Silicon Containing Patents (Class 420/548)
  • Publication number: 20100254850
    Abstract: A method for producing high strength aluminum alloy consolidated billets containing L12 dispersoids by Ceracon forging is disclosed. The method comprises forming an aluminum alloy powder compact preform containing L12 dispersoid forming elements therein and encompassing the preform in a flowable pressure transmitting medium in a die in a hydraulic press. The die, pressure transmitting medium and preform are then heated and the preform is forged by applying pressure to the pressure transmitting medium by the ram of the hydraulic press. The unequal axial and radial strain resulting from this type of forging results in improved mechanical properties of L12 aluminum alloys.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Applicant: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20100247858
    Abstract: The invention concerns a system, in particular suitable for high power engines, comprising at least a rotor and means comprising active sections fit for making the rotor(s) rotate by their synchronised deformation, characterised in that the rotor material comprises an Al, Fe alloy with at least one other element, the alloy comprising at least more or less 80% in weight of Al and at least between 0.1 and 15.0% in weight in Fe.
    Type: Application
    Filed: May 30, 2006
    Publication date: September 30, 2010
    Inventors: Oscar D'Almeida, Mathias Woydt, Jean-Thierry Audren
  • Publication number: 20100202280
    Abstract: There are provided an aluminum-alloy reflection film for optical information-recording, having low thermal conductivity, low melting temperature, and high corrosion resistance, capable of coping with laser marking, an optical information-recording medium comprising the reflection film described, and an aluminum-alloy sputtering target for formation of the reflection film described. The invention includes (1) an aluminum-alloy reflection film for optical information-recording, containing an element Al as the main constituent, 1.0 to 10.0 at. % of at least one element selected from the group of rare earth elements, and 0.5 to 5.0 at. % of at least one element selected from the group consisting of elements Cr, Ta, Ti, Mo, V, W, Zr, Hf, Nb, and Ni, (2) an optical information-recording medium comprising any of the aluminum-alloy reflection films described as above, and (3) a sputtering target having the same composition as that for any of the aluminum-alloy reflection films described as above.
    Type: Application
    Filed: April 26, 2010
    Publication date: August 12, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Junichi NAKAI, Yuuki TAUCHI, Katsutoshi TAKAGI
  • Patent number: 7767349
    Abstract: Alloy compositions are described for use in anodes of lithium ion batteries. The alloy compositions contain (a) tin, (b) a second element that includes silicon, aluminum, or a combination thereof, (c) a third element that includes yttrium, a lanthanide element, an actinide element, or a combination thereof and an optional alkaline earth element, and (d) an optional transition metal. The alloy compositions are amorphous and remain amorphous even after multiple cycles of lithiation and delithiation.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: August 3, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Mark N. Obrovac, Jeffrey R. Dahn, Richard Mar, Michael D. Fleischauer
  • Patent number: 7767042
    Abstract: A high-strength aluminum alloy extruded product for heat exchangers which excels in extrudability, allows a thin flat multi-cavity tube to be extruded at a high critical extrusion rate, and excels in intergranular corrosion resistance at a high temperature, and a method of manufacturing the same. The aluminum alloy extruded product includes an aluminum alloy including 0.2 to 1.8% of Mn and 0.1 to 1.2% of Si, having a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.5, and having a content of Cu as an impurity of 0.05% or less, with the balance being Al and impurities, the aluminum alloy extruded product having an electric conductivity of 50% IACS or more and an average particle size of intermetallic compounds precipitating in a matrix of 1 ?m or less.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: August 3, 2010
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Tomohiko Nakamura, Masaaki Kawakubo, Naoki Yamashita, Tatsuya Hikida
  • Publication number: 20100183869
    Abstract: Decorative shape cast products and methods, systems, compositions and apparatus for producing the same are described. In one embodiment, the decorative shape cast products are produced from an Al—Ni or Al—Ni—Mn alloy, with a tailored microstructure to facilitate production of anodized decorative shape cast product having the appropriate finish and mechanical properties.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 22, 2010
    Applicant: Alcoa Inc.
    Inventors: Jen C. Lin, James R. Fields, Albert L. Askin, Xinyan Yan, Ralph R. Sawtell, Shawn Patrick Sullivan, Janell Lyn Abbott
  • Publication number: 20100163137
    Abstract: The invention relates to a light metal alloy.
    Type: Application
    Filed: August 30, 2006
    Publication date: July 1, 2010
    Inventors: Lars Würker, Dietrich Kahn, Andreas Hennings, Andreas Bührig-Polaczek
  • Patent number: 7695577
    Abstract: The present invention discloses an aluminum alloy being excellent in wear resistance, containing, in mass %, 12.0 to 13.7% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities; and an aluminum alloy sliding member excellent in wear resistance, which has in mass %, 12.0 to 14.0% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities, and contains primary crystals of Si having a grain diameter of 20 ?m or more in an amount of 20 pieces/mm2 or less. The alloy may contain one or two of 0.0001 to 0.01 mass % of B, and 0.3 to 3.0 mass % of Ni.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Masahiko Shioda, Sanji Kitaoka, Yukio Kuramasu
  • Patent number: 7666353
    Abstract: An aluminum silicon die cast alloy having a very low iron content and relatively high strontium content that prevents soldering to dies into die casting process. The alloys of the present invention also have a modified eutectic silicon and modified iron morphology, when iron is present, resulting in low microporosity and high impact properties. The alloy comprises 6-22% by weight silicon, 0.05 to 0.20% by weight strontium and the balance aluminum. Preferably, the alloy of the present invention contains in weight percent: 6-20% silicon, 0.05-0.10% strontium, 0.40% maximum iron and most preferably 0.20% maximum iron, 4.5% maximum copper, 0.50% maximum manganese, 0.60% maximum magnesium, 3.0% maximum zinc, balance aluminum. On cooling from the solution temperature, the strontium serves to modify the eutectic silicon structure as well as create an iron phase morphology change if iron is present, facilitating feeding through the aluminum interdendritic matrix.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: February 23, 2010
    Assignee: Brunswick Corp
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Publication number: 20090297394
    Abstract: A method of forming a hypoeutectic aluminium silicon alloy including the steps of: forming an aluminium melt including greater than zero and less than about 12 wt % silicon, adding 20-3000 ppm of a eutectic modifying element selected from the group consisting of strontium, sodium, antimony, barium, calcium, yttrium, lithium, potassium, ytterbium, europium and mischmetal; and either adding nucleant particles and/or causing nucleant particles to be formed in the melt, the nucleant particles being selected from the group of TiSix, MnCx, AlP, AlBx and CrBx wherein x is an integer of 1 or 2.
    Type: Application
    Filed: December 2, 2005
    Publication date: December 3, 2009
    Applicant: CAST CENTRE PTY LTD
    Inventors: Arne Kristian Dahle, Liming Lu, Kazuhiro Nogita, Stuart David McDonald
  • Patent number: 7625454
    Abstract: The present invention provides an aluminum casting alloy with a composition including 4%-9% Si; 0.1%-0.7% Mg; less than or equal to 5% Zn; less than 0.15% Fe; less than 4% Cu; less than 0.3% Mn; less than 0.05% B; less than 0.15% Ti; and the remainder consisting essentially of aluminum. The inventive AlSiMg composition provides increased mechanical properties (Tensile Yield Strength and Ultimate Tensile Strength) in comparison to similiarly prepared E357 alloy at room temperature and high temperature. The present invention also includes a shaped casting formed from the inventive composition and a method of forming a shaped casting from the inventive composition.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: December 1, 2009
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Xinyan Yan, Cagatay Yanar, Larry D. Zellman, Xavier Dumant, Robert Tombari
  • Publication number: 20090285716
    Abstract: A manufacturing process for a remelt block containing aluminum designed for making aluminum alloy for the aircraft industry in which scrap containing mainly aluminum alloys used in the aircraft industry is supplied during a supply stage, the scrap is melted in a smelting furnace in order to obtain an initial molten metal bath during a smelting stage, the initial molten metal bath is subjected to purification by fractional crystallization in order to obtain a solidified mass and a bath of residual liquid during a segregation stage, and the solidified mass is recovered in order to obtain a remelt block during a recovery stage. The invention is particularly useful for the recycling of aluminum alloys used in the aircraft industry as it makes it possible to purify scrap of series 2XXX or series 7XXX alloys for iron and silicon, without eliminating additive elements such as zinc, copper and magnesium.
    Type: Application
    Filed: June 18, 2007
    Publication date: November 19, 2009
    Applicant: ALCAN RHENALU
    Inventors: Jean-Francois Verdier, Jean-Remi Butruille, Michel Leroy, Didier Valax
  • Publication number: 20090246072
    Abstract: The present invention has been made by the fact that the wettability with lubricant increases when tin grains are broken within a certain range. In an aluminum-based bearing alloy containing from 2 to 20 mass % of tin, the tin grains in a sliding surface have a size not less than 20 ?m2 but not more than 50 ?m2 expressed in region partitioned areas of the tin grains measured in accordance with a region partitioning method.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 1, 2009
    Applicant: DAIDO METAL COMPANY LTD.
    Inventors: Tomoyuki NIRASAWA, Naohisa KAWAKAMI, Yukihiko KAGOHARA, Shigeru INAMI
  • Publication number: 20090233118
    Abstract: Provided are a pasty composition for aluminum brazing which has excellent coating properties, is capable of attaining favorable dimensional accuracy of products obtained after brazing, causes less erosion, and allows favorable external appearances of brazed portions (fillets); an aluminum-containing member coated with the pasty composition for aluminum brazing; and a method, using the pasty composition for aluminum brazing, for brazing the aluminum-containing members. The pasty composition for aluminum brazing contains an aluminum-containing powder. In a case where on a cumulative grading curve of the aluminum-containing powder, a particle diameter D ?m which corresponds to a Q volume % is indicated as D(Q) ?m, D(50) ?m is greater than or equal to 20 ?m and less than or equal to 150 ?m; and D(90) ?m/D(10) ?m is less than or equal to 5. A mass percentage of particles, in the aluminum-containing powder, which pass through a screen mesh having an opening of 45 ?m is less than or equal to 50%.
    Type: Application
    Filed: March 20, 2007
    Publication date: September 17, 2009
    Applicant: Toyo Aluminium Kabushiki Kaisha
    Inventors: Haruzo Katoh, Takashi Watsuji, Ken Matsumura
  • Patent number: 7572521
    Abstract: The invention relates to an aluminium alloy used as a coating for surfaces subjected to extreme friction stress, with an aluminium matrix incorporating at least a soft phase and a hard phase, as well as a process for producing the coating. The soft phase and/or the hard phase is essentially finely distributed in the aluminium matrix (20) and at least 80%, preferably at least 90%, of the soft phase or soft phase particles (18) have a mean diameter of a maximum of 3 ?m. The aluminium alloy is produced by depositing it on the base (11) by a process of deposition from a gas phase.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 11, 2009
    Assignee: Miba Gleitlager GmbH
    Inventors: Robert Mergen, Walter Gärtner
  • Publication number: 20080299001
    Abstract: The present invention relates to modified alloy compositions for reduced hot tear susceptibility, the aluminum alloy comprising from 0.01 to 0.025% by weight of Sr; and TiB2, measured by its boron content, from 0.001 to 0.005% by weight of B. The invention also relates to a method of preventing or eliminating hot tears in an aluminum alloy comprising the step of combining with aluminum: from 0.01 to 0.025% by weight of Sr; and TiB2, measured by its boron content, from 0.001 to 0.005% by weight of B.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 4, 2008
    Applicant: Alcan International Limited
    Inventors: Joseph Langlais, Alain Lemieux, Neivi Andrade
  • Patent number: 7442491
    Abstract: There is provided an aluminum alloy blank for a lithographic printing plate including iron in a range of 0.20 to 0.80 wt %; and the balance being aluminum, a crystal grain refining element, and unavoidable impurity elements. The unavoidable impurity elements may include silicon and copper, wherein a content of silicon is in a range of 0.02 to 0.30 wt % and a content of copper is equal to or below 0.05 wt %. A solid solution amount of silicon is in a range of 150 ppm to 1500 ppm.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 28, 2008
    Assignee: FUJIFILM Corporation
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Publication number: 20080230032
    Abstract: A method for producing a cylinder crankcase is provided, in which a hypereutiectic aluminum-silicon alloy is cast in a rheocasting or thixocasting process and is cast at a temperature ranging from 520° C. to 580° C.
    Type: Application
    Filed: March 31, 2008
    Publication date: September 25, 2008
    Inventors: Eduard Koehler, Bernd Sommer
  • Publication number: 20080163846
    Abstract: An engine component is composed of an aluminum alloy containing silicon, and includes a plurality of primary-crystal silicon grains located on a slide surface. The plurality of primary-crystal silicon grains have an average crystal grain size of no less than about 12 ?m and no more than about 50 ?m.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 10, 2008
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Hirotaka KURITA, Hiroshi YAMAGATA, Toshikatsu KOIKE
  • Patent number: 7255756
    Abstract: Disclosed herein is an aluminum alloy composition consisting essentially of, on the basis of total weight of the composition, 13 to 28 wt % of silicon, 1.5 to 5 wt % of a metal element selected from iron and manganese, 3 to 10 wt % of zinc, 0.5 to 1 wt % of magnesium, and aluminum as balance. Also disclosed herein is an aluminum alloy product made from said aluminum alloy composition and exhibiting improved mechanical properties at high temperatures, including excellent wear resistance, hardness and thermal stability.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: August 14, 2007
    Assignee: National Cheng Kung University
    Inventors: Chi-Yuan Tsao, Yen-Hao Su, Chun-Hsien Chiang
  • Patent number: 7018694
    Abstract: An optical recording medium includes a recording layer containing an alloy represented by a general formula: (TixM1x)yM2y, where element M1 is Si or Al, element M2 is an element selected from the group consisting of Si, Al and Fe and different from the element M1, x is equal to or larger than 0.3 and equal to or smaller than 0.8, and y is equal to or larger than 0.75 and equal to or smaller than 1. The thus constituted optical recording medium only places minimal load on the global environment.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: March 28, 2006
    Assignees: TDK Corporation, Pioneer Corporation
    Inventors: Yasuo Hosoda, Ayumi Mitsumori, Megumi Sato, Masataka Yamaguchi, Tetsuya Iida, Hiroyasu Inoue, Koji Mishima, Masaki Aoshima
  • Patent number: 6962673
    Abstract: A heat-resistant, creep-resistant aluminum alloy according to the present invention contains at least 10 mass % and not more than 30 mass % of silicon, at least 3 mass % and not more than 10 mass % of at least either iron or nickel in total, at least 1 mass % and not more than 6 mass % of at least one rare earth element in total and at least 1 mass % and not more than 3 mass % of zirconium with the rest substantially consisting of aluminum, while the mean crystal grain size of silicon is not more than 2 ?m, the mean grain size of compounds other than silicon is not more than 1 ?m, and the mean crystal grain size of an aluminum matrix is at least 0.2 ?m and not more than 2 ?m. Thus, an aluminum alloy excellent in heat resistance and creep resistance is obtained.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: November 8, 2005
    Assignee: Sumitomo Electric Sintered Alloy, Ltd.
    Inventors: Hisao Hattori, Terukazu Tokuoka, Takatoshi Takikawa
  • Patent number: 6939417
    Abstract: When using AA3000 series and AA1000 series aluminum alloys to produce extruded products for heat exchanger applications, by controlling the level of copper and nickel in the alloy to very low levels it is possible to produce excellent corrosion resistance both before and after a brazing cycle. To achieve these results, the copper content should be no more than 0.006% by weight and the nickel no more than 0.005% by weight. A typical alloy of the invention contains about 0.001-0.5% by weight manganese, 0.001-0.7% by weight iron, 0.001-0.02% by weight titanium, 0.001-0.3% by weight silicon, less than 0.006% by weight copper, less than 0.005% by weight nickel and 0.001-0.02% by weight zinc, with the balance consisting of aluminum and incidental impurities. No zinc addition to the alloy is required either by zinc spraying or by alloy addition.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: September 6, 2005
    Assignee: Alcan International Limited
    Inventors: Pierre Henri Marois, Nicholas Parson
  • Patent number: 6929726
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 ?m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: August 16, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6916356
    Abstract: A method for preparing Al—Si alloys by introducing into the molten aluminum, at a temperature of between 700 and 850° C., metallurgical silicon particles having a granulometry of less than 10 mm. The silicon particles, upon reaching the temperature of the molten aluminum, have the property of fragmenting into smaller particles.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: July 12, 2005
    Assignee: Invensil
    Inventor: Thomas Margaria
  • Patent number: 6876075
    Abstract: An object of the present invention is to provide a lowcost semiconductor substrate made of an aluminum-silicon carbide (Al—SiC) composite material that has excellent thermal performance and that is capable of maintaining high dimensional accuracy and stability when practically used while coping with the flow of rapid diversification of a practical shape. Another object is to provide a package that can mount a semiconductor element that uses the substrate, and provide a semiconductor device that uses the substrate. In an aluminum-silicon carbide (Al—SiC) semiconductor substrate whose first component is a metal chiefly composed of aluminum (Al) and whose second component is silicon carbide (SiC), the second component is compositionally 5 to 60% by weight of the whole and the remainder is the first component, and a warp in the direction of its main surface is 3 ?m/mm or less.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: April 5, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Akira Fukui
  • Patent number: 6875290
    Abstract: An aluminum bearing-alloy containing 1.5 to 8 mass % of Si is provided, in which there can be observed Si grains on the sliding surface of the aluminum bearing-alloy. A fractional area of the observed Si grains having a grain size of less than 4 ?m is 20 to 60% of a total area of all the observed Si grains. Another fractional area of the observed Si grains having a grain size of from 4 to 20 ?m is not less than 40% of the total area of all the observed Si grains.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: April 5, 2005
    Assignee: Daido Metal Company Ltd.
    Inventors: Yukihiko Kagohara, Takeshi Hoshina, Hideo Ishikawa, Masaaki Sakamoto
  • Publication number: 20040265163
    Abstract: An aluminum alloy is disclosed that is suitable for casting and machining cylinder blocks for engines, especially gasoline fuel engines for automotive vehicles. The casting has the strength and wear resistance to piston/seal scuffing for such engines. The alloy comprises, by weight, 9.5 to 12.5% silicon, 0.1 to 1.5% iron, 1.5 to 4.5% copper, 0.2 to 3% manganese, 0.1 to 0.6% magnesium, 2.0% max zinc, 0 to 1.5% nickel, 0.25% maximum titanium, up to 0.05% strontium and the balance aluminum, where the weight ratio of manganese to iron is 1.2 to 1.75 or higher when the iron content is equal to or greater than 0.4% and the weight ratio of manganese to iron is at least 0.6 to 1.2 when the iron content is less than 0.4% of the alloy.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventor: Herbert William Doty
  • Publication number: 20040213695
    Abstract: Recycle friendly aluminum alloys are described which are variants of AA 3000 and AA 5000 series alloys containing higher than usual amounts of silicon and iron. The alloys contain in percentages by weight, more than 0.6-2.0% silicon, 0.9-2.4% iron, wherein the ratio of the amount of iron to the amount of silicon is in the range of 1.2-1.8:1. Other components of the alloys may include 0-0.4% copper, 0-1.5% manganese, 0-5.0% magnesium, 0-0.5% zinc, 0-3.5% chromium, 0-0.1% titanium and the balance aluminum and incidental impurities.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 28, 2004
    Inventors: Adriano M.P. Ferreira, Sadashiv K. Nadkarni
  • Publication number: 20040182482
    Abstract: There is disclosed a DC cast alloy of composition (in wt %): Fe 0.8-1.5 Si 0.7-0.95 Mn 0.2-0.5 Zn 0.2-0.8 Mg up to 0.2 Cu up to 0.2 Ti<0.1 B<0.01 C<0.01. Unavoidable impurities up to 0.05 each, 0.15 total AI balance. Also disclosed is a method of DC casting the alloy to form an ingot.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 23, 2004
    Inventors: Alan Gray, Andrew David Howells
  • Patent number: 6783869
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 31, 2004
    Assignee: MIBA Gleitlager Aktiengesellschaft
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Patent number: 6773666
    Abstract: An improved Al—Si—Mg—Mn casting alloy that consists essentially of: about 6.0-9.0 wt. % silicon, about 0.2-0.8 wt. % magnesium, about 0.1-1.2 wt. % manganese, less than about 0.15 wt. % iron, less than about 0.3 wt. % titanium and less than about 0.04 wt. % strontium, the balance aluminum. Preferrably, this casting alloy is substantially copper-free, chromium-free and beryllium-free.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: August 10, 2004
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Que-Tsang Fang, Carl E. Garesche, Holger Haddenhorst
  • Publication number: 20040140197
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 &mgr;m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6736947
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 &mgr;m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: May 18, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6733726
    Abstract: An aluminum-based die casting alloy exhibiting improved corrosion resistance and good die-castability contains from about 4.5 to about 12 percent silicon by weight, at least 87 percent aluminum by weight, from about 0.25 percent to about 0.6 percent manganese by weight, and a maximum of 0.2 percent copper by weight. The alloys preferably contain iron in an amount sufficient to improve hot tear resistance and to decrease the tendency for die sticking or soldering during die casting.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: May 11, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: Kurt F. O'Connor
  • Publication number: 20040022662
    Abstract: A method for protecting an article from a high temperature, oxidative environment is presented, along with alloy compositions and ion plasma deposition targets suitable for use in the method. The method comprises providing a substrate, providing an ion plasma deposition target, and depositing a protective coating onto the substrate using the target in an ion plasma deposition process. The target comprises from about 2 atom percent to about 25 atom percent chromium, and the balance comprises aluminum.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Applicant: General Electric Company
    Inventors: Don Mark Lipkin, Ji-Cheng Zhao
  • Publication number: 20040022664
    Abstract: The present invention intends to provide an aluminum alloy thin film that has an electrode potential of the same level as the electrode potential of an ITO film, does not diffuse silicon, has a low resistivity, and excels in heat resistance. The present invention is characterized in an aluminum alloy thin film containing 0.5 to 7.0 at % at least one or more element among nickel, cobalt, and iron, 0.1 to 3.0 at % carbon, and the balance being aluminum. Furthermore, the aluminum alloy thin film further contains 0.5 to 2.0 at % silicon.
    Type: Application
    Filed: May 16, 2003
    Publication date: February 5, 2004
    Inventors: Takashi Kubota, Hiroshi Watanabe
  • Patent number: 6673168
    Abstract: An aluminum-based material for anti-friction bearings composed of an aluminum alloy with 10-25 wt % tin or 5-25 wt % lead, impurity-caused components characterized by 0.75-2.5 wt % iron and an alloy additive capable of forming an intermetallic compound having a spherical phase homogeneously distributed in the aluminum alloy. The alloy additive is one of: a) manganese and silicon, in which the weight percentage fractions of manganese and silicon are at least half the weight percentage fraction of the iron and for manganese, at most 3 wt %, and for silicon, at most 2 wt %; b) 0.1-0.5 wt % cobalt; and c) 0.1-0.5 wt % molybdenum.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: January 6, 2004
    Assignee: KS Gleitlager GmbH
    Inventors: Karl-Heinz Matucha, Thomas Steffens, Werner Schubert
  • Patent number: 6638375
    Abstract: An aluminum bearing alloy includes, by mass, 3 to 40% Sn, 0.5 to 7% Si, 0.05 to 2% Fe, balance of Al, and unavoidable impurities. In the alloy, a ternary-element intermetallic compound of Al—Si—Fe and Si particles are contained as hard particles.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: October 28, 2003
    Assignee: Daido Metal Company Ltd.
    Inventors: Masahito Fujita, Yukihiko Kagohara, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6638377
    Abstract: An aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability and a method of fabricating the same. The aluminum alloy piping material is made of an aluminum alloy which contains 0.3-1.5% of Mn, 0.01-0.20% of Fe, and 0.01-0.20% of Si, wherein the content of Cu as impurities is limited to 0.05% or less, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the alloy's matrix, the number of compounds with a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 &mgr;m or more is 3×104 or less per mm2. The aluminum alloy piping material has a tensile strength of 70-130 MPa (temper: O material). An ingot of an aluminum alloy having the composition is hot extruded. The resulting extruded pipe is cold drawn at a working ratio of 30% or more and annealed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 28, 2003
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Takahiro Koyama, Hirokazu Tanaka, Yoshifusa Shoji
  • Patent number: 6638376
    Abstract: An aluminum alloy piping material exhibiting good corrosion resistance and having an excellent workability, such as bulge formation capability at the pipe ends. The aluminum alloy piping material is suitably used for pipes connecting automotive radiators and heaters or pipes connecting evaporators, condensers, and compressors. The aluminum alloy material is formed from an aluminum alloy which contains 0.3-1.5% of Mn, 0.20% or less of Cu, 0.06-0.30% of Ti, 0.01-0.20% of Fe, and 0.01-0.20% of Si, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the matrix, the number of compounds with a particle diameter of 0.5 &mgr;m or more is 2×104 or less per mm2. The aluminum alloy piping material may further comprise 0.4% or less of Mg.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: October 28, 2003
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hirokazu Tanaka, Yoshifusa Shoji, Takahiro Koyama, Toshihiko Fukuda
  • Patent number: 6627350
    Abstract: The present invention provides a negative electrode for a lithium secondary battery and a lithium secondary battery having the negative electrode. The negative electrode includes an aluminum alloy powder as an active material, wherein the alloy is substantially amorphous, and is represented by the formula AlxSiyMz, where M is at least one transition metal selected from the group consisting of Ni, Co, Cu, Fe, Cr and Mn; x, y and z are 40≦x≦80; 10≦y≦50 and 1≦z≦20, respectively, and x+y+z=100; and average particle diameter of the alloy is not greater than 50 &mgr;m.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: September 30, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takuya Hashimoto, Atsushi Fukui, Yasuhiko Itoh
  • Patent number: 6620518
    Abstract: The present invention relates generally to an oxidation and corrosion resistant coating composition produced by a vapor phase co-deposition of transition metals on metallic components. In particular, this coating includes aluminum and silicon and the coated substrate may comprise precious metal, nickel, cobalt or MCrALY. Such coatings are particularly useful in protecting nickel and cobalt and iron-based superalloys from heat corrosion and oxidation attack, especially during high temperature operation, e.g., gas turbine and jet engine hot zones.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: September 16, 2003
    Inventors: Patrick R. Lavery, Alan C. Banner, James Pollock
  • Patent number: 6610247
    Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having the composition, in weight %: Si 0.4-1.0, Mn 0.7-1.2, Mg up to 0.10, Fe up to 0.8, Zn up to 3.0, Ni 0.5-0.9, Cu up to 0.15, optionally one or more selected from the group consisting of Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25 and Cr up to 0.25, other elements up to 0.05 each, up to 0.15 in total, Al balance.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: August 26, 2003
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Adrianus Jacobus Wittebrood, Achim Bürger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
  • Publication number: 20030152478
    Abstract: There is claimed an Al—Ni—Mn based alloy for die casting, squeeze casting, permanent mold casting, sand casting and/or semi-solid metal forming. The composition of this alloy includes, by weight percent: about 0.5-6% Ni, about 1-3% Mn, less than about 1% Fe, less than about 1% Si, less than about 0.3% Ti, and less than about 0.06% B, the balance Al, incidental elements and impurities. It is suitable for aerospace and automotive cast parts.
    Type: Application
    Filed: December 20, 2002
    Publication date: August 14, 2003
    Inventors: Jen C. Lin, Vadim S. Zolotorevsky, Michael V. Glazoff, Shawn J. Murtha, Nicholas A. Belov
  • Patent number: 6605199
    Abstract: An aluminum alloy sputter target having a sputter target face for sputtering the sputter target is provided. The sputter target face has a textured-metastable grain structure. The textured-metastable grain structure has a grain orientation ratio of at least 35 percent (200) orientation. The textured-metastable grain structure is stable during sputtering of the sputter target. The textured-metastable grain structure has a grain size of less than 5 &mgr;m. The method forms aluminum alloy sputter targets by first cooling an aluminum alloy target blank to a temperature of less than −50° C. Then deforming the cooled aluminum alloy target blank introduces plastic strain into the target blank and reduces the grain size of the grains to form a textured-metastable grain structure. Finally, finishing the aluminum alloy target blank forms a finished sputter target that maintains the textured-metastable grain structure of the finished sputter target.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman, Jaak Van den Sype
  • Publication number: 20030143102
    Abstract: A first aluminum alloy of the present invention comprises Mg: 0.3-6 mass %, Si: 0.3-10 mass %, Zn: 0.05-1 mass %, Sr: 0.001-0.3 mass % and the balance being Al and impurities. A second aluminum alloy further contains one or more selective additional elements selected from the group consisting of Cu, Fe, Mn, Cr, Zr, Ti, Na and Ca. Furthermore, a third aluminum alloy comprises Mg: 0.1-6 mass %, Si: 0.3-12.5 mass %, Cu: 0.01 mass % or more but less than 1 mass %, Zn: 0.01-3 mass %, Sr: 0.001-0.5 mass % and the balance being Al and impurities. Furthermore, a fourth aluminum alloy further includes one or more optional additional elements selected from the group consisting of Ti, B, C, Fe, Cr, Mn, Zr, V, Sc, Ni, Na, Sb, Ca, Sn, Bi and In.
    Type: Application
    Filed: July 25, 2002
    Publication date: July 31, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Hideaki Matsuoka, Masaki Yamanaka, Hiroki Yoshioka, Yasuo Okamoto, Masakatsu Kitamura
  • Patent number: 6596671
    Abstract: A bi-metal aluminum includes bearing an aluminum-based bearing layer, a steel backing, and an intermediate aluminum-based layer that has a thickness of from 60 to 120 micrometers positioned between the aluminum-based bearing layer and the steel backing. The intermediate layer has a yield strength that is less than that of the aluminum-based bearing layer. The aluminum-based bearing layer has a fine microstructure which imparts a very high fatigue strength. The aluminum bearing layer generally includes 4% to 15% by weight lead or tin, up to 26% by weight silicon and up to 2% by weight of any of the elements magnesium, manganese, nickel, zirconium, zinc, copper, or chromium with the remainder of the bearing layer being aluminum.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: July 22, 2003
    Assignee: Federal-Mogul World Wide, Inc.
    Inventors: Warren J. Whitney, Jr., Jeffrey C. Hunter
  • Publication number: 20030133825
    Abstract: The present invention provides an aluminum alloy foil for fins used in heat exchangers. The aluminum alloy composition consists essentially of about 0.25% to about 0.6% by weight of Si; about 0.15% to about 0.50% by weight of Fe; about 0.20% to about 0.70% by weight of Mn; less than about 0.05% Cu; and less than about 0.05% Mg, with the balance aluminum including unavoidable impurities. The alloy composition may also contain less than 0.10% Zn or 0.50-2.00% Zn. The invention also provides a method for making an aluminum alloy wherein during cold rolling interanneal is carried out at a gauge such that the cold work after internanneal is between about 30-70%.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Inventors: Tom Davisson, Sadashiv Nadkarni, Dave Wilbur
  • Patent number: 6572816
    Abstract: A free-machinable hyper-eutectic Al—Si alloy includes 3.0-5.0 wt % Cu, 13-17 wt % Si, 0.2-0.5 wt % Fe, 2.5-6.0 wt % Bi, 0.005-0.02 wt % P, up to 0.1 wt % Mg, up to 0.1 wt % Ni, up to 0.5 wt% Mn and up to 0.5 wt % total sum of other elements, with the balance of the alloy being Al. The hyper-eutectic Al—Si alloy is advantageous in light of excellent machinability, easy cutting operation, extended lifetime of cutting tools and improved smoothness of cutting faces. In addition, the alloy has excellent elongation ratio and abrasion resistance, while maintaining mechanical properties such as rupture strength, tensile strength, yield strength and hardness which are similar to conventional A390 alloy, and thus can be applied to abrasion resistance-requiring applications, for example, swash plates of compressors for automotive air conditioners, without any surface treatment including anodizing or Sn plating.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: June 3, 2003
    Assignee: Foosung Precision Ind., Co., Ltd.
    Inventor: Young Sek Yang