Plural Reaction Beds Patents (Class 422/141)
  • Patent number: 10006098
    Abstract: The invention relates to the hydrolytic breakdown of plant biomasses via hydrohalic acids, preferably so-called hydrochloric acid. Ligneous biomasses were preferably hydrolyzed in the past because other types of biomasses, for instance straw, are only able to be filled into the reactors with a very low density and they tend towards compacting in the course of the process. The invention solves this problem with two modifications. First of all, pelletizable biomasses are completely or partially loaded in the form of pellets and a heavily increasing filling density is achieved because of that. Secondly, the hydrolysis reactors are tilted, preferably arranged between 30° and 60°, and compacting is prevented. The economic effectiveness of both modifications is to be determined in practical tests for every pelletizable biomass. It is possible that one of the two modifications can be omitted.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: June 26, 2018
    Assignee: Green Sugar AG
    Inventors: Matthias Schmidt, Frank Kose
  • Patent number: 9169442
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, an olefin compound may be co-fed to the reactor and/or separated from a product stream and recycled to the reactor to improve yield and/or selectivity of certain products. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used. In some instances, the catalysts are characterized by particle sizes in certain identified ranges that can lead to improve yield and/or selectivity of certain products.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: October 27, 2015
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Anne Mae Gaffney, Jungho Jae, Yu-Ting Cheng
  • Publication number: 20150126627
    Abstract: A system for the production of synthetic fuel, the system including a catalytic dual fluidized bed (DFB) configured to produce, from a DFB feedgas, a DFB product containing synthesis gas; and a Fischer-Tropsch (FT) synthesis apparatus fluidly connected with the catalytic DFB, wherein the FT synthesis apparatus includes an FT synthesis reactor configured to produce, from an FT feedgas, an FT overhead and a liquid FT product containing FT wax, wherein the FT feedgas contains at least a portion of the DFB product; and a product separator downstream of and fluidly connected with the FT synthesis reactor, wherein the product separator is configured to separate, from the FT overhead, an FT tailgas and an LFTL product containing LFTL. A method of producing synthetic fuel is also provided.
    Type: Application
    Filed: July 15, 2013
    Publication date: May 7, 2015
    Inventors: George Apanel, Weibin Jiang, Sergio Mohedas, Harold A. Wright
  • Publication number: 20150005553
    Abstract: Vortex separation technology quickly and efficiently separates vapor from catalyst from two or more risers, in a singular separation vessel, controlling residence time and improving product conversion. One riser enters concentrically through the reactor vessel, then through the center of the separation vessel, ending in horizontal swirl arms. The second and any additional risers run external to the reactor vessel. The external risers transition to a 90° elbow and tangentially enter the reactor vessel, and then the separation vessel.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Paolo Palmas, Paul S. Nishimura
  • Patent number: 8889076
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. Generally, the fluid catalytic cracking system includes a first reaction vessel and a second reaction vessel. The first reaction vessel may contain a first catalyst having pores with openings greater than about 0.7 nm and a second catalyst having pores with smaller openings than the first catalyst. What is more, the second reaction vessel may contain the second catalyst. Generally, at least a portion of the second catalyst is directly communicated with the first reaction vessel.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: November 18, 2014
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Lawrence L. Upson, James P. Glavin
  • Patent number: 8888899
    Abstract: Systems and methods for gasifying a feedstock are provided. A gasifier can include a transfer line having a first leg and a second leg. A first end of the first leg can be adapted to be coupled to a cyclone and a second end of the first leg can be coupled to a first end of the second leg. The second end of the second leg can be adapted to be coupled to a standpipe. A centerline through the first leg can be oriented at an angle with a centerline through the second leg of from about 40° to about 140°.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Iwan H. Chan, Yongchao Li
  • Patent number: 8877132
    Abstract: Fluid catalytic cracking units having risers with improved hydrodynamics through the use of baffles are described. The baffles break up the high concentration of catalyst in the slower moving outer annulus and redistribute it into the faster moving, more dilute center of the riser flow.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Daniel R. Johnson, Lev Davydov
  • Patent number: 8864979
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process can include sending a first catalyst from a first riser reactor and a second catalyst from a second riser reactor to a regeneration vessel having a first stage and a second stage. The first catalyst may be sent to the first stage and the second catalyst may be sent to the second stage of the regeneration vessel. Generally, the first stage is positioned above the second stage.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventor: Paolo Palmas
  • Patent number: 8840846
    Abstract: An apparatus for catalytic cracking of feedstock includes a first channel in which a feedstock is treated with an adsorbent to obtain a treated intermediate. The apparatus further comprises a separator-reactor vessel. The separator-reactor vessel includes an adsorbent separating region to remove the adsorbent from the treated intermediate. The separator-reactor vessel further includes a second channel connected to the adsorbent separating region. The treated intermediate is contacted with a catalyst in the second channel to produce a cracking yield. The second channel terminates in a catalyst separating region of the separator-reactor vessel. The catalyst is removed from the cracking yield in the catalyst separating region. The separator-reactor vessel further includes a physical partition disposed between the adsorbent separating region and the catalyst separating region to separate the two regions.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Indian Oil Corporation Ltd.
    Inventors: Debasis Bhattacharyya, Gadari Saidulu, Arumugam Velayutham Karthikeyani, Pankaj Kasliwal, Bandaru Venkata Hari Prasad Gupta, Ram Mohan Thakur, Jagdev Kumar Dixit, Sudipta Roy, Ganga Shanker Mishra, Satyen Kumar Das, Santanam Rajagopal
  • Patent number: 8783215
    Abstract: A method and apparatus for generating electrical energy from combustion of biomass is provided. The present invention provides both liquid-phase and gas-phase fuel to an internal combustion engine that is designed to run on both types of fuel. Scrubbing syngas generated in an updraft gasifier with a first petrochemical-based liquid fuel reduces the concentration of tars in the syngas stream and also enables absorption of tars from the syngas into the first liquid fuel. After absorption, the tars form a second liquid fuel that is suitable for direct use in the internal combustion engine. As a result, the syngas provided to the engine is substantially free of tars and the volume of liquid fuel available to the engine is increased.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Patrick M. Scott, Benjamin P. Tongue
  • Publication number: 20140161676
    Abstract: An apparatus including at least one seal pot having at least one penetration through a surface other than the top of the seal pot, each of the at least one penetrations being configured for introduction, into the at least one seal pot, of solids from a separator upstream of the at least one seal pot; a substantially non-circular cross section; or both at least one penetration through a surface other than the top of the seal pot and a substantially non-circular cross section.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Applicant: RENTECH, INC.
    Inventors: Weibin JIANG, Bruce E. Mccomish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark K. Robertson, Eric R. Elrod, Sim Weeks, Harold A. Wright
  • Publication number: 20140147360
    Abstract: Disclosed are methods, materials, apparatus and systems for removing or suppressing ambient levels of reactive gas contaminants, particularly acidic gases, using particles of zeolite, sepiolite or other suitable carrier material impregnated with at least one treatment compound selected to react with the acidic gas(es). The methods involve contacting a contaminated gas stream with the impregnated carrier materials whereby at least a portion of the reactive gases contacts the treatment compound and reacts, thereby consuming the reactive gas molecules.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 29, 2014
    Inventors: John Richardson, Kevin Gottschalk
  • Patent number: 8692045
    Abstract: A process for producing light olefins is provided. A feedstock enters a pre-reaction zone and contacts a catalyst comprising at least one silicon-aluminophosphate molecular sieve and produces a gas-phase stream; the gas-phase stream and the catalyst enter at least one riser, and the gas-phase stream and the catalyst pass from an outlet of the at least one riser and enter a gas-solid rapid separation zone; the separated gas-phase stream enters a separation section; a first portion of the separated catalyst returns to the pre-reaction zone, and a second portion is regenerated in a regenerator; wherein an inlet of the at least one riser extends into the pre-reaction zone, about 60% to about 90% of the height of the at least one riser passes through a heat exchange zone, and the outlet extends into the gas-solid rapid separation zone.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 8, 2014
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology
    Inventors: Guozhen Qi, Siqing Zhong, Wei Chen, Zhinan Yu
  • Patent number: 8673225
    Abstract: A composite continuous countercurrent fluidized moving bed (FMB) and/or expanded moving bed (EMB) may be used for carrying out processes of recovery, purification or reaction of single or multiple component/s of interest, by contacting liquid phase containing the component/s with a solid adsorbent in continuous countercurrent mode. The net movement of the solids is against the liquid, flowing in upward direction through stages/columns, and sedimenting solids from the one stage/column are continuously fed to the top of another stage/column placed below or alongside of previous stage/column; and also operating in fluidized/expanded bed mode, wherein its countercurrent contact with up-flowing liquid is carried out. A system described herein may include a number of stages/columns. The FMB/EMB system can be used in processes for continuous recovery, purifications or reactions of various products.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 18, 2014
    Assignee: DBT-ICT Centre for Energy Biosciences
    Inventors: Arvind Mallinath Lali, Sandeep Bhaskar Kale, Vinod Dinkar Pakhale, Yogeshwar Narayanrao Thakare
  • Patent number: 8668380
    Abstract: A method for operating a calorimeter and a calorimeter that is operable to perform the method, wherein the calorimeter has a reactor (1) for receiving a reaction medium, a reactor jacket (2), an in-reactor heater (4) controlled by means of a first controller (6), an outer temperature control unit (9) in thermal contact with the reactor and controlled by a second controller (10), and a measurement sensor (5) arranged in the reactor for determining a reactor temperature (Tr). The reactor temperature is controlled by the heat which is delivered to the reactor by the in-reactor heater and by the heat that is carried in and/or out by the outer temperature control unit. A dynamic control of the heating power of the in-reactor heater and of the outer temperature control unit is used to eliminate any deviation of the reactor temperature from a reactor set-point temperature.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 11, 2014
    Assignee: Mettler-Toledo AG
    Inventor: Benedikt Schenker
  • Patent number: 8668823
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 11, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Patent number: 8658100
    Abstract: The present disclosure provides a system and method for responding to an unintended increase in pressure within a high pressure processing system. The system and method of the present disclosure provides a pressure relief system that releases pressure reliably even if the material under pressure is of mixed phase. In addition, the system and method for releasing pressure avoids the need for complex subsystems to contain and process materials that escape the system during the pressure release process.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Goutam Biswas, Darush Farshid, Lucy Wu, James Knight, David Bosi, Michael K. Porter
  • Patent number: 8628725
    Abstract: A system for producing hydrogen gas from water decomposition using a thermochemical CuCl cycle, the improvement comprising the use of an insulated hydrogen production reactor comprising a reaction chamber and a separation chamber; the reaction chamber having a hydrogen chloride gas inlet and a solid copper inlet; one or more levels provided in the reaction chamber, the number of which is dependant on production scale and pressure drop; each level comprising a perforated plate with associated filter media, the perforations of the plate and media being of decreasing size from top to bottom of the reaction chamber, and being sized to permit downward flow of the hydrogen gas and molten CuCl products, as well as the HCL gas reactant, and to prevent entrainment of solid copper in the molten CuCl; the separation chamber being located below the reaction chamber and being of greater cross section than the reaction chamber and comprising a first hydrogen removal and entrained copper removal zone and a second molten CuC
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 14, 2014
    Assignee: University of Ontario Institute of Technology
    Inventors: Kamiel Samy Gabriel, Zhaolin Wang, Greg Naterer
  • Patent number: 8603406
    Abstract: An apparatus and process are presented for drying a catalyst in a reactor-regenerator system. The process includes a continuous operating system with catalyst circulating between a reactor and regenerator, and the catalyst is dried before returning the catalyst to the reactor. The process uses air that is split between the drying stage and the combustion stage without adding equipment outside of the regenerator, minimizing energy, capital cost, and space requirements.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David N. Myers, Daniel N. Myers, Paolo Palmas, Laura E. Leonard, Wolfgang A. Spieker
  • Patent number: 8601958
    Abstract: The invention relates to a plant and a process for the looping-type combustion of solid carbon-containing fuels with a carbon dioxide (CO2) flow output. Said process carries out the conversion of carbon without the help of solid carriers of the MyOx type, or of sulphate/sulphide type, and comprises the steps of: (i) Oxidation, wherein the carbon-containing solids are contacted with a gaseous flow comprising oxygen, for a time period and at a temperature sufficient to allow formation of a surface oxidized complex; (ii) Desorption, wherein the surface oxidized complexes generated by adsorption of oxygen in item (i) are released in a gaseous form by decomposition in the absence of O2.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: December 10, 2013
    Assignee: Consiglio Nazionale delle Ricerche
    Inventors: Piero Salatino, Osvalda Seneca
  • Patent number: 8580205
    Abstract: Methods and apparatus for the commercial-scale production of purified polycrystalline silicon granules with one or more tailored levels of n- and p-type impurities from an impure silicon source such as, for example, metallurgical-grade silicon.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: November 12, 2013
    Assignee: Iosil Energy Corporation
    Inventor: John Allan Fallavollita
  • Patent number: 8506891
    Abstract: An apparatus is disclosed for catalytically converting two feed streams. The feed to a first catalytic reactor may be contacted with product from a second catalytic reactor to effect heat exchange between the two streams and to transfer catalyst from the product stream to the feed stream. The feed to the second catalytic reactor may be a portion of the product from the first catalytic reactor.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 13, 2013
    Assignee: UOP LLC
    Inventors: Laura E. Leonard, Jibreel A. Qafisheh, Robert L. Mehlberg
  • Patent number: 8449848
    Abstract: Production of polycrystalline silicon in a substantially closed-loop process is disclosed. The processes generally include decomposition of trichlorosilane produced from metallurgical grade silicon.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 28, 2013
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Satish Bhusarapu, Yue Huang, Puneet Gupta
  • Publication number: 20130109765
    Abstract: A method of producing synthesis gas by introducing a feed material to be gasified into a gasification apparatus comprising at least one fluidized component operable as a fluidized bed, wherein the gasification apparatus is configured to convert at least a portion of the feed material into a gasifier product gas comprising synthesis gas; and maintaining fluidization of the at least one fluidized component by introducing a fluidization gas thereto, wherein the fluidization gas comprises at least one component other than steam. A system for producing synthesis gas is also provided.
    Type: Application
    Filed: October 15, 2012
    Publication date: May 2, 2013
    Applicant: Rentech, Inc.
    Inventors: Weibin JIANG, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark K. Robertson, Eric R. Elrod, Sim Weeks, Harold A. Wright
  • Publication number: 20130036622
    Abstract: A fluidized bed reactor for thermally pre-treating solid raw materials containing water using a stepped, stationary fluidized bed, including at least two concentrically arranged treatment zones. Each treatment zone has at least one separate gas inlet for fluidizing gas. Each treatment zone is divided from the respective other adjacent treatment zone by an overflow weir, and the innermost treatment zone has an outlet on the floor for reaction products. The solid raw material is fed into the outermost treatment zone of the fluidized bed. A first temperature and a first residence time are set in a first step, and a second temperature and a second residence time are set in a second. The temperatures of the fluidizing gas of the first and second steps are controlled separately. The fluidized material flows from the outer treatment zone over a weir into the inner treatment zone, and is drawn through the outlet.
    Type: Application
    Filed: March 31, 2011
    Publication date: February 14, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Ralf Abraham, Stefan Hamel
  • Publication number: 20130028801
    Abstract: A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: RENTECH, INC.
    Inventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark Robertson, Eric Elrod, Sim Weeks, Harold A. Wright
  • Publication number: 20130028802
    Abstract: A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: RENTECH, INC.
    Inventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark Robertson, Eric Elrod, Sim Weeks, Harold A. Wright
  • Publication number: 20130025281
    Abstract: A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: RENTECH, INC.
    Inventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark Robertson, Eric Elrod, Sim Weeks, Harold A. Wright
  • Patent number: 8354483
    Abstract: The invention relates to a reactor system and process for the catalytic polymerization of olefin monomer and optionally comonomer(s), having one or more inlets for olefin monomer, catalyst, optionally for comonomer, chain growth controllers or chain transfer agents, and/or inert gas, an outlet for gas and an outlet for polymerized particles. The reactor system has at least one fluidized bed unit and at least one moving bed unit, wherein the fluidized bed unit has means for maintaining a fluidized bed in the fluidized bed unit and wherein the moving bed unit is provided with an inlet and an outlet which are connected to the fluidized bed unit, wherein the outlet of the moving bed unit is provided with means for displacing metered quantities of polymerized particles from the moving bed unit into the fluidized bed unit, and to the use of such reactor system.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 15, 2013
    Assignee: Borealis Technology OY
    Inventors: Michiel Bergstra, Erik Eriksson, Gunter Weickert
  • Patent number: 8349264
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: January 8, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Ted H. Cymbaluk, Charles K. Newsome, Charles R. Nease, H. Kenneth Staffin, Thomas R. Parr
  • Patent number: 8329109
    Abstract: A dry conversion reactor for converting uranium hexafluoride to uranium dioxide, the dry conversion reactor including a gas-phase reaction segment and a fluidized bed segment, wherein at least one of the gas-phase reaction segment and the fluidized bed segment is a replaceable segment. A method for operating a dry conversion reactor utilizing a uranium hexafluoride to uranium dioxide conversion process, the method including replacing at least one conversion reactor segment.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: December 11, 2012
    Assignee: Areva NP
    Inventors: Richard Thaddeus Kimura, Andrew Landon, Clifford Yeager
  • Patent number: 8323477
    Abstract: A process for mixing regenerated and carbonized catalyst involves obstructing upward flow of catalyst by one or more baffles between a catalyst inlet and a feed distributor. Each catalyst stream may be passed to opposite sides of a riser. Baffles obstruct upward flow to effect mixing of regenerated and carbonized catalyst to obtain a more uniform temperature and catalyst mixture before contacting the feed.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Kelly D. Seibert, Robert L. Mehlberg, Daniel R. Johnson
  • Publication number: 20120298556
    Abstract: A method for circulating a cooled regenerated catalyst comprises the following steps: a regenerated catalyst derived from a regenerator (5) is cooled to 200-720° C. by a catalyst cooler (8A), which either directly enters into a riser reactor (2) without mixing with hot regenerated catalyst, or enters the same after mixing with another portion of uncooled hot regenerated catalyst and thereby obtaining a hybrid regenerated catalyst with its temperature lower than that of the regenerator; a contact reaction between a hydrocarbon raw materials and the catalyst is performed in the riser reactor (2); the reaction product is introduced into a settling vessel (1) to separated the catalyst and oil gas; the separated catalyst ready for regeneration is stream-stripped in a stream stripping phase (1A) and enters the regenerator (5) for regeneration through charring; after cooling, the regenerated catalyst returns to the riser reactor (2) for recycling.
    Type: Application
    Filed: February 11, 2010
    Publication date: November 29, 2012
    Inventors: Li Li, Qunzhu Li
  • Patent number: 8299314
    Abstract: The present invention is directed to a method and system for integrating a catalyst regeneration system with a plurality of hydrocarbon conversion apparatuses, preferably, a plurality of multiple riser reactor units. One embodiment of the present invention is a reactor system including a plurality of reactor units, at least one reactor unit preferably comprising a plurality of riser reactors. The system also includes a regenerator for converting an at least partially deactivated catalyst to a regenerated catalyst. A first conduit system transfers the at least partially deactivated catalyst from the reactor units to the regenerator, and a second conduit system transfers regenerating catalysts from the regenerator to the plurality of reactor units. Optionally, catalysts from a plurality of hydrocarbon conversion apparatuses may be directed to a single stripping unit and/or a single regeneration unit.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 30, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Michael Peter Nicoletti, James R. Lattner, Dennis George Alexion, Peter K. Paik
  • Patent number: 8292977
    Abstract: The invention has its object to arbitrarily adjust an amount of particles to be circulated without changing a flow rate of a gasification agent to thereby enhance gasification efficiency in a fluidized bed gasification furnace. The fluidized bed gasification furnace 107 comprises first and second chambers 113 and 114 in communication with each other in a fluidized bed 105. The hot particles 102 separated in the separator 104 and raw material M are introduced into the first chamber 113. The particles 102 introduced from the first chamber 113 through interior in the fluidized bed 105 to the second chamber 114 are supplied in an overflow manner to the fluidized bed combustion furnace 100.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 23, 2012
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Yoshiaki Matsuzawa, Toshiro Fujimori
  • Patent number: 8282886
    Abstract: An improved process and system for the endothermic dehydrogenation of an alkane stream is described. The process and system for catalytic dehydrogenation comprise a back-mixed fluidized bed reactor. The alkane stream is dehydrogenated in a single reactor stage by contacting the alkane stream with a back-mixed fluidized bed of catalyst. Deactivated catalyst is withdrawn from the back-mixed fluidized reactor and heated to produce hot regenerated catalyst. The hot regenerated catalyst is returned to the back-mixed fluidized bed reactor at a rate sufficient to maintain the back-mixed fluidized bed reactor at substantially isothermal conditions.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Julie A. Zarraga, Michael A. Schultz
  • Patent number: 8282885
    Abstract: An FCC apparatus may include a distributor disposed in a recess in a wall of the riser for distributing gaseous hydrocarbon feed to a riser. The distributor may be shielded from upwardly flowing catalyst by a shield. An array of nozzles from the distributor may extend through openings in the shield.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Paul S. Nishimura
  • Patent number: 8282887
    Abstract: A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: David N. Myers, Lev Davydov
  • Patent number: 8278402
    Abstract: The invention relates to a reactor system for the catalytic polymerization of olefin monomer and optionally comonomer(s), having one or more inlets for olefin monomer, catalyst, optionally for comonomer, chain growth controllers or chain transfer agents, and/or inert gas, an outlet for gas and an outlet for polymerized particles. The reactor system has at least one fluidized bed unit and at least one moving bed unit, wherein the fluidized bed unit has means for maintaining a fluidized bed in the fluidized bed unit and wherein the moving bed unit is provided with an inlet and an outlet which are directly connected to the fluidized bed unit, wherein the outlet of the moving bed unit is provided with means for pneumatically displacing polymer particles from the moving bed unit into the fluidized bed unit.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 2, 2012
    Assignee: Borealis Technology Oy
    Inventors: Michiel Bergstra, Erik Eriksson, Gunter Weickert
  • Patent number: 8277736
    Abstract: The present invention relates to a fluidized bed reactor system made up of at least two fluidized bed reactors, comprising at least one main reactor (1) in the form of a circulating fluidized bed and a secondary reactor (2) in the form of a circulating fluidized bed, and also a particle line comprising a particle separator for transporting fluidized bed particles from the main reactor into the secondary reactor, characterized in that, in the lower region of the respective reactor, a line (10) connects the secondary reactor (2) to the main reactor (1) for transporting fluidized bed particles.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: October 2, 2012
    Assignee: Technische Universitat Wien
    Inventors: Tobias Proll, Philipp Kolbitsch, Johannes Bolhar-Nordenkampf, Hermann Hofbauer
  • Publication number: 20120227683
    Abstract: A method and apparatus for generating electrical energy from combustion of biomass is provided. The present invention provides both liquid-phase and gas-phase fuel to an internal combustion engine that is designed to run on both types of fuel. Scrubbing syngas generated in an updraft gasifier with a first petrochemical-based liquid fuel reduces the concentration of tars in the syngas stream and also enables absorption of tars from the syngas into the first liquid fuel. After absorption, the tars form a second liquid fuel that is suitable for direct use in the internal combustion engine. As a result, the syngas provided to the engine is substantially free of tars and the volume of liquid fuel available to the engine is increased.
    Type: Application
    Filed: February 21, 2012
    Publication date: September 13, 2012
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Patrick M. Scott, Benjamin P. Tongue
  • Patent number: 8241583
    Abstract: A process for cracking a hydrocarbon feed in a reactor assembly comprising: a reactor vessel; a solid catalyst inlet by which catalyst is introduced and a solid catalyst outlet by which catalyst is removed from the reactor vessel; a plurality of feed nozzles by which feed is introduced at the bottom of the vessel; a product outlet for removing a product mixture of gas and solid catalyst at the upper part of the reactor; at least one partition plate, that divides the interior of the reactor vessel into two or more compartments, wherein the partition plate intersects the solid catalyst inlet.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: August 14, 2012
    Assignee: Shell Oil Company
    Inventors: Hubertus Wilhelmus Albertus Dries, Rene Samson
  • Publication number: 20120189526
    Abstract: A process for preparing trichlorosilane includes reacting silicon particles with tetrachlorosilane and hydrogen and optionally with hydrogen chloride in a fluidized-bed reactor to form a trichlorosilane-containing product gas stream, where the trichlorosilane-containing product gas stream is discharged from the reactor via an outlet preceded by at least one particle separator which selectively allows only silicon particles up to a particular maximum size to pass through and silicon particles are discharged from the reactor at preferably regular intervals or continuously via at least one further outlet without such a particle separator.
    Type: Application
    Filed: August 2, 2010
    Publication date: July 26, 2012
    Applicant: SCHMID SILICON TECHNOLOGY GMBH
    Inventors: Adolf Petrik, Jochem Hahn, Christian Schmid
  • Publication number: 20120145965
    Abstract: Various processes and apparatus are discussed for an ultra-high heat flux chemical reactor. A thermal receiver and the reactor tubes are aligned to 1) absorb and re-emit radiant energy, 2) highly reflect radiant energy, and 3) any combination of these, to maintain an operational temperature of the enclosed ultra-high heat flux chemical reactor. Particles of biomass are gasified in the presence of a steam carrier gas and methane in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the ultra-high heat flux thermal energy radiated from the inner wall and then into the multiple reactor tubes. The multiple reactor tubes and cavity walls of the receiver transfer energy primarily by radiation absorption and re-radiation, rather than by convection or conduction, to the reactants in the chemical reaction to drive the endothermic chemical reaction flowing in the reactor tubes.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: SUNDROP FUELS, INC.
    Inventors: Wayne W. Simmons, Christopher Perkins, Zoran Jovanic, Courtland M. Hilton, Peter Pop, Bryan J. Schramm, John T. Turner
  • Publication number: 20120114546
    Abstract: A ‘hybrid’ TCS (Trichlorosilane)-Siemens process is provided to save electricity and initial investment cost from TCS synthesizing process and silicon tetrachloride to TCS converting process in a TCS-Siemens polysilicon plant, whose size is over 10,000 MT/YR of polysilicon. The ‘hybrid’ TCS-Siemens process of the current application is equipped with one direct chlorination FBR (Fluidized Bed Reactor) and one hydro-chlorination FBR. Three different TCS-Siemens processes are compared based on mass balance calculation. The hybrid TCS-Siemens process saves at least 78,000,000Kwhr/year of electricity from TCS generation only from a 10,000 MT/YR polysilicon plant when compared with a ‘Closed Loop TCS-Siemens Process’, which is equipped with only high-pressure, high-temperature operating hydro-chlorination FBRs.
    Type: Application
    Filed: October 6, 2011
    Publication date: May 10, 2012
    Inventors: Yong Chee, Tetsunori Kunimune
  • Publication number: 20120100060
    Abstract: Reactor for producing silicon by chemical vapor deposition, the reactor comprising a reactor body that forms a container, at least one inlet for a silicon-bearing gas, at least one outlet, and at least one heating device as a part of or operatively arranged to the reactor, distinctive in that at least one main part of the reactor, which part is exposed for silicon-bearing gas and which part is heated for deposition of silicon on said part, is produced from silicon. Method for operation of the reactor.
    Type: Application
    Filed: May 27, 2010
    Publication date: April 26, 2012
    Inventors: Josef Filtvedt, Werner O. Filtvedt
  • Publication number: 20120100042
    Abstract: Production of polycrystalline silicon in a substantially closed-loop process is disclosed. The processes generally include decomposition of trichlorosilane produced from metallurgical grade silicon.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Satish Bhusarapu, Yue Huang, Puneet Gupta
  • Patent number: 8163247
    Abstract: A process is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: April 24, 2012
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 8137631
    Abstract: One exemplary embodiment can be a fluid catalytic cracking unit. The fluid catalytic cracking unit can include a first riser, a second riser, and a disengagement zone. The first riser can be adapted to receive a first feed terminating at a first reaction vessel having a first volume. The second riser may be adapted to receive a second feed terminating at a second reaction vessel having a second volume. Generally, the first volume is greater than the second volume. What is more, the disengagement zone can be for receiving a first mixture including at least one catalyst and one or more products from the first reaction vessel, and a second mixture including at least one catalyst and one or more products from the second reaction vessel. Typically, the first mixture is isolated from the second mixture.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: March 20, 2012
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Robert L. Mehlberg
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz