composition in weight percent: Mg 0.5-1.5; Zn 0.1-3.8; Si 0.05-1.5; Mn 0.2-0.8; Zr 0.05-0.25; Cr 0.3 max.; Cu<0.3; Fe 0.5 max.; Ag 0.4 max.; Ti 0.2 max.; balance Al and inevitable impurities.
    Type: Grant
    Filed: January 22, 2000
    Date of Patent: October 16, 2001
    Assignees: Corus Aluminium Walzprodukte GmbH, Corus Aluminium Profiltechnik GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6231995
    Abstract: An aluminum extruded door beam includes an outer flange, an inner flange, and at least one web for connecting the outer flange and the inner flange. The outer corners at the extended ends of the outer flange have a radius R of 2.5 mm or less. The outward corners at the connections between the web and the inner flange and between the web and the outer flange have a radius R of 2 mm to 4 mm. The radius of the outward corners at the connections between the web and the inner flange and between the web and the outer flange is 1.5 to 2 times the width of the web. The length of the extended ends of the outer flange is 1 to 2 times the radius R of the outward corner at the connections between the web and the outer and inner flanges. The aluminum alloy extruded door beam material contains 0.8 to 1.5% by weight (hereinafter the same) of Mg and 4 to 7% of Zn, and the recrystallization surface layer has a thickness of 50 &mgr;m or less.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: May 15, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Yamashita, Masakazu Hirano
  • Patent number: 6056835
    Abstract: The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu. Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: May 2, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Tetsuya Suganuma
  • Patent number: 6027582
    Abstract: A rolled, forged or extruded AlZnMgCu alloy product, used to manufacture structural elements for aircraft, particularly wing spars. The product is greater than 60 mm thick, and has a composition (% by weight):5.7<Zn<8.71.7<Mg<2.51.2<Cu<2.20.07<Fe<0.14Si<0.110.05<Zr<0.15Mn<0.02Cr<0.02with Cu+Mg<4.1, and Mg>Cu,other elements <0.05 each and <0.10 in total. The product is treated by solution heat treating, quenching and possibly aging, and has in the treated T7451 or T7452 temper the following properties:a) a yield strength measured at quarter-thickness>400 MPa in the L and TL directions,b) toughness under plane strain in the S-L direction>26 MPa.sqroot.m and in the L-T direction >74-0.08e-0.07R.sub.0.2L MPa.sqroot.m (e=thickness in mm), andc) a stress corrosion threshold>240 MPa.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: February 22, 2000
    Assignee: Pechiney Rhenalu
    Inventors: Ravi Shahani, Jean-Francois Verdier, Phlilippe Lassince, Guy-Michel Raynaud, Christophe Sigli, Pierre Sainfort
  • Patent number: 5954897
    Abstract: A die-casting aluminum base alloy consisting of, by weight %,Zn:10.about.25%, Si:6.about.10%,Cu:0.5.about.3.0%, Mn:0.1.about.0.5%,Mg:0.02.about.0.08%, Fe:less than 1.3%,and the rest of Al and unavoidable impurity.This alloy can be heat treated at low temperature from 260.degree. C. to 450.degree. C., at which steel parts inserted in this alloy will not deteriorate.This alloy has excellent mechanical strength, stress corrosion cracking resistance and wear resistance, and can be used for ball joints apparatus such as a stabilizer conrod for automobile.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: September 21, 1999
    Assignee: Nisso Metalochemical Co., Ltd.
    Inventors: Minoru Ohtake, Yutaka Fujiwara
  • Patent number: 5925313
    Abstract: There is provided an Al base alloy containing boron which is superior in mechanical properties such as strength, ductility or workability and the like and has a neutron absorbing capacity and an ability to recycle. This is an Al base alloy containing boron with Mg: 2 to 8% (massed %, similarly applied hereinafter) and B: 0.5 to 1.5% and satisfying a relation of .sup.10 B/(.sup.10 B+.sup.11 B).gtoreq.95%, and a rate of AlB.sub.2 in all boron compounds is 80% or more by a volumetric rate.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Katsura Kajihara, Haruo Kakunai, Yuichi Seki, Tadahiko Yamashita, Masahiro Yanagawa
  • Patent number: 5888320
    Abstract: A method of producing an aluminum product having high formability high fracture toughness, high strength and improved corrosion resistance, the method comprising: (a) providing stock including an aluminum base alloy consisting essentially of about 0.7 to 1.0 wt. % silicon, not more than about 0.3 wt. % iron, not more than about 0.5 wt. % copper, about 0.8 to 1.1 wt. % magnesium, about 0.3 to 0.4 wt. % manganese, and about 0.5 to 0.8 wt. % zinc, the remainder substantially aluminum, incidental elements and impurities; (b) homogenizing the stock at a temperature ranging from about 950.degree. to 1050.degree. F. for a time period ranging from about 2 to 20 hours; (c) hot rolling at a temperature ranging from about 750.degree. to 950.degree. F. will increase; (d) solution heat treating at a temperature ranging from about 1000.degree. to 1080.degree. F. for a time period ranging from about 5 minutes to one hour; (e) cooling by quenching at a rate of about 1000.degree. F./second to a temperature of 100.degree. F.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: March 30, 1999
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Ralph C. Dorward
  • Patent number: 5759302
    Abstract: There is provided Al alloys which have improved and excellent fracture toughness and fatigue characteristic and improved formability, and which can be suitably used for transportation machines, such as aircraft, railway vehicles, general mechanical parts and the like. The Al alloy contains 1 to 8% (% by weight, the same is true for the following) of Cu, containing one or more selected from a group comprising 0.4 to 0.8% of Mn, 0.15 to 0.3% of Cr, 0.05 to 0.1% of Zr and 0.1 to 2.5% of Mg, Fe and Si each being less than 0.1%, a distance between constituents being more than 85 .mu.m, and having a micro-structure fulfilling at least one of the following (a) to (c):(a) the size of Al--Mn dispersoids is 4000 .ANG. or more,(b) the size of Al--Cr dispersoids is 1000 .ANG. or more, and(c) the size of Al--Zr dispersoids is 300 .ANG. or more.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: June 2, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Manabu Nakai, Takehiko Eto
  • Patent number: 5728479
    Abstract: The present invention provides a filler alloy for brazing, which includes about 4 to 18 wt. % silicon; about 0.001 to 0.4 wt. % magnesium; about 0.01 to 0.3 wt. % lithium; not more than about 2 wt. % zinc; not more than about 1.25 wt. % manganese; not more than about 0.30 wt. % iron; not more than about 0.10 wt. % copper; not more than 0.15 wt. % impurities; balance aluminum.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: March 17, 1998
    Inventors: David L. Childree, Edgar G. Eichhorn
  • Patent number: 5714018
    Abstract: A high-strength and high-toughness aluminum-based alloy having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d Q.sub.e, wherein X is at least one element selected from the group consisting of La, Ce, Mm, Ti and Zr; M is at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q is at least one element selected from the group consisting of Mg, Si, Cu and Zn; and a, b, c, d and e are, in atomic percentage, 83.ltoreq.a.ltoreq.94,3, 5.ltoreq.b.ltoreq.10, 0.5.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.2, and 0.1.ltoreq.e.ltoreq.2. The aluminum-based alloy has a high strength and an excellent toughness and can maintain the excellent characteristics provided by a quench solidification process even when subjected to thermal influence at the time of working. In addition, it can provide an alloy material having a high specific strength by virtue of minimized amounts of elements having a high specific gravity to be added to the alloy.
    Type: Grant
    Filed: October 27, 1992
    Date of Patent: February 3, 1998
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama, Takeshi Terabayashi, Makoto Kawanishi
  • Patent number: 5616189
    Abstract: An alloy of aluminum containing magnesium, silicon and optionally copper in amounts in percent by weight falling within one of the following ranges:(1) 0.4.ltoreq.Mg.ltoreq.0.8, 0.2.ltoreq.Si.ltoreq.0.5, 0.3.ltoreq.Cu.ltoreq.3.5;(2) 0.8.ltoreq.Mg.ltoreq.1.4, 0.2.ltoreq.Si.ltoreq.0.5, Cu.ltoreq.2.5; and(3) 0.4.ltoreq.Mg.ltoreq.1.0, 0.2.ltoreq.Si.ltoreq.1.4, Cu.ltoreq.2.0; said alloyhaving been formed into a sheet having properties suitable for automotive applications. The alloy may also contain at least one additional element selected from the group consisting of Fe in an amount of 0.4 percent by weight or less, Mn in an amount of 0.4 percent by weight or less, Zn in an amount of 0.3 percent by weight or less and a small amount of at least one other element, such as Cr, Ti, Zr and V.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: April 1, 1997
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, John Fitzsimon, Michael J. Bull, Pierre H. Marois, Alok K. Gupta, David J. Lloyd
  • Patent number: 5573606
    Abstract: The present invention relates to an aluminum base die casting alloy having substantially improved mechanical properties, and a method for making die cast products from the alloy. More particularly the improved aluminum based alloy comprises 2.5-4.0% by weight magnesium, 0.2-0.6% by weight manganese, 0.25-0.6% by weight iron, 0.2-0.45% by weight silicon, less than 0.003% by weight beryllium with the remainder being aluminum.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: November 12, 1996
    Assignee: Gibbs Die Casting Aluminum Corporation
    Inventors: James M. Evans, Richard J. Hagan, William C. Routh, Roland N. Gibbs
  • Patent number: 5489347
    Abstract: An aluminum alloy fin material for heat-exchanger with excellent thermal conductance and strength after brazing comprising 0.005 to 0.8 wt. % of Si, 0.5 to 1.5 wt. % of Fe, 0.1 to 2.0 wt. % of Ni, and a balance of Al and inevitable impurities is disclosed. The aluminum alloy fin material can additionally contain 0.01 to 0.2 wt. % of Zr and/or at least one element of the group consisting of not more than 2.0 wt. % of Zn, not more than 0.3 wt. % of In, and not more than 0.3 wt. % of Sn.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: February 6, 1996
    Assignees: Furukawa Electric Co., Ltd., Nippondenso Co., Ltd.
    Inventors: Fujio Himuro, Takeyoshi Doko
  • Patent number: 5455003
    Abstract: A method is disclosed for the production of aluminum-copper-lithium alloys that exhibit improved strength and fracture toughness at cryogenic temperatures. Improved cryogenic properties are achieved by controlling the composition of the alloy, along with processing parameters such as the amount of cold-work and artificial aging. The ability to attain substantially equal or greater strength and fracture toughness at cryogenic temperature in comparison to room temperature allows for use of the alloys in cryogenic tanks for space launch vehicles and the like.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: October 3, 1995
    Assignee: Martin Marietta Corporation
    Inventors: Joseph R. Pickens, William T. Tack
  • Patent number: 5453244
    Abstract: There is disclosed a novel aluminum alloy bearing which exhibits a more excellent fatigue resistance than conventional bearings even under such conditions of use as at a high temperature and under a high load. The aluminum alloy bearing has an aluminum bearing alloy layer containing, by weight, 1 to 10% Zn, 0.1 to 5% Cu, 0.05 to 3% Mg, 0.1 to 2% Mn, 0.1 to 5% Pb, 0.1 to 2% V, and 0.03 to 0.5% in total of Ti--B, and further may optionally contain not more than 8% Si, 0.05 to 0.5% Sr, and Ni, Co and Cr. The alloy may be bonded to a steel metal back sheet, and a surface layer may be formed on the surface of the bearing. By use of the composition of the alloy of the invention, the fatigue resistance of the aluminum alloy bearings has been improved, and such an improved bearing can fully achieve a bearing performance even under severe conditions of use as at high temperature and under a high load.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 26, 1995
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Tohru Kato, Yoshiaki Sato
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi
  • Patent number: 5417919
    Abstract: There is provided an aluminum alloy sheet material having high strength as well as excellent formability, which consists essentially, by weight percent, of 4.5 to 6% Mg, 0.0005 to 1% rare earth elements, 0.001 to 0.15% Ti, 0.0001 to 0.004% B, 0.05 to 0.2% Fe, 0.05 to 0.1% Si, 0.0001 to 0.03% Be, and the balance of Al and inevitable impurities. The aluminum alloy sheet material may further contain at least one element selected from the group consisting of 0.05 to 0.3% Cu, 0.1 to 1% Zn and 0.05 to 0.2% Mn, if required.
    Type: Grant
    Filed: August 20, 1993
    Date of Patent: May 23, 1995
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Koichi Ohori, Yoshinobu Komiyama, Hiroshi Saitoh, Masahiko Miyazaki
  • Patent number: 5344608
    Abstract: The present invention relates to an alloy metal horseshoe for a race horse. The objective of the invention is to provide an alloy metal horseshoe for a race horse, which is light in weight, of great expansibility and hardness, with high abrasion resistance, shock absorption and ductility, capable of being slightly modified to suit the form of the horsehoof at the time of fitting, and that can rationalize the manufacturing process with heat treatment omitted. The horseshoe used a metal alloy made by mixing and dissolving Si:0.05-0.10%, Fe:0.05-0.10%(WT), Cu:0.10-0.20%(WT), Mn:0.10-0.20%(WT), Mg:3.00-5.00%(WT), Cr:0.05-0.15%, Zn:0.05-0.10%, and Al:96.6-94.15%(WT) in an electric furnace.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: September 6, 1994
    Assignee: Korea Racing Association
    Inventors: Young ho Eom, Tae un Nam
  • Patent number: 5169462
    Abstract: An aluminum-lithium based alloy which comprises 10-20 wt. % silicon, 1.5-5.0 wt. % copper, 1.0-4.0 wt. % lithium, 0.45-1.5 wt. % magnesium, 0.01-1.3 wt. % iron, 0.01-0.5 wt. % manganese, 0.01-1.5 wt. % nickel, 0.01-1.5 wt. % zinc, 0.01-0.5 wt. % silver, 0.01-0.25 wt. % titanium and the balance aluminum. The alloy is utilized to cast high temperature assemblies including pistons which have a reduction in density and similar mechanical properties including tensile strengths to alloys presently used.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: December 8, 1992
    Assignee: Reynolds Metals Company
    Inventors: Richard A. Morley, William H. Overbagh
  • Patent number: 5133931
    Abstract: An aluminum based alloy useful in aircraft and airframe structures which has low density and consists essentially of the following formula:Mg.sub.a Li.sub.b Zn.sub.c Ag.sub.d Al.sub.balwherein a ranges from 0.5 to 10%, b ranges from 0.5 to 3.0%, c ranges from 0.1 to 5.0%, d ranges from 0.1 to 2.0%, and bal indicates the balance of the alloy is aluminum, with the proviso that the total amount of alloying elements cannot exceed 12.0%, with the further proviso that when a ranges from 7.0 to 10.0%, b cannot exceed 2.5% and c cannot exceed 2.0%.
    Type: Grant
    Filed: August 28, 1990
    Date of Patent: July 28, 1992
    Assignee: Reynolds Metals Company
    Inventor: Alex Cho
  • Patent number: 5122196
    Abstract: The sheet metal which has recrystallized as fine grains and has superplastic characteristics consists of a work-hardenable, age-hardenable AlMgZn alloy. After continuous casting, the alloy containing 3-5.5% of magnesium, 2-8% of zinc, 0.4% of copper, 0-1% of manganese, 0-0.5% of iron, 0-0.4% of chromium, 0-0.4% of molybdenum, 0-0.4% of zirconium, 0-0.3% of silicon and 0-0.05% of titanium, the remainder being aluminium of commercial purity, is homogenized and rolled off hot. After an optional intermediate annealing, the strip is rolled off cold to the final thickness using a high degree of cold rolling, recrystallized, using rapid heating to effect softening, and cooled.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: June 16, 1992
    Assignee: Alusuisse-Lonza Services Ltd.
    Inventor: Philippe Fernandez
  • Patent number: 5104444
    Abstract: An aluminum alloy is prepared from an aluminum alloy powder having a composition of:lubricating componentPb: 3 to 15 Wt %;hardening componentSi: 1 to 12 Wt %;rainforcement componentone or more selected among Cu, Cr, Mg, Mn, NiZn, Fe and: 0.2 to 5.0 Wt %;and remainder of aluminum as principal material or matrix.To the aluminum alloy powder set forth above, powder state Pb in 3 to 12 Wt % is added. With the mixture of the aluminium alloy powder and Pb powder, a billet is formed. For the billet, extrustion process is performed in a extrusion ratio greater than or equal to 40. In the extruded block, Si particle dispersed in the aluminum matrix is in a grain size smaller than or equal to 12 .mu.m. Furthermore, at least of half of added Pb power particle is dispersed to have greater than or equal to 0.74 of circularity coefficient.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: April 14, 1992
    Assignees: Nissan Motor Company, Limited, NDC Co., Ltd.
    Inventors: Masahiko Shioda, Masashi Arita, Katsuji Tanizaki, Koue Ohdawa, Takeshi Sakai
  • Patent number: 5091150
    Abstract: Zinc-aluminum based alloy containing magnesium and silicon, both present in quantities up to 0.5% by weight, characterized by very good corrosion resistance and suitable for coating steel products, the resulting coatings being extremely durable and highly flexible.
    Type: Grant
    Filed: September 6, 1990
    Date of Patent: February 25, 1992
    Assignee: Nuova Italsider SpA
    Inventors: Massimo Memmi, Gelasio Giardetti