Nickel Containing Patents (Class 420/91)
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20110036469
    Abstract: The present invention provides a steel plate that exhibits excellent low-temperature toughness in a base material and a weld heat-affected zone and has small strength anisotropy, wherein the steel includes, by mass, C: 0.04%-0.10%; Si: 0.02%-0.40%; Mn: 0.5%-1.0%; P: 0.0010%-0.0100%; S: 0.0001%-0.0050%; Ni: 2.0%-4.5%; Cr: 0.1%-1.0%; Mo: 0.1%-0.6%; V: 0.005%-0.1%; Al: 0.01%-0.08%; and N: 0.0001%-0.0070%, with the balance including Fe and inevitable impurities, a Ni segregation ratio at a portion located at one-fourth of a thickness of the steel plate in a steel-plate thickness direction from a surface of the steel plate is 1.3 or lower, a degree of flatness of a prior austenite grain is in a range from 1.05 to 3.0, an effective diameter of crystal grain is 10 ?m or lower, and a Vickers hardness number is in a range of 265 HV to 310 HV.
    Type: Application
    Filed: October 1, 2009
    Publication date: February 17, 2011
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi
  • Publication number: 20100322814
    Abstract: A high-strength steel sheet is provided which, even when subjected to long-term stress-relief annealing after welding, decreases little in strength and which has satisfactory low-temperature HAZ toughness. The high-strength steel sheet has a chemical composition adequately regulated and has a CP value defined by the following equation (1) of 5.40% or higher and a carbon equivalent (Ceq) defined by the following equation (2) of 0.45% or lower. CP value=125[Ti]+111[Nb]+60[V]+15[Mo] (1) ([Ti], [Nb], [V], and [Mo] indicate the contents (mass %) of Ti, Nb, V, and Mo, respectively.) Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (2) ([C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] indicate the contents (mass %) of C, Mn, Cr, Mo, V, Cu, and Ni, respectively.
    Type: Application
    Filed: March 16, 2009
    Publication date: December 23, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Makoto Kariyazaki
  • Patent number: 7850794
    Abstract: The present invention provides a spring steel that has superior hardenability, undergoes less pitting in a corrosive environment, and can achieve higher stress and toughness. More specifically, the present invention provides a high-strength and high-toughness spring steel with improved hardenability and pitting resistance, containing, in mass percent, 0.40 to 0.70% carbon, 0.05 to 0.50% silicon, 0.60 to 1.00% manganese, 1.00 to 2.00% chromium, 0.010 to 0.050% niobium, 0.005 to 0.050% aluminum, 0.0045 to 0.0100% nitrogen, 0.005 to 0.050% titanium, 0.0005 to 0.0060% boron, no more than 0.015% phosphorus and no more than 0.010% sulfur, the remainder being composed of iron and unavoidable impurities, the steel having a tensile strength of at least 1700 MPa in 400° C. tempering after quenching and a Charpy impact value of at least 40 J/cm2 for a 2 mm U-notched test piece of JIS 2202 and the parameter Fce being at least 1.70.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: December 14, 2010
    Assignee: Mitsubishi Steel Mfg. Co., Ltd.
    Inventors: Tatsuo Fukuzumi, Hidenori Hiromatsu, Motoyuki Sato, Ryo Hara
  • Patent number: 7842141
    Abstract: A steel composition contains: 0.05% or less of C; 0.5% or less of Si; 0.20% to 1.80% of Mn; 0.03% or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; and 0.006% or less of O on a mass basis, and satisfies the following expressions: Cr+0.65Ni+0.6Mo+0.55Cu?20C?18.5 and Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9N?11 (where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents (mass %)). After such a steel pipe material is formed into a steel pipe, the steel pipe is quenched by cooling after heating to a temperature of the AC3 transformation point or more and tempered at a temperature of the AC1 transformation point or less.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 30, 2010
    Assignee: JFE Steel Corporation
    Inventors: Mitsuo Kimura, Takanori Tamari, Takaaki Toyooka
  • Publication number: 20100294401
    Abstract: A high strength bainitic steel and a process for producing seamless pipes for OCTG applications are described. In particular, the advantages ensuing to the steel of the invention are the improvement in strength-toughness over tempered martensitic steels, and a simplified thermal treatment. Quenching is not necessary and by avoiding the quenching treatment the microstructure results far more homogeneous, which allows thick walled tubes to be produced. For the same steel composition, in comparison to conventional tempered martensitic structures, a better combination of strength and toughness can be achieved, in particular by tempering as rolled carbide-free bainitic structures.
    Type: Application
    Filed: November 19, 2007
    Publication date: November 25, 2010
    Applicant: Tenaris Connections Limited
    Inventors: Gonzalo Roberto Gomez, Teresa Estela Pérez, Harsad Kumar Dharamshi Hansraj Bhadeshia
  • Publication number: 20100284849
    Abstract: An austenitic cast iron according to the present invention has Ni: from 7 to 15% by mass, and is characterized in that it comprises a base structure in which an austenite phase makes a major phase even in ordinary-temperature region by adjusting the respective compositions of Cr, Ni and Cu, excepting C and Si, so as to fall within predetermined ranges. In accordance with the present invention, it is possible to obtain an austenitic cast iron, which is excellent in terms of oxidation resistance and the like, inexpensively, while reducing the content of expensive Ni.
    Type: Application
    Filed: August 29, 2008
    Publication date: November 11, 2010
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, MIE PREFECTURE
    Inventors: Tomohei Sugiyama, Manabu Ishikawa, Hiroyuki Isomura, Mamoru Kojima, Naoki Yamamoto, Kyoichi Kinoshita, Takao Fujikawa
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Publication number: 20100247957
    Abstract: Disclosed is a cold-rolled steel sheet having a specific steel composition and having a composite steel structure including a ferrite structure and a martensite-containing second phase. In a surface region of the steel sheet from the surface to a depth one-tenth the gage, the number density of n-ary groups of inclusions determined by specific n-th determinations is 120 or less per 100 cm2 of a rolling plane, in which the distance in steel sheet rolling direction between outermost surfaces of two outermost particles of the group of inclusions is 80 ?m or more. Also disclosed is a cold-rolled steel sheet having a specific steel composition and having a steel structure of a martensite single-phase structure. In the surface region, the number density of groups of inclusions, in which the distance between the outermost surfaces is 100 ?m or more, is 120 or less per 100 cm2 of a rolling plane.
    Type: Application
    Filed: February 18, 2010
    Publication date: September 30, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Tetsuji HOSHIKA, Sae Mizuta, Yuichi Futamura, Masaaki Miura, Yukihiro Utsumi, Hiroaki Matsumoto, Hiroki Ohta
  • Publication number: 20100239452
    Abstract: A micro-alloyed low carbon steel strip is obtained by hot rolling at temperature of the pre-strip never lower than 900° C. and shows such metallurgical and geometrical features, as well as relating to planarity and deformability, to render the same suitable to obtain structures of low weight and good mechanical resistance, thus being able for use in replacement of cold rolled strips for the production of finished stamped or cut pieces. Said steel strip, having thickness >0.7 mm, has a ratio yield load/breaking load >70%, a fine grain structure better than grade 10 of ASTM E 112 standard in a percentage higher than 90% of the whole structure and a ratio between breaking limit under strain and yield point ?Fp/RPo.2>90%.
    Type: Application
    Filed: January 26, 2006
    Publication date: September 23, 2010
    Inventor: Giovanni Arvedi
  • Publication number: 20100226813
    Abstract: In order to provide a high tensile strength steel having excellent low temperature toughness and which can withstand large heat input welding, a steel comprises, in mass percent, C: 0.01-0.10%, Si: at most 0.5%, Mn: 0.8-1.8%, P: at most 0.020%, S: at most 0.01%, Cu: 0.8-1.5%, Ni: 0.2-1.5%, Al: 0.001-0.05%, N: 0.0030-0.0080%, O: 0.0005-0.0035%, if necessary at least one of Ti: 0.005-0.03%, Nb: 0.003-0.03%, and Mo: 0.1-0.8%, and a remainder of Fe and impurities, and the N/Al ratio is 0.3-3.0.
    Type: Application
    Filed: September 11, 2009
    Publication date: September 9, 2010
    Inventors: Takahiro Kamo, Takeshi Urabe, Hirofumi Nakamura, Kazushi Ohnishi, Masahiko Hamada
  • Publication number: 20100158744
    Abstract: The present invention has as its object the production of high strength electrical steel sheet, having a high strength of a tensile strength TS of for example 500 MPa or more, having wear resistance, and having superior magnetic properties of magnetic flux density and iron loss, that is, provides a method of production of high strength electrical steel sheet containing, by mass %, C: 0.060% or less, Si: 0.2 to 6.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S or Se: 0.040% or less, Al: 2.50% or less, N: 0.020% or less, and further one or more of Cu: 0.001 to 30.0% and Nb: 0.03 to 8.
    Type: Application
    Filed: June 16, 2006
    Publication date: June 24, 2010
    Inventor: Hidekuni Murakami
  • Publication number: 20100143179
    Abstract: A lead free free-cutting steel is described having the following composition in percent by weight: C 0.85-1.2 Si 0.1-0.6 Mn 0.4-1.2 P max 0.05 S 0.04-0.3 Cr max 2 Ni max 1 Mo max 0.5 Cu max 2 Al max 0.1 B max 0.008 Bi+Se+Te max 0.005 Ti+Nb+Zr+V max 0.2 balance Fe and normally occurring impurities. The steel is mainly intended for small/thin dimensions and/or low cutting speeds during manufacture of a product formed of the steel.
    Type: Application
    Filed: January 24, 2008
    Publication date: June 10, 2010
    Inventors: Mattias Sandström, Ylva Trogen, Lars Karlsson
  • Publication number: 20100135844
    Abstract: The present invention relates to a cold-work die steel, comprising by mass %: 0.5 to 0.7% of C; 0.5 to 2.0% of Si; 0.1 to 2.0% of Mn; 5 to 7% of Cr; 0.01 to 1.0% of Al; 0.003 to 0.025% of N; 0.25 to 1% of Cu; 0.25 to 1% of Ni; 0.5 to 3% of Mo; 2% or less (including 0%) of W; and 0.1% or less (excluding 0%) of S, with a remainder being iron and an unavoidable impurity; wherein the following requirements (1) to (3) are satisfied: (1) [Cr]×[C]?4; (2) [Al]/[N]: 1 to 30; and (3) [Mo]+0.5×[W]: 0.5 to 3.00%, wherein the bracket means a content (%) of an element written therein.
    Type: Application
    Filed: September 18, 2008
    Publication date: June 3, 2010
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel,Ltd.), Nippon Koshuha Steel Co., Ltd.
    Inventors: Shogo Murakami, Shigenobu Namba, Kenji Yamamoto, Tsuyoshi Tonomura
  • Publication number: 20100132429
    Abstract: The present invention provides a cold-work die steel useful as a material of dies for cold pressing, which has basic properties such as hardness, toughness and dimensional change by heat treatment, and besides, which causes no problem in terms of machined surface roughness and cutting tool life, and also its dies for cold pressing. The invention relates to a cold-work die steel comprising: 0.5 to 0.7 mass % of C; 5.0 to 7.0 mass % of Cr; 0.5 to 2.0 mass % of Si; 0.1 to 2.0 mass % of Mn; 0.001 to 0.010 mass % of Al; 0.25 to 1.00 mass % of Cu; 0.25 to 1.00 mass % of Ni; 0.5 to 3.0 mass % of Mo+0.5×W; 0.5 mass % or less of V; 0.05 mass % or less of P; 0.1 mass % or less of S; 0.005 mass % or less of O, wherein the following requirements are satisfied: [C]×[Cr]?4; FP=[Si]/5+[Cr]/5+2×[Mo]+[W]+2×[V]+10×[Al]?5.0; and AP=[Mn]+3×([Cu]+[Ni])?2.5, and also relates to a die for cold pressing which is manufactured by using the cold-work die steel.
    Type: Application
    Filed: January 7, 2009
    Publication date: June 3, 2010
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd), Nippon Koshuha Steel Co. Ltd.
    Inventors: Shogo Murakami, Tsuyoshi Tonomura
  • Publication number: 20100102910
    Abstract: The invention relates to an austenitic iron-nickel-chromium-copper alloy, the composition of which comprises in % by weight: 24%?Ni?36% Cr?0.02% Cu?0.1% Cu+Co?15% 0.01?Mn?6% 0.02?Si?2% 0?Al+Ti?3% 0?C?2% 0?V+W?6% 0?Nb+Zr?0.5% 0?Mo?8 Sn?1 0?B?0.006% 0?S+Se+Sb?0.008% 0?Ca+Mg?0.020% the balance being iron and impurities resulting from the smelting, the percentage nickel, chromium, copper and cobalt contents being such that the alloy furthermore satisfies the following conditions: Co<Cu Co<4% if Cr>7.5% Eq1>28% with Eq1=Ni+1.2Cr+(Cu/5) Cr<7.5% if Ni>32.5%, and the manganese content furthermore meeting the following conditions: if ? ? Eq ? ? 3 ? 205 , Mn ? Ni - 27.5 + Cu - Cr if ? ? 180.5 ? Eq ? ? 3 ? 205 , Mn ? 4 ? % if ? ? Eq ? ? 3 ? 180.5 , Mn ? 2 ? % with ? ? Eq ? ? 3 = 6 ? ? Ni - 2.
    Type: Application
    Filed: March 26, 2008
    Publication date: April 29, 2010
    Applicant: Arcelormittal-Stainless & Nickel Alloys
    Inventors: Thierry Waeckerle, Olena Danylova
  • Publication number: 20100092331
    Abstract: There are provided a high-strength hot-rolled steel sheet having excellent weather resistance used for containers and a method of manufacturing the same. A high-strength hot-rolled steel sheet having excellent weather resistance includes, by weight: C: 0.05 to 0.07%, Mn: 2.5% or less, Nb: 0.04 to 0.06%, Ti: 0.08 to 0.10%, Cu: 0.30 to 0.60%, Cr: 0.5 to 1.0%, and Ni: 0.15 to 0.30%, and the balance of Fe and other inevitable impurities. A method of manufacturing the hot-rolled steel sheet is also provided. A hot-rolled steel sheet provided has weather resistance by addition of Cu, Cr, and Ni and material characteristics of a tensile strength within the range of 800 to 900 MPa and a yield strength within the range of 700 to 800 MPa.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 15, 2010
    Applicant: POSCO
    Inventors: Kee Jo Jeong, Gyo Sung Kim, Jai Ik Kim, Chul Ju Park, Jae Kon Lee
  • Publication number: 20100086431
    Abstract: The present invention provides a non-aging enameling steel sheet having excellent fishscale resistance characteristics that is suitable for one-coat enameling and a method of producing the same. The enameling steel sheet comprises, in mass %, C: 0.010% or less, Mn: 0.03% to 1.30%, Si: 0.100% or less, Al: 0.010% or less, N: 0.0055% or less, P: 0.035% or less, S: 0.08% or less, O: 0.005% to 0.085%, Nb: 0.055% to 0.250%, and the balance of Fe and unavoidable impurities, in which steel sheet preferably an Fe—Nb—Mn system composite oxide is present, a distribution of Nb mass % concentrations is present in the composite oxide, and the ratio of Nb mass % concentration of a high-concentration portion (Nb max %) to Nb mass % concentration of a low-concentration portion (Nb min %) is Nb max %/Nb min % ?1.2.
    Type: Application
    Filed: August 13, 2007
    Publication date: April 8, 2010
    Inventors: Hidekuni Murakami, Satoshi Nishimura
  • Publication number: 20100084057
    Abstract: A high strength cold-rolled steel sheet and a high strength plated steel sheet which have an excellent surface appearance required for outer panels of automobiles and which have an extremely high r value in a direction at 45° with respect to the rolling direction and which have excellent press formability and a tensile strength of at least 340 MPa and a process for their manufacture are provided. The steel sheets have a chemical composition consisting essentially of, in mass %, C: 0.0005-0.025%, Si: at most 0.2%, Mn: 0.3-2.5%, P: at most 0.15%, S: at most 0.02%, N: at most 0.006%, sol. Al: less than 0.005%, Ti: 0.005-0.05%, and Nb: 0.020-0.200% with the mass ratio (Nb/Ti) of the contents of Nb and Ti being at least 2, and a remainder of Fe and impurities, and they have an r value in a direction at 45° with respect to the rolling direction (r45) of at least 1.80 and/or a mean r value (0 of at least 1.60, and a tensile strength of at least 340 MPa.
    Type: Application
    Filed: September 4, 2009
    Publication date: April 8, 2010
    Inventors: Seiji Furuhashi, Jun Haga, Takayuki Nishi
  • Publication number: 20100080728
    Abstract: The present invention is the thin steel sheet containing C, Si, Mn, P, S, Al, Mo, Ti, B, and N wherein a value Z calculated by the equation described below is 2.0-6.0, an area ratio against all the structure is 1% or above for retained austenite and 80% or above for total of bainitic ferrite and martensite, a mean axis ratio of the retained austenite crystal grain is 5 or above, and tensile strength is 980 MPa or above. Value Z=9×[C]+[Mn]+3×[Mo]+490×[B]+7×[Mo]/{100×([B]+0.001)} Thus a high strength thin steel sheet with 980 MPa or above tensile strength and enhanced hydrogen embrittlement resistance properties can be provided. Also, in accordance with the present invention, the hot-rolled steel sheet for cold-rolling capable of manufacturing the high strength thin steel sheet with good productivity and having improved cold-rollability can be provided.
    Type: Application
    Filed: December 10, 2007
    Publication date: April 1, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Muneaki Ikeda, Kouji Kasuya, Yoichi Mukai, Fumio Yuse, Junichiro Kinugasa
  • Publication number: 20100072866
    Abstract: Disclosed is a low alloy steel material for generator rotor shafts, which has tensile strength of not less than 700 MPa at room temperature. Preferably the low alloy steel material consists of, by mass percent, 0.15 to 0.35% carbon, 0.01 to 0.10% Si, 0.10 to 0.50% Mn, 1.3 to 2.0% Ni, 2.1 to 3.0% Cr, 0.20 to 0.50% Mo, 0.15 to 0.35% Cu, 0.06 to 0.14% V, and the balance of Fe and unavoidable impurities.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 25, 2010
    Applicant: HITACHI, LTD.
    Inventor: Takanobu MORI
  • Publication number: 20100074792
    Abstract: The invention relates to a cold work die steel containing, by mass %, C: 0.20 to 0.60%, Si: 0.5 to 2.00%, Mn: 0.1 to 2%, Cr: 3.00 to 9.00%, Al: 0.3 to 2.0%, Cu: 1.00 to 5%, Ni: 1.00 to 5%, Mo: 0.5 to 3% and/or W: 2% or less (including 0%), S: 0.10% or less (not including 0%), in which the following requirements (1) to (3) are satisfied {wherein each square bracket [ ] means a content (%) of each element}: [Cr]×[C]?3.00,??(1) [Cu]/[Ni]:0.5 to 2.2,??(2) [Mo]+0.5×[W]:0.5 to 3.0%,??(3) with the remainder being iron and unavoidable impurities; and to a die obtained by the using the same. The invention also relates to a production method for a cold work die steel.
    Type: Application
    Filed: October 16, 2007
    Publication date: March 25, 2010
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.), NIPPON KOSHUHA STEEL CO., LTD.
    Inventors: Shogo Murakami, Tsuyoshi Tonomura
  • Publication number: 20100047617
    Abstract: Steel sheet having a composition of ingredients containing substantially, by mass %, C: 0.005 to 0.200%, Si: 2.50% or less, Mn: 0.10 to 3.00%, N: 0.0100% or less, Nb: 0.005 to 0.100%, and Ti: 0.002 to 0.150% and satisfying the relationship of Ti-48/14×N?0.0005, having a sum of the X-ray random intensity ratios of the {100}<001> orientation and the {110}<001> orientation of a ? sheet thickness part of 5 or less, having a sum of the maximum value of the X-ray random intensity ratios of the {110}<111> to {110}<112> orientation group and the X-ray random intensity ratios of the {211}<111> orientation of 5 or more, and having a high rolling direction Young's modulus measured by the static tension method and a method of production of the same are provided.
    Type: Application
    Filed: November 7, 2007
    Publication date: February 25, 2010
    Inventors: Natsuko Sugiura, Naoki Maruyama, Manabu Takahashi, Yohji Nakamura, Koji Hanya
  • Publication number: 20100047106
    Abstract: This invention provides a forging steel excellent in forgeability, which forging steel comprises, in mass %, C: 0.001 to less than 0.07%, Si: 3.0% or less, Mn: 0.01 to 4.0%, Cr: 5.0% or less, P: 0.2% or less, S: 0.35% or less, Al: 0.0001 to 2.0%, N: 0.03% or less, one or both of Mo: 1.5% or less (including 0%) and Ni: 4.5% or less (including 0%), and a balance of iron and unavoidable impurities; wherein Di given by the following Equation (1) is 60 or greater: Di=5.
    Type: Application
    Filed: April 10, 2008
    Publication date: February 25, 2010
    Inventors: Hajime Saitoh, Tatsuro Ochi, Masayuki Hashimura
  • Publication number: 20100034691
    Abstract: An object of the preset invention is to provide a spring steel wire that: shows excellent wire drawability not only when it is used as a spring steel wire for cold-winding formed into a steel spring by applying quenching and tempering treatment after wiredrawing but also when it is used as a spring steel wire for cold-winding formed into a steel spring as it is wiredrawn; and secures a spring having an excellent fatigue characteristic after the spring steel wire is formed into the spring. The spring steel wire according to the present invention is a spring steel wire excellent in fatigue characteristic and wire drawability, wherein: the contents of C, Si, Mn, Cr, Ti, B, and other elements are specified; the contents (mass %) of B, Ti, and N satisfy the expression (1) below; the amount of solid solute B is in the range of 0.0005% to 0.0040%; the remainder in the spring steel wire is composed of Fe and unavoidable impurities; and the solid solute B concentrates at the grain boundaries of pearlite nodules, 0.
    Type: Application
    Filed: October 30, 2007
    Publication date: February 11, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Nao Yoshihara
  • Publication number: 20100018613
    Abstract: A high strength, high toughness steel alloy is disclosed. The alloy has the following broad weight percent composition. Element Broad C 0.35-0.55 Mn 0.6-1.2 Si 0.9-2.5 P 0.01 max. S 0.001 max.? Cr 0.75-2.0? Ni 3.5-7.0 Mo + ½ W 0.4-1.3 Cu 0.5-0.6 Co 0.01 max. V + ( 5/9) × Nb 0.2-1.0 Fe Balance Included in the balance are the usual impurities found in commercial grades of steel alloys produced for similar use and properties. Also disclosed is a hardened and tempered article that has very high strength and fracture toughness. The article is formed from the alloy having the broad weight percent composition set forth above. The alloy article according to this aspect of the invention is further characterized by being tempered at a temperature of about 500° F. to 600° F.
    Type: Application
    Filed: June 19, 2009
    Publication date: January 28, 2010
    Inventor: Paul M. Novotny
  • Publication number: 20100003161
    Abstract: The present invention provides: a steel for a welded structure to be used for a crude oil tank that exhibits excellent general and local corrosion resistance in crude oil corrosion caused in a steel oil tank and is capable of suppressing the formation of corrosion products (sludge) containing solid sulfur; a method for producing said steel; a crude oil tank; and a method for preventing a crude oil tank against corrosion. The present invention makes it possible to obtain general and local corrosion resistance in a crude oil tank environment and suppress the formation of corrosion products (sludge) containing solid sulfur by using a steel: containing, in mass, 0.001 to 0.2% C, 0.01 to 2.5% Si, 0.1 to 2% Mn, 0.03% or less P, 0.007% or less S, 0.01 to 1.5% Cu, 0.001 to 0.3% Al, 0.001 to 0.01% N as basic components and, further, 0.01 to 0.2% Mo and/or 0.01 to 0.5% W; and preferably satisfying the following expression; Solute Mo+Solute W?0.005%.
    Type: Application
    Filed: September 3, 2009
    Publication date: January 7, 2010
    Applicant: Nippon Steel Corporation
    Inventors: Akira Usami, Kenji Katoh, Toshiei Hasegawa, Akira Shishibori
  • Publication number: 20090304543
    Abstract: A steel for nitrocarburizing use, which comprises by mass percent, C: more than 0.45% to not more than 0.60%, Si<0.50%, Mn: more than 1.30% to not more than 1.70%, P?0.05%, S: 0.02 to 0.10%, Cr?0.30% and N: more than 0.007% to not more than 0.030%, and which further contains one or two elements selected from Al: more than 0.010% to not more than 0.10% and Ti: more than 0.005% to not more than 0.035%, with Al+Ti being 0.015% or more, with the balance being Fe and impurities, wherein V among the impurities is not more than 0.010%, and further satisfies the following 2 formulas, has high fatigue strength and excellent straightenability after the nitrocarburizing treatment, without performing the expensive heat treatment of quenching and tempering. Consequently, they are suitable as raw materials for nitrocarburized components: fn1=1.25C+Mn?0.1Cr, fn2=N?0.45Al?( 1/22)Ti.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Inventors: Makoto EGASHIRA, Hiroaki TAHIRA
  • Publication number: 20090291013
    Abstract: A method for designing a low cost, high strength, high toughness martensitic steel in which a mathematical model is used to establish an optimum low cost alloying concentration that provides specified levels of strength toughness. The model also predicts critical temperatures and the amount of retained austenite. Laboratory scale ingots of the optimum alloying composition were produced comprising by % wt. of about: 0.37 of C; 1.22 of Ni; 0.68 of Mn; 0.86 of Si; 0.51 of Cu; 1.77 of Cr; and 0.24 of V; and the balance Fe and incidental impurities were melted in an open induction furnace. After homogenized annealing, hot rolling, recrystallization annealing, and further oil quenching, refrigerating, and low tempering, a tempered martensite microstructure was produced consisting of small packets of martensitic laths, fine vanadium carbide, as centers of growth of the martensitic lathes, and retained austenite.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 26, 2009
    Inventors: Vladimir A. Fedchun, Gregory Vartanov
  • Publication number: 20090291014
    Abstract: A low cost high hardness, high strength, and high impact toughness steel for military articles such as armor plates, bodies of deep penetrating bombs, and missiles. After oil quenching, refrigerating, and low tempering, the new steel consisting of (% wt.): C=0.35, Cr=1.32, Mo=0.35, W=0.52, Ni=2.66, Mn=0.85, Cu=0.51, Si=0.83, V=0.26, Ti=0.12, and a balance of Fe and incidental impurities has a HRC of 55, UTS of 301 ksi, YS of 233 ksi; and Charpy V-notch impact toughness energy of 26 ft-lbs.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 26, 2009
    Inventor: Gregory Vartanov
  • Publication number: 20090274403
    Abstract: Disclosed is a composition for a bush-type bearing, a bush-type bearing manufactured using the composition, and a method of manufacturing the bush-type bearing. The bearing has excellent friction characteristics with a shaft made of iron (Fe) based material, and thus is able to increase the lubrication cycle of a lubricant. Further, the bearing has excellent hardness, and thus is able to prevent plastic deformation under high contact pressure.
    Type: Application
    Filed: November 20, 2007
    Publication date: November 5, 2009
    Applicant: DOOSAN INFRACORE CO., LTD.
    Inventors: Dong-Seob Shim, Chung-Rea Lee
  • Patent number: 7604860
    Abstract: Provided are the high tensile nonmagnetic stainless steel wire for an low loss overhead electric conductor, the low loss overhead electric conductor using the high tensile nonmagnetic stainless steel wire as its core, and a manufacturing method of them respectively. The high tensile nonmagnetic stainless steel wire reduces a core loss and eddy current loss and minimizes effective electric resistance of the conductor by using the nonmagnetic stainless steel wire, that is a non-magnetic material, rather than a high carbon steel wire, that is a strong magnetic material. In addition, an overall power transmission loss is minimized by strengthening the tensile strength of and reducing a sectional area of the steel wire, making an aluminium-welded layer thicker, and increasing the sectional area of an aluminium conductor.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: October 20, 2009
    Assignees: Korea Sangsa Co., Ltd., Korea Electro Technology Research Institute
    Inventors: Byung Geol Kim, Shang Shu Kim, Byung Chul Woo, Hee Woong Lee, Ju Hwan Park, Yong Keun Jeong, Min Bum Lee, Sun Hwan Ahn
  • Publication number: 20090246067
    Abstract: A high-strength steel sheet according to the present invention not only is suitably adjusted in its chemical elements composition, but also has a DE value defined by the following Equation (1) of 0.0340% or more, and a carbon equivalent Ceq defined by the following Equation (2) of 0.45% or less: DE value=[Ti]+[Nb]+0.3[V]+0.0075[Cr]??(1) where, [Ti], [Nb], [V], and [Cr] represent contents (mass %) of Ti, Nb, V, and Cr, respectively; Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 ??(2) where, [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] represent contents (mass %) of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. A high-strength steel sheet resistant to strength reduction and good in low-temperature toughness of HAZ even when subjected for a long time to a stress-relief annealing process after being processed by welding, is provided.
    Type: Application
    Filed: January 26, 2009
    Publication date: October 1, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Manabu IZUMI, Makoto Kariyazaki
  • Publication number: 20090238713
    Abstract: The invention relates to an ultrahigh-strength thin steel sheet excellent in the hydrogen embrittlement resistance, the steel sheet including, by weight %, 0.10 to 0.60% of C, 1.0 to 3.0% of Si, 1.0 to 3.5% of Mn, 0.15% or less of P, 0.02% or less of S, 1.5% or less of Al, 0.003 to 2.0% of Cr, and a balance including iron and inevitable impurities; in which grains of residual austenite have an average axis ratio (major axis/minor axis) of 5 or more, the grains of the residual austenite have an average minor axis length of 1 ?m or less, and the grains of the residual austenite have a nearest-neighbor distance between the grains of 1 ?m or less.
    Type: Application
    Filed: December 28, 2006
    Publication date: September 24, 2009
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Shinshu TLO Co., Ltd.
    Inventors: Junichiro Kinugasa, Fumio Yuse, Yoichi Mukai, Shinji Kozuma, Hiroshi Akamizu, Kouji Kasuya, Muneaki Ikeda, Koichi Sugimoto
  • Publication number: 20090196784
    Abstract: A cobalt-free low cost high strength martensitic stainless steel, with concentration of Ni up to 3.0% and Mo up to 1.0% of weight, has HRC of 53, UTS of 297 ksi, YS of 220 ksi, Charpy V-notch impact energy of 17.8 ft-lb, corrosion resistance in salt spray test ASTM 117. The steel was melted in an open induction furnace and vacuum arc remelting (VAR) and/or electroslag remelting (ESR) were not used to refine the steel. Further processing included homogenized annealing, hot rolling, and recrystallization annealing. The steel was heat treated by oil quenching, refrigeration, and low tempering. The steel has a microstructure consisting essentially of small packets of fine martensite laths, retained austenite, and carbides as centers of growth of the martensite laths. The cost and energy in making the steel are substantially reduced.
    Type: Application
    Filed: October 25, 2008
    Publication date: August 6, 2009
    Inventors: Vladimir A. Fedchun, Gregory Vartanov
  • Publication number: 20090196786
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3,5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Application
    Filed: July 18, 2007
    Publication date: August 6, 2009
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Publication number: 20090162241
    Abstract: An iron-base alloy of the present invention comprises a 20 to 50% weight fraction of prealloy steel of composition A and a 48 to 78% weight fraction of prealloy steel of composition B to which additional alloying to which additional alloying elements (and lubricant) are added in preparation of a powdered metal blended mixture. The resulting mixture composition of the embodiment comprises in % by mass: 0.4 to 1.0% of C; 0.5 to 3.5% of Cr; 0.1 to 1.7% of Mo; to 3.0% of Cu; and the balance being primarily Fe and unavoidable impurities. Ni and/or Mn may also be included in the resulting mixture composition.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 25, 2009
    Applicant: PARKER HANNIFIN CORPORATION
    Inventors: Richard Scott, Stephanie Renaud, John Fulmer
  • Publication number: 20090155118
    Abstract: A steel composition that includes: about 0.25-0.37% by weight Carbon; about 1.20-1.55% by weight Manganese; about 0.1-0.15% by weight Vanadium; about 0.20-0.40% by weight Nickel; about 0.20-0.50% by weight Silicon; about 0.30-0.45% by weight Copper; about 0.017-0.025% by weight Nitrogen; and Iron as the main constituent.
    Type: Application
    Filed: February 19, 2009
    Publication date: June 18, 2009
    Inventors: Michael Yuri Kan, William Joseph Peppler, Gary Alan Stueck
  • Publication number: 20090142219
    Abstract: A sinter-hardening powder can yield a sintered compact with high strength, high hardness, and high density. A raw powder for sintering includes Fe as its primary component and also comprising 0.1-0.8 wt % C, 5.0-12.0 wt % Ni, 0.1-2.0 wt % Cr, and 0.1-2.0 wt % Mo, wherein the mean particle size of the raw powder for sintering is 20 ?m or less. The sintered and tempered compact, without any quenching treatment, has high hardness, high strength, high density, and good ductility.
    Type: Application
    Filed: February 5, 2009
    Publication date: June 4, 2009
    Applicant: TAIWAN POWDER TECHNOLOGIES CO., LTD.
    Inventors: Kuen-Shyang Hwang, Yung-Chung Lu
  • Patent number: 7540927
    Abstract: A soft magnetic steel has, on the mass basis, a carbon content of 0.0015% to 0.02%, a manganese content of 0.15% to 0.5%, and a sulfur content of 0.015% to 0.1%, has a ratio Mn/S of 5.7 or more, and contains a single-phase ferrite microstructure as its metallographic structure, in which the density of precipitated FeS grains having a major axis of 0.1 ?m or more is 5000 grains/mm2 or less. This steel ensures excellent magnetic properties with less variation after magnetic annealing, exhibits excellent machinability and cold forgeability during production processes, and can thereby yield a steel part even having a complicated shape and a large size in a high yield.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 2, 2009
    Assignee: Kobe Steel, Ltd.
    Inventor: Masamichi Chiba
  • Publication number: 20090136378
    Abstract: Disclosed herein is a high-strength hot-rolled steel sheet which is characterized by high strength (in terms of tensile strength at 900 MPa level) and excellent combined formability expressed by balance between strength and ductility [tensile strength (TS)×total elongation (El)] and balance between strength and stretch flangeability [tensile strength (TS)×bore expanding ratio (?)]. The hot-rolled steel sheet contains C: no less than 0.02% and no more than 0.15%, Si: no less than 0.2% and no more than 2.0%, Mn: no less than 0.5% and no more than 2.5%, Al: no less than 0.02% and no more than 0.15%, Cu: no less than 1.0% and no more than 3.0%, Ni: no less than 0.5% and no more than 3.0%, and Ti: no less than 0.03% and no more than 0.5%. (% means mass %) It also has a metallographic structure in longitudinal cross section such that the sum of bainitic ferrite and granular bainitic ferrite accounts for no less than 85% by area.
    Type: Application
    Filed: March 14, 2007
    Publication date: May 28, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO
    Inventors: Motoo Satou, Tetsuo Soshiroda
  • Publication number: 20090123322
    Abstract: High-speed steel for saw blades, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 1.5; Chromium between 1.0 and 10.0; equivalent Tungsten, given by 2Mo+W relation, between 3.0 and 10.0; Niobium between 0.5 and 2.0. Niobium may be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.3 and 2.0. Vanadium may be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium, Silicon between 0.3 and 3.5. Silicon may be partially or fully replaced with Aluminum, at a 1:1 ratio; Cobalt lower than 8, the remaining substantially Fe and impurities inevitable to the preparation process.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 14, 2009
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20090087336
    Abstract: A high-carbon steel wire rod of high ductility for steel cord and the like is provided that experiences little breakage during drawing. The high-carbon steel wire rod of high ductility is a high-carbon steel wire rod fabricated by hot rolling that that has a carbon content of 0.7 mass % or greater, wherein 95% or greater of the wire rod metallographic structure is pearlite structure and the maximum pearlite block size of pearlite at the core of the hot-rolled wire rod is 65 ?m or less. The high-carbon steel wire rod of high ductility has a tensile strength in a range of {248+980×(C mass %)}±40 MPa} and a reduction of area of {72.8?40×(C mass %) %} or greater. The high-carbon steel wire rod of high ductility is characterized in that the average pearlite block size at the core of the hot-rolled wire rod constituted by ferrite grain boundaries of an orientation difference of 9 degrees or greater as measured with an EBSP analyzer is 10 ?m or greater and 30 ?m or less.
    Type: Application
    Filed: May 31, 2007
    Publication date: April 2, 2009
    Inventors: Seiki Nishida, Shingo Yamasaki, Hitoshi Demachi, Nariyasu Muroga, Shouichi Ohashi, Kenichi Nakamura, Makoto Kosaka, Nobuyuki Komiya, Susumu Sahara
  • Publication number: 20090032150
    Abstract: An oil country tubular good for expansion according to the invention is expanded in a well. The oil country tubular good for expansion has a composition containing, in percentage by mass, 0.05% to 0.08% C, at most 0.50% Si, 0.80% to 1.30% Mn, at most 0.030% P, at most 0.020% S, 0.08% to 0.50% Cr, at most 0.01% N, 0.005% to 0.06% Al, at most 0.05% Ti, at most 0.50% Cu, and at most 0.50% Ni, and the balance consisting of Fe and impurities, and a structure having a ferrite ratio of at least 80%. The oil country tubular good for expansion has a yield strength in the range from 276 MPa to 379 MPa and a uniform elongation of at least 16%. Therefore, the oil country tubular good according to the invention has a high pipe expansion characteristic.
    Type: Application
    Filed: September 29, 2008
    Publication date: February 5, 2009
    Inventors: Taro Ohe, Keiichi Nakamura, Hideki Takabe, Toshiharu Abe, Tomoki Mori, Masakatsu Ueda
  • Publication number: 20090035602
    Abstract: A high-strength steel excellent in hydrogen embrittlement resistance is provided. The high-strength steel of the present invention excellent in hydrogen embrittlement resistance has a tensile strength of 1800 N/mm2 or above, contains 0.3 to 0.7% (percent by mass) C, 0.95 to 5.0% Cr, not higher than 0.6% and higher than 0% Mn, and 0.7 to 2.5% Si, and contains at least one of Mg, Ca, Sr, Ba, Li, Na and K so as to meet the following conditions: (1) the upper limits of the Mg, the Ca, the Sr, the Ba, the Li, the Na and the K content are 0.
    Type: Application
    Filed: January 15, 2007
    Publication date: February 5, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Wataru Urushihara, Toshiki Sato, Nao Yoshihara
  • Publication number: 20090020189
    Abstract: The steel wire material for a spring of the invention contains; C: 0.37-0.54%, Si: 1.7-2.30%, Mn: 0.1-1.30%, Cr: 0.15-1.1%, Cu: 0.15-0.6%, Ti: 0.010-0.1%, Al: 0.003-0.05%, and the balance including iron with inevitable impurities, wherein ferrite decarburized layer depth is 0.01 mm or less, whole decarburized layer depth is 0.20 mm or less, and fracture reduction of area is 25% or more. It alternately may contain; C: 0.38-0.47%, Si: 1.9-2.5%, Mn: 0.6-1.3%, Ti: 0.05-0.15%, Al: 0.003-0.1%, and the balance including iron with inevitable impurities, wherein ferrite decarburized layer depth is 0.01 mm or less, Ceq1 in the equation (1) below is 0.580 or more, Ceq2 in the equation (2) below is 0.49 or less, and Ceq3 in the equation (3) below is 0.570 or less. Ceq1=[C]+0.11[Si]?0.07[Mn]?0.05[Ni]+0.02[Cr]??(1) Ceq2=[C]+0.30[Cr]?0.15[Ni]?0.70[Cu]??(2) Ceq3=[C]?0.04[Si]+0.24[Mn]+0.10[Ni]+0.20[Cr]?0.89[Ti]?1.92[Nb]??(3) (In the above equations, [ ] shows the content (mass %) of each element in steel.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 22, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Nao YOSHIHARA, Fujio Koizumi, Hirokazu Inoue, Katsuya Takaoka, Shoji Miyazaki, Sayaka Nagamatsu
  • Publication number: 20090022619
    Abstract: A steel plate for submerged arc welding having good low temperature toughness at a fusion line vicinity part and a boundary with the base material in HAZ as well as at the base material and the weld metal is provided. The steel plate for submerged arc welding according to the invention contains, by mass, 0.03% to 0.09% C, 1.5% to 2.5% Mn, 0.005% to 0.025% Nb, 0.005% to 0.02% Ti, 0.01% to 0.06% Al, at most 0.0005% B, 0.001% to 0.008% N, at most 0.015% P, at most 0.015% S, and at most 0.006% O, and the balance consists of Fe and impurities. Therefore, the steel plate according to the present invention has good low temperature toughness not only at the fusion line vicinity part and the boundary with a base material in the HAZ but also in the base material and weld metal.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 22, 2009
    Inventors: Masahiko Hamada, Takahiro Kamo, Shuji Okaguchi, Nobuaki Takahashi, Tetsuya Fukuba
  • Publication number: 20080279713
    Abstract: A weathering steel consisting essentially of C in the range of from 0.03 to 0.07 percent by weight; Si in the range of from 0.15 to 0.29 percent by weight; Mn in the range of from 1.21 to 1.5 percent by weight; P in the range of from 0.006 to 0.04 percent by weight; S in the range of from 0.001 to 0.01 percent by weight; Cu in the range of from 0.2 to 0.5 percent by weight; Cr in the range of from 0.3 to 0.7 percent by weight; Ni in the range of from 0.15 to 0.35 percent by weight; Ti in the range of from 0.08 to 0.14 percent by weight; and the balance is essentially iron; and methods for producing the same.
    Type: Application
    Filed: July 23, 2008
    Publication date: November 13, 2008
    Applicant: GUANGZHOU ZHUJIANG STEEL CO., LTD
    Inventors: Xinping MAO, Zhenyuan LIN, Kexin LI, Jixiang GAO, Yijun LIU, Qilin CHEN, Jinsong XIE
  • Publication number: 20080274008
    Abstract: A corrosion-resistant steel excellent in toughness of a base metal and a weld portion said steel slab contains, in % by weight, C: 0.2% or less; Si: 0.01 to 2.0%; Mn: 0.1 to 4% or less; P: 0.03% or less; S: 0.01% or less; Cr: 3 to 11%; Al: 0.1 to 2%; and N: 0.02%, and has values of 1150 or above, and 600 or above respectively for Tp and Tc expressed by the equations below using concentrations of Cr, Al, C, Mn, Cu and Ni respectively given as % Cr, % Al, % C, % Mn, % Cu and % Ni. Tp=1601?(34% Cr+287% Al)+(500% C+33% Mn+60% Cu+107% Ni); and Tc=910+80% Al?(300% C+80% Mn+15% Cr+55% Ni).
    Type: Application
    Filed: May 12, 2004
    Publication date: November 6, 2008
    Inventors: Naoki Saitoh, Kenji Katoh
  • Publication number: 20080264525
    Abstract: A high copper low alloy steel sheet less than 5 mm is made by preparing a molten melt producing an as-cast low alloy steel comprising by weight, 0.02 % to 0.3% carbon, 0.10% to 1.5% manganese, 0.01% to 0.5% silicon, greater than 0.01 % and less than or equal 0.15% phosphorus, less than 0.05% aluminum, more than 0.20% copper, less than 0.03 % tin, less than 0.10 % nickel, total oxygen level at least 70 ppm and usually less than 250 ppm, free oxygen content 20 to 70 ppm, the remainder iron and impurities, solidifying the melt into sheet less than 10 mm thickness in a non-oxidizing atmosphere to below 1080° C. Copper content may be between 0.2% and 2.0% by weight. The steel may have a corrosion index (I) of at least 6.0 in accordance with ASTM G101 where: I=26.01 (% Cu)+3.88 (% Ni)+1.20 (% Cr)+1.49 (% Si)+17.28 (% P)?7.29 (% Cu)(% Ni)?9.10 (% Ni)(% P)?33.39 (% Cu)2. The steel may be produced by twin roll casting, and may be less than 2 mm thickness.
    Type: Application
    Filed: October 23, 2007
    Publication date: October 30, 2008
    Applicant: NUCOR CORPORATION
    Inventor: Mary E. ALWIN