Cobalt Containing Patents (Class 420/95)
  • Patent number: 5866066
    Abstract: An age hardenable martensitic steel alloy having a unique combination of very high strength and good toughness consists essentially of, in weight percent, about______________________________________ C 0.21-0.34 Mn 0.20 max. Si 0.10 max. P 0.008 max. S 0.003 max. Cr 1.5-2.80 Mo 0.90-1.80 Ni 10-13 Co 14.0-22.0 Al 0.1 max. Ti 0.05 max. Ce 0.030 max. La 0.010 max. ______________________________________the balance essentially iron. In addition, cerium and sulfur are balanced so that the ratio Ce/S is at least about 2 and not more than about 15. A small but effective amount of calcium can be present in place of some or all of the cerium and lanthanum.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: February 2, 1999
    Assignee: CRS Holdings, Inc.
    Inventors: Raymond M. Hemphill, David E. Wert, Paul M. Novotny, Michael L. Schmidt
  • Patent number: 5858125
    Abstract: A magnetoresistive material of the present invention has a structure in which many clusters are surrounded by a crystal phase of Cu and/or Ag, where each cluster has a grain size of 20 nm or less and composed of an amorphous phase containing at least one ferromagnetic metal element T as a main component selected from Fe, Co and Ni, and at least one element M selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: January 12, 1999
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 5841348
    Abstract: A resonator for use in a marker, with a bias element which produces a bias field, in a magnetomechanical electronic article surveillance system is composed of an amorphous magnetostrictive alloy containing iron, cobalt, nickel, silicon and boron in quantities for giving the resonator a quality Q which is between about 100 and 600. The amorphous magnetostrictive alloy is annealed in a transverse magnetic field for giving it a B-H loop which is linear up to about 8 Oe and an anisotropy field strength of at least 10 Oe. When the resonator is excited to resonate by a signal emitted by the transmitter in the surveillance system, it produces a signal at a mechanical resonant frequency which can be detected by the receiver of the detection system. Due to the resonator having a quality Q in the above range, the signal produced by the resonator in a first detector window, beginning approximately 0.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: November 24, 1998
    Assignee: Vacuumschmelze GmbH
    Inventor: Giselher Herzer
  • Patent number: 5792286
    Abstract: A high-strength thin plate, such as for IC lead frames, of an iron-nickel-cobalt alloy which is able to withstand repeated bending and is corrosion resistance and etchable, the alloy containing 27 to 30 wt. % N:, 5 to 18 wt. % Co, 0.10 to 3.0 wt. % Mn, 0.10 wt. % or less Si, 0.010 to 0.075 wt. % C, 0.001 to 0.014 wt. % N, less than 2.0 ppm H, 0.0040 wt. % or less S, 0.004 wt. % or less P, 0.0050 wt. % or less O, 0.01 to 0.06 wt. % Cr, 0.01 to 1.0 wt. % Mo and the balance being Fe and unavoidable impurities wherein 63.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.65 wt. % for Co<10 wt. % and 69.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.74.5 wt. % for Co>10 wt. %.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: August 11, 1998
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Naotsugu Yamanouchi, Tomoyoshi Okita
  • Patent number: 5783145
    Abstract: An iron-nickel alloy, the chemical composition of which includes by weight:30%.ltoreq.Ni+Co.ltoreq.85%;0%.ltoreq.Co+Cu+Mn.ltoreq.10%;0%.ltoreq.Mo+W+Cr.ltoreq.4%;0%.ltoreq.V+Si.ltoreq.2%;0%.ltoreq.Nb+Ta.ltoreq.1%;0.003%.ltoreq.C.ltoreq.0.05% 0.003%.ltoreq.Ti.ltoreq.0.15%;0.003%.ltoreq.Ti+Zr+Hf.ltoreq.0.15%;0.001%<S+Se+Te<0.015%;and the remainder, iron and impurities resulting from production; in addition, the chemical composition satisfies the relationship:0.ltoreq.Nb+Ta+Ti+Al.ltoreq.1%.A cold-rolled strip with a cubic texture and its uses.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: July 21, 1998
    Assignee: Imphy S.A.
    Inventors: Lucien Coutu, Pierre Louis Reydet
  • Patent number: 5688471
    Abstract: The alloy of the invention provides a low coefficient of thermal expansion alloy having a CTE of about 4.9.times.10.sup.-6 m/m/.degree.C. or less at 204.degree. C. and a relatively high strength. The alloy contains about 40.5 to about 48 nickel, about 2 to about 3.7 niobium, about 0.75 to about 2 titanium, about 0 to about 1 aluminum, about 3.7 or less total niobium plus tantalum and a balance of iron and incidental impurities. Alloys of the invention may be aged to a Rockwell C hardness of at least about 30.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: November 18, 1997
    Assignee: Inco Alloys International, Inc.
    Inventors: John Scott Smith, Ladonna Sheree Hillis, Melissa Ann Moore
  • Patent number: 5620535
    Abstract: An alloy sheet for making a shadow mask consists essentially of 34 to 38 wt. % Ni, 0.07 wt. % or less Si, 0.002 wt. % or less B, 0.002 wt. % or less O, less than 0.002 wt. % N and the balance being Fe and inevitable impurities;said alloy sheet after annealing before press-forming having 0.2% proof stress of 28 kgf/mm.sup.2 or less; anda gathering degree of {211} plane being 16% or less.A method for manufacturing an alloy sheet comprises:a finish cold-rolling step of cold-rolling the cold-rolled sheet at a cold-rolling reduction ratio in response to an average austenite grain size D (.mu.m), the reduction ratio of final cold-rolling R (%) satisfying the equations below;16.ltoreq.R.ltoreq.75,6.38D-133.9.ltoreq.R.ltoreq.6.38D-51.0a softening annealing step of annealing said cold rolled sheet in a temperature range of 720.degree. to 790.degree. C. for 2 to 40 min. before press-forming and on conditions satisfying the equation below;T.gtoreq.-53.8 log t+806,where T(.degree. C.) is the temperature and t (min.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: April 15, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Michihito Hiasa, Tomoyoshi Okita
  • Patent number: 5605582
    Abstract: An alloy sheet having a pierced hole face and providing a desirable etching performance, comprising {331}, {210}, and {211} planes on the surface; the gathering degree of the {311} plane being 14% or less, the gathering degree of the {210} plane being 14% or less, and the gathering degree of the {211} plane being 14% or less; and the ratio of the gathering degrees expressed by the equation {210}/({331}+{211}) being 0.2 to 1. An alloy sheet having a pierced hole face providing a desirable etching performance, comprising planes of {111}, {100}, {110}, {311}, {331}, {210} and {211}; the gathering degree of the {111} plane, S.sub.1, being 1 to 10%, the gathering degree of the {100} plane, S.sub.2, being 50 to 94%, the gathering degree of the {110} plane, S.sub.3, being 1 to 24%, the gathering degree of the {311} plane, S.sub.4, being 1 to 14%, the gathering degree of the {331} plane, S.sub.5, being 1 to 14%, the gathering degree of the {210} plane, S.sub.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: February 25, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Hidekazu Yoshizawa, Kiyoshi Tsuru, Yoshiaki Shimizu, Tomoyoshi Okita
  • Patent number: 5482531
    Abstract: A powder-metallurgy-produced, essentially titanium-free, nickel-containing maraging steel article such as for use in the manufacture of die casting die components and other hot work tooling components. The article preferably contains an intentional addition of niobium. The article may be produced as a hot-isostatically-compacted, solution annealed, fully dense mass of prealloyed particles, or alternately, as a hot-isostatically-compacted, plastically deformed and solution annealed, fully dense mass of prealloyed particles.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 9, 1996
    Assignee: Crucible Materials Corporation
    Inventors: Kenneth E. Pinnow, Carl J. Dorsch
  • Patent number: 5453138
    Abstract: An alloy sheet containing Fe, Ni and Cr has an average austenite grain size of 15 to 45 .mu.m and a degree of mixed grain for austenite grain size of 4.5 to 50%; the alloy sheet has a gathering degree of the {331} plane on a surface of the alloy sheet of 8 to 35%, a gathering degree of the {210} plane of 1 to 20% and a gathering degree of the {211} plane of 2 to 20%; the degree of mixed grain is expressed by the equation: (.vertline.0.5 Dmax-D.vertline./D).times.100 (%), where D is an average austenite grain size, and Dmax is a maximum austenite grain size in said alloy sheet.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 26, 1995
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5393488
    Abstract: A duplex strengthened structural steel that is particularly suitable for demanding applications which require both high yield strength and fatigue properties is provided. The preferred steel alloys of this invention are characterized by both the presence of intermetallic strengthening precipitates like maraging steels, as well as alloy carbide strengtheners as is common with secondary hardening steels. Titanium is substantially absent from the preferred steel alloys of this invention. Thus the formation of nonmetallic inclusions, such as titanium carbonitrides, are alleviated which correspondingly enhances the fatigue properties of the preferred alloys. To compensate for the lack of titanium strengthening precipitates within the alloy, additions of aluminum are provided such that the aluminum forms intermetallic strengthening precipitates with nickel.
    Type: Grant
    Filed: August 6, 1993
    Date of Patent: February 28, 1995
    Assignee: General Electric Company
    Inventors: Mark A. Rhoads, Edward L. Raymond, Warren M. Garrison, Jr.
  • Patent number: 5304346
    Abstract: The invention provides a welding material for welding iron containing low CTE alloys. The filler metal contains 25-55% nickel, 0-30% cobalt, 0.05-0.5% carbon, 0.25-5% niobium and balance iron with incidental impurities. The welding material also is operable with fluxes for submerged arc welding. In addition, the welding material may be configured to function as a flux coated or flux-cored electrode.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: April 19, 1994
    Assignee: INCO Alloys International, Inc.
    Inventors: David B. O'Donnell, Robert A. Bishel
  • Patent number: 5283032
    Abstract: A precipitation strengthenable, nickel-cobalt-iron base alloy and articles made therefrom are disclosed. The alloy contains controlled amounts of silicon, nickel, cobalt, iron, chromium, niobium, titanium, and aluminum which are critically balanced to provide a unique combination of high strength, good ductility, and controlled thermal expansion, together with good thermal stability and good oxidation resistance up to about 1200.degree. F. or higher.
    Type: Grant
    Filed: September 16, 1992
    Date of Patent: February 1, 1994
    Assignee: CRS Holdings, Inc.
    Inventors: Edward A. Wanner, Daniel A. DeAntonio
  • Patent number: 5268044
    Abstract: A high strength, high fracture toughness steel alloy consisting essentially of, in weight percent, about______________________________________ C 0.2-0.33 Mn 0.20 max. Si 0.1 max. P 0.008 max. S 0.004 max. Cr 2-4 Ni 10.5-15 Mo 0.75-1.75 Co 8-17 Ce Effective amount-0.030 La Effective amount-0.01 Fe Balance ______________________________________and an article made therefrom are disclosed. A small but effective amount of calcium can be present in this alloy in substitution for some or all of the cerium and lanthanum. The alloy is an age-hardenable martensitic steel alloy which provides a unique combination of tensile strength and fracture toughness. The alloy provides excellent mechanical properties when hardened by vacuum heat treatment with inert gas cooling and has a low ductile-to-brittle transition temperature.
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: December 7, 1993
    Assignee: Carpenter Technology Corporation
    Inventors: Raymond M. Hemphill, David E. Wert, Paul M. Novotny, Michael L. Schmidt
  • Patent number: 5264052
    Abstract: In composition of Fe-Ni alloy preferably used for lead frames in production of IC, specified amount of Be is added to the basic composition for increase in mechanical strength whilst maintaining the low thermal expansion characteristic of the conventional Fe-Ni alloys.
    Type: Grant
    Filed: October 17, 1991
    Date of Patent: November 23, 1993
    Assignee: Yamaha Corporation
    Inventors: Jun Kato, Tsuyuki Watanabe
  • Patent number: 5246511
    Abstract: A high-strength lead frame material consists, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn, not more than 0.5% Si, at least one kind of 0.1 to 3.0% in total selected from the group consisting of Nb, Ti, Zr, Mo, V, W and Be, and the balance Fe and incidental impurities; the total content of Ni and Co being selected so that the content of Ni is in the range of 27 to 32.5% when the content of Co is less than 12% and so that 66%.ltoreq.2Ni+Co.ltoreq.74% is met when the content of Co is not less than 12%; the lead frame material having a duplex-phase structure composed of a reverse-transformed austenite phase (which can involve a residual austenite phase) and a martensite phase; and the austenite phase being not less than 50%.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: September 21, 1993
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shuichi Nakamura, Hakaru Sasaki, Hironori Nakanishi, Tsutomu Inui
  • Patent number: 5236522
    Abstract: In an Fe-base alloy, Ni is contained by 28 to 34% by weight and Co by 2 to 7% by weight with an average grain size of 30 .mu.m or less. 60 to 95% of crystal grains are oriented in a range of .+-.5 to 45 degrees deviated from the ideal orientation of {100} [001]. Resultant low thermal expansion of the alloy assures high doming characteristics of a shadow mask made thereof.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: August 17, 1993
    Assignees: Yamaha Metanix, Mitsubishi Electric Corp., Dainippon Printing Co., Ltd.
    Inventors: Norio Fukuda, Naofumi Nakamura, Atushi Hattori, Hideya Itoh, Akira Makita, Tsutomu Hatano
  • Patent number: 5192497
    Abstract: A superalloy with a low thermal expansion coefficient has of 0.1% or less of C, 1.0% of less or Si, 1.0% or less of Mn, 0.5 to 2.5% of Ti, more than 3.0% and not more than 6.0% of Nb, 0.01% or less of B, 20 to 32% of Ni and more than 16% and not more than 30% of Co within a range of 48.8.ltoreq.1.235xNi+Co<55.8, and the balance essentially Fe except for incidental impurities. The superalloy may further contain 1.0% or less of Al, and has a mean coefficient of thermal expansion of 7.0.times.10.sup.-6 /.degree. C. or less from room temperatures to 400.degree. C., a tensile strength of 100 kgf/mm.sup.2 or more at 500.degree. C., and a notch rupture strength superior to a smooth rupture strength in a creep rupture test at 500.degree. C.
    Type: Grant
    Filed: March 2, 1992
    Date of Patent: March 9, 1993
    Assignee: Hitachi Metals, Ltd.
    Inventor: Koji Sato
  • Patent number: 5173253
    Abstract: A cast iron having an austenitic matrix and consisting essentially of from 1% up to 3.5% carbon, up to 1.5% silicon, from 32% to 39.5% nickel, from 1% to less than 4% cobalt, up to 41% of the combined total of nickel plus cobalt and the balance substantially all iron provides a low expansion coefficient, good castability, good cutting properties and good damping capacity.
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: December 22, 1992
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takanobu Nishimura, Motoo Suzuki, Tastuyoshi Aisaka
  • Patent number: 5156922
    Abstract: Disclosed herein are acicular magnetic iron based alloy particles for magnetic recording, containing 1.5 to 10 mol % of B based on Fe (calculated as B) and 1.5 to 10 mol % of Co based on Fe (calculated as Co) in the vicinity of the surfaces of said particles and having a saturation magnetization of not less than 125 emu/g and an S.F.D. value of not more than 0.50, and a process for producing the same.
    Type: Grant
    Filed: July 8, 1991
    Date of Patent: October 20, 1992
    Assignee: Toda Kogyo Corporation
    Inventors: Akio Mishima, Mamoru Tanihara, Yasutaka Ota, Hirofumi Kawasaki, Kenji Okinaka, Kunio Ikemoto, Kousaku Tamari, Kohji Mori, Norimichi Nagai
  • Patent number: 5147470
    Abstract: A high strength lead frame material consists essentially, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn and not more than 0.5% Si and the balance Fe and incidental impurities. The contents of Ni and Co are selected so that the Ni content is 27 to 32.5% when the Co content is less than 12%, and so that, when the Co content is not less than 12%, the Ni content and the Co content meet the condition of 66%.ltoreq.2Ni+Co.ltoreq.74%. The material has a multi-phase structure formed of austenitic phase, martensitic phase, and ferritic phase, the austenitic phase occupying not less than 50% of the structure.The method of producing the alloy of the invention comprises the steps of solid-solutioning the material of the above composition at a temperature not less than austenitizing completion temperature, cold-rolling the material at a rate of 40 6to 90% in reduction, and annealing the material at a temperature less than the austenitizing completion temperature.
    Type: Grant
    Filed: March 7, 1991
    Date of Patent: September 15, 1992
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shuichi Nakamura, Hakaru Sasaki, Rikizo Watanabe
  • Patent number: 5087415
    Abstract: A high strength, high fracture toughness structural steel alloy consisting essentially of, in weight percent, about______________________________________ C 0.2-0.33 Cr 2-4 Ni 10.5-15 Mo 0.75-1.75 Co 8-17 Fe Balance ______________________________________and an article made therefrom are disclosed. The alloy is an age-hardenable martensitic steel alloy whcih provides a unique combination of tensile strength and fracture toughness. The alloy provides excellent mechanical properties when hardened by vacuum heat treatment with inert gas cooling and has a low ductile-to-brittle transition temperature.
    Type: Grant
    Filed: February 6, 1990
    Date of Patent: February 11, 1992
    Assignee: Carpenter Technology Corporation
    Inventors: Raymond M. Hemphill, David E. Wert
  • Patent number: 5084111
    Abstract: In composition of Fe-Ni alloy preferably used for lead frames in production of IC, specified amount of Be is added to the basic composition for increase in mechanical strength while maintaining the low thermal expansion characteristic of the conventional Fe-Ni alloys.
    Type: Grant
    Filed: December 13, 1989
    Date of Patent: January 28, 1992
    Assignee: Yamaha Corporation
    Inventors: Jun Kato, Tsuyuki Watanabe
  • Patent number: 5030299
    Abstract: A lapping tool with a flatness in the range below 20 .mu.m which is made of at least cast iron having an austenitic matrix and consisting essentially of from 1% up to 3.5% carbon, up to 1.5% silicon, from 32% to 39.5% nickel, from 1% to less than 4% cobalt, up to 41% of the combined total of nickel plus cobalt and the balance substantially all iron providing a low expansion coefficient, good castability, good cutting properties and good damping capacity. (By % is meant % by weight).
    Type: Grant
    Filed: March 14, 1990
    Date of Patent: July 9, 1991
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takanobu Nishimura, Motoo Suzuki, Tastuyoshi Aisaka
  • Patent number: 5028396
    Abstract: Apparatus for the manufacture of sulphuric acid comprising at least one gas-concentrated sulphuric acid contacting unit and a sulphuric acid heat exchanger. The contacting unit and/or the heat exchanger is formed of high silicon content austenitic steel.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: July 2, 1991
    Assignee: Chemetics International Company, Ltd.
    Inventors: Frederick W. S. Jones, Frank Smith
  • Patent number: 5026435
    Abstract: A high strength lead frame material consists, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn and not more than 0.5% Si and the balance Fe and incidental impurities. The contents of Ni and Co are selected so that the Ni content is 27 to 32.5% when the Co content is less than 12%, and so that, when the Co content is not less than 12%, the Ni content and the Co content meet the condition of 66%.ltoreq. 2Ni+Co.ltoreq.74%. The material has a two-phase structure formed of austenitic phase and martensitic phase, the austenitic phase occupying not less than 50% of the structure.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: June 25, 1991
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shuichi Nakamura, Hakaru Sasaki, Rikizo Watanabe
  • Patent number: 4904447
    Abstract: A low thermal expansion casting alloy which is excellent in machinability, has a reduced thermal expansion coefficient and is suited for use in applications such as precision machine parts. According to a first aspect of the invention, the alloy comprises, in terms of weight percent, C from 0.4% to 0.8%, Ni from 30.0% to 40.0%, and Co from 2.0% to 8.0%, the Ni and Co contents being in the composition range given by the formula Ni+Co.times.0.75=32.0-40.0%, the balance being Si 1.0% or less, Mn 1.0% or less S 0.2% or less, P 0.2% or less, one or two or Mg and Ca 0.3% or less in total, unavoidable impurities and iron. According to a second aspect, the alloy of the first aspect is heated to a temperature between 600.degree. and 1000.degree. C. and then quenched. Accordingly to a third aspect, the alloy comprises by weight percent C from 0.6% to 1.4% and Ni from 32.0% to 40.0%, the C and Si contents being in the composition range given by the formula C+Si.times.0.5<1.
    Type: Grant
    Filed: June 1, 1988
    Date of Patent: February 27, 1990
    Assignee: Nippon Chuzo Kabushiki Kaisha
    Inventor: Takuo Handa
  • Patent number: 4853298
    Abstract: A thermally stable Super Invar has a substantially suppressed martensitic transformation inception point as well as an average coefficient of thermal expansion substantially lower than Invar. The composition in weight percent consists essentially of______________________________________ w/o ______________________________________ C 0.02 Max. Mn 0.4-0.8 Si up to 0.25 Ni 32.0-33.2 Co 4.5-5.5 ______________________________________and the balance iron except for incidental amounts of other elements including up to 0.015 w/o P, 0.015 w/o S, 0.25 w/o Cr, 0.20 w/o Mo, 0.20 w/o. Cu, as well as other incidental elements in amounts which do not undesirably affect the austenitic microstructure or otherwise detract from the desired properties of the alloy. The composition is particularly suited for the manufacture of precision optical articles as well as other articles where minimal expansion mismatch between a metal member and a nonmetal member is required at temperatures of -90.degree. C. (-130.degree. F.) and lower.
    Type: Grant
    Filed: December 10, 1987
    Date of Patent: August 1, 1989
    Assignee: Carpenter Technology Corporation
    Inventors: Leslie L. Harner, Earl L. Frantz
  • Patent number: 4842657
    Abstract: Amorphous alloys containing zirconium as an amorphus forming metal and having the formula X.sub..alpha. Z.sub..gamma. wherein X is at least one of Fe, Co and Ni, .alpha. is 80 to 92 atomic %, Z is zirconium, .gamma. is 8 to 20 atomic % and the sum of .alpha. and .gamma. is 100 atomic %, cause very little variation of properties during aging and embrittlement because they contain no metalloid as the amorphous forming element, and they further have excellent strength, hardness, corrosion resistance and heat resistance and maintain superior magnetic properties which are characteristic of iron group elements.
    Type: Grant
    Filed: December 5, 1980
    Date of Patent: June 27, 1989
    Assignee: Shin-Gijutsu Kaihatsu Jigyodan
    Inventors: Tsuyoshi Masumoto, Kiyoyuki Esashi, Masateru Nose
  • Patent number: 4832908
    Abstract: A novel low thermal expansion cast alloy is provided. The alloy consists of, by percents by weight, 0.02 to 0.25% of C, 30.5 to 33.3% of Ni, 4.0 to 6.0% of Co, 0.005 to 0.70% of Mn, 0.005-0.50% of Si and the balance substantially of Fe, with the proviso that % C.gtoreq.3.0285-0.0936 x % Ni (% C and % Ni are weight % of C and Ni). By such composition, micro-segregation of Ni can be reduced and the Ni content range showing the low thermal expansion coefficient can be broadened to an extent of substantially enabling mass production by a casting process in place of the conventional forging or rolling process. The average thermal expansion coefficient at the temperature range from - 50 to 120.degree. C. of the cast alloy is not more than 1.5.times.10.sup.-6 /.degree.C.
    Type: Grant
    Filed: February 19, 1988
    Date of Patent: May 23, 1989
    Assignees: NEC Corporation, Hitachi Metals Precision Ltd.
    Inventors: Katsuhisa Ishikawa, Ryoji Yamamoto, Takayuki Tsukahara
  • Patent number: 4832909
    Abstract: A low cobalt maraging steel has a yield strength of at least about 240 ksi (about 1655 MPa) in the aged condition in combination with good toughness as indicated by a longitudinal Charpy V-notch impact toughness of at least aobut 20 ft-lb (about 27 J), as well as good notch ductility. The alloy contains, in weight percent, about:______________________________________ w/o ______________________________________ C 0.02 Max. Ni 15-20 Mo 0.50-4.0 Co 0.5-5.0 Ti 0.90-1.35 Nb 0.03-0.35 Al 0.3 Max. B Up to 0.015 ______________________________________The balance is essentially iron, optional additions, and the usual impurities found in commercial grades of high nickel, low carbon maraging steels. The alloy is further characterized in that the ratio %Co:%Mo is at least about 0.3 and %Ti+%Nb.gtoreq.1.0.
    Type: Grant
    Filed: July 11, 1988
    Date of Patent: May 23, 1989
    Assignee: Carpenter Technology Corporation
    Inventors: Michael L. Schmidt, Raymond M. Hemphill
  • Patent number: 4822567
    Abstract: Antibiotic alloys adapted for making sanitary articles, such as orthodontic fittings and component parts of water purifying apparatus, the alloy containing cobalt to impart an antibiotic ability hereto, and iron and nickel to enhance the workability thereof so that the alloy can be easily worked into intricate shapes.
    Type: Grant
    Filed: October 29, 1987
    Date of Patent: April 18, 1989
    Assignee: Sankin Kogyo Kabushiki Kaisha
    Inventors: Isamu Kato, Sadayuki Yuhda, Naoki Oda, Masahiro Suganuma
  • Patent number: 4785142
    Abstract: A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.
    Type: Grant
    Filed: April 10, 1987
    Date of Patent: November 15, 1988
    Assignee: Inco Alloys International, Inc.
    Inventors: Darrell F. Smith, Jr., Bill L. Lake, Ronald G. Ballinger
  • Patent number: 4711826
    Abstract: The present invention relates to iron-nickel alloys having improved glass sealing properties. Alloys of the present invention contain from about 30% to about 60% nickel, from about 0.5% to about 3% silicon, from about 0.5% to about 3.5% aluminum and the balance essentially iron. Preferably, the alloys have a total aluminum plus silicon content of less than about 4%. The alloys of the present invention have particular utility in electronic and electrical applications. For example, they may be used as a lead frame or a similar component in a semiconductor package.
    Type: Grant
    Filed: January 27, 1986
    Date of Patent: December 8, 1987
    Assignee: Olin Corporation
    Inventors: Eugene Shapiro, Michael L. Santella
  • Patent number: 4647427
    Abstract: Long range ordered alloys are described having the nominal composition (Fe,Ni,Co).sub.3 (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to drammatically enhance the creep properties of the resulting alloys.
    Type: Grant
    Filed: August 22, 1984
    Date of Patent: March 3, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Chain T. Liu